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Project Description — GridSolve: A system for Grid-enabling general 
purpose scientific computing environments 

1. Introduction 
The emergence of Grid computing as the prototype of a next generation cyberinfrastructure for science 
has excited high expectations for its potential as an accelerator of discovery, but it has also raised 
questions about whether and how the broad population of research professionals, who must be the 
foundation of such productivity, can be motivated to adopt this new and more complex way of working. 
The rise of the new era of scientific modeling and simulation has, after all, been precipitous, and many 
science and engineering professionals have only recently become comfortable with the relatively simple 
world of the uniprocessor workstations and desktop scientific computing tools. In that world, software 
packages such as Matlab and Mathematica represent general-purpose scientific computing environments 
(SCEs) that enable users —  totaling more than a million worldwide —  to solve a wide variety of 
problems through flexible user interfaces that can model in a natural way the mathematical aspects of 
many different problem domains.  Moreover, the ongoing, exponential increase in the computing 
resources supplied by the typical workstation makes these SCEs more and more powerful, and thereby 
tends to reduce the need for the kind of resource sharing that represents a major strength of Grid 
computing [1]. Certainly there are various forces now urging collaboration across disciplines and 
distances, and the burgeoning Grid community, which aims to facilitate such collaboration, has made 
significant progress in mitigating the well-known complexities of building, operating, and using 
distributed computing environments. But it is unrealistic to expect the transition of research professionals 
to the Grid to be anything but halting and slow if it means abandoning the SCEs that they rightfully view 
as a major source of their productivity. We therefore believe that Grid computing’s prospects for success 
will tend to rise and fall according to its ability to interface smoothly with the general purpose SCEs that 
are likely to continue to dominate the toolbox of its targeted user base.  

The GridSolve project we propose below aims to address this difficult problem directly: 

The purpose of GridSolve is to create the middleware necessary to provide a seamless bridge 
between the simple, standard programming interfaces and desktop SCEs that dominate the work of 
computational scientists and the rich supply of services supported by the emerging Grid 
architecture, so that the users of the former can easily access and reap the benefits (shared 
processing, storage, software, data resources, etc.) of using the latter. 

This vision of the broad community of scientists, engineers, research professionals and students, working with the 
powerful and flexible tool set provided by their familiar desktop SCEs, and yet able to easily draw on the vast, 
shared resources of the Grid for unique or exceptional resource needs, or to collaborate intensively with colleagues 
in other organizations and locations, is the vision that GridSolve will be designed to realize.  

The opportunity to develop such a system arises from a growing consensus in the Grid community about the 
strategic importance of creating a new GridRPC mechanism. GridRPC is conceived as a version of the classic 
remote procedure call (RPC) programming paradigm that has been adapted to the basic facts of Grid computing, 
and yet kept simple and clean enough to serve as a foundation for experimentation and interoperability among 
different approaches. Now, since our NetSolve software system [2, 3] is not only based on the RPC paradigm, but 
also uses that model to enable Matlab and Mathematica users to utilize a restricted subset of Grid resources, the 
existence of GridRPC in a form that was compatible with key Grid technologies and received broad community 
support will provide an ideal foundation for translating NetSolve into GridSolve. The aim of the GridSolve project is 
to bring about this new synthesis. 

Since a viable and robust GridRPC mechanism is the fundamental building block for the GridSolve project (a role it 
is expected to play in many other Grid efforts as well), a main thrust of the project will be to help drive the design of 
GridRPC within the community and to lead the implementation effort that delivers successive working versions of it 
as quickly as possible. As we describe below, our research experience working with NetSolve should enable us to 
move quickly, and the current version of NetSolve gives us a natural vehicle for early phases of that effort. Given 
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the early agreement that has already begun to form around certain proposed features of GridRPC, to achieve its 
goals the  development of GridRPC must be accompanied by several other tasks, including the following: 

? ? Create essential GridSolve client interfaces —  A key aspect of GridRPC interoperability involves 
providing a standard client API that enables the sharing of client programs among Network Enabled Server 
(NES) (e.g. NetSolve, Ninf [4], Cactus [5], NEOS [6]) systems that are based on the RPC paradigm [7].  
Our experience shows that once a solid C client that conforms to this API is created, Matlab, Mathematica, 
and Fortran clients can all be built on the C interface. Such clients already exist for NetSolve, and we 
expect that porting them to GridRPC, i.e. making them GridSolve clients, will be straightforward. Because 
of the importance to the community of Open Source alternatives, the GridSolve project will also develop 
Octave (http://www.octave.org/) and/or SciLAB (http://www-rocq.inria.fr/scilab/) clients on the same 
model.   

? ? Bind the GridRPC mechanism to major Grid backends —  Proper development of GridRPC should make it 
a relatively straightforward matter to bind to systems that are already based on RPC mechanisms. But to 
serve the goals of GridSolve, which aims to be a next generation NES, GridRPC must also be able to utilize 
Grid systems based on other models, most especially Globus and Condor. At a minimum, this means 
supplying separate “adapters” that GridRPC can use to start jobs within the  Globus and Condor systems 
respectively, but it may also involve addressing more complex questions, such as resource discovery and 
scheduling that must be handled outside the GridRPC mechanism. A major challenge of the GridSolve 
effort will be to discover relatively clean and efficient ways to address such problems for each of the 
backend Grid systems that the user community wants to utilize.  

? ? Ensure GridSolve access to key grid services —  Various services need to be delivered in a relatively 
ubiquitous way within Grid computing, and the GridRPC based approach will have to determine how to 
engage with them. Some services (e.g. Globus Security Infrastructure -GSI, the Network Weather Service – 
NWS) are nearly defacto standards; those that are essential to resource discovery and scheduling (e.g. 
Metacomputing Directory Service – MDS and AppLeS Parameter Sweep Template – APST) tend to still be 
major subjects of experimentation and debate. While the GridRPC mechanism will remain simple and 
standard, GridSolve may make choices about how to incorporate access to these external services that other 
GridRPC-based approaches may decide to do differently. 

? ? Enable GridRPC and GridSolve support for adequate data logistics —  The importance in Grid computing 
of the flexible management of data movement and distributed state for the purposes of enhanced 
performance, bandwidth efficiency and fault tolerance are well known. The size of the matrices and data 
sets used by the Grid community  continues to grow and the importance of access to distributed, but 
relatively collocated storage and computational resources for good performance in task parallel and 
parameter sweep applications on the Grid has been amply documented [8].  It is therefore critical that the 
GridRPC mechanism should be able to address those Grid services (e.g. GridFTP, the Internet Backplane 
Protocol – IBP) that have been expressly designed to facilitate the management of data transport and 
storage on the Grid. 

Below we lay out our plan to address each of these objectives, make GridSolve a reality, and promulgate its use 
within the vast community of research professionals. 

2. Background 

2.1 NetSolve and general purpose scientific computing environments (SCEs) 

A straightforward way to understand GridSolve is to see it as a further evolution of the research done on our 
experimental NetSolve system [2, 3], bringing to fruition the knowledge gained in that effort and using it to help the 
broad scientific community reap the benefits of Grid computing. Though the origins of NetSolve predate the Grid 
movement, the NetSolve approach to building a Grid that is able to support various, widely used SCEs has long been 
recognized as an important strand in the Grid community’s effort [9]. The reason for this recognition becomes clear 
in the light of two factors: The power of general purpose SCEs, such as Matlab and Mathematica, within the 
Computational Science community, and the role that NetSolve was designed to play in extending their capabilities in 
critical ways. We address each of these aspects.  
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The importance of desktop SCEs becomes clear when you consider the case of Matlab.  Matlab was designed 
expressly for people doing numerical computation. It began as a "MATrix LABoratory" program, intended to 
provide interactive access to the famous LINPACK and EISPACK libraries of state-of-the-art numerical routines. 
These are carefully tested, high-quality general-use packages for solving linear equations and eigenvalue problems. 
The goal of Matlab was to enable scientists to use matrix-based techniques to solve problems, without having to 
write programs in traditional languages like C and Fortran. Much of its power as a language stemmed from its 
ability to transparently encode scientific calculations, i.e. encode them in a way that exposes the underlying science 
to the inspection of the programmer and allows numerical solvers to be applied efficiently. This capacity of Matlab, 
in combination with its interactive interface, reliable algorithmic foundation, fully extensible environment, and 
computational speed, has caused it to rapidly replace Fortran as the  "lingua franca for the exchange of software and 
algorithms." The addition, over time, of extensions to the language, outstanding graphics and visualization support, 
and high performance libraries has strengthened that position.   

With a user community more than half a million strong spread throughout industry, government, and academia, 
Matlab is a recognized standard worldwide for technical computing. It is used in a wide variety of application areas, 
including signal and image processing, control system design, earth and life sciences, finance and economics, and 
instrumentation. Its relatively simple architecture makes it easy to use Matlab and companion products to explore 
data and create custom tools that provide early insights and competitive advantages. It is worth noting, however, that 
Mathematica claims more than a million users worldwide, and would have an analogous story to tell about its 
established position in the community and its value to its users. 

Given this account of the nature and value of these general purpose SCEs, it is natural to wonder why they should 
require any support from NetSolve or from Grid computing at all. But the simple fact is that the that scientists and 
engineers continue to confront challenges that push their work beyond capabilities of their individual workstation 
platforms, requiring them to try to access more computing power, more complex and specialized software libraries, 
massive or rare data sets, and the unique contributions of their colleagues in other disciplines, locations, and 
organizations. These are the kinds of factors that tend to drive users to try to access the resources they need 
remotely, which today means using the shared resources that the Grid computing can supply. 

But while Grids can offer tremendous computing power, they also combine and amplify all the well-known 
complexities of distributed and parallel computing environments, including distributed ownership of the resources, 
platform heterogeneity, network reliability and performance, and storage availability.  All of these issues make it 
very difficult to use a parallel or distributed computing platform as if it were a single workstation. Worse still, many 
of the systems that have been built to overcome them tend to, either because of complexity or indifference,  deprive 
scientific programmers of the very SCE programming environments that have become crucial to their routine 
productivity. NetSolve implemented an approach to Grid computing that used  a brokered RPC paradigm (a “client-
agent-server” model) precisely because it was the approach best suited to creating a Grid computing environment 
that preserved the viability and user investment in desktop SCEs. It is still remarkable that, to our knowledge, 
NetSolve is the only Grid system ever to support Matlab and Mathematica as native clients for Grid computing. 

But though NetSolve has proved valuable as an experimental bridge between the standard toolkit of Computational 
Science today and the model of Grid computing that is supposed to fuel scientific progress tomorrow, our experience 
with NetSolve, combined with the development and maturation of Grid computing on a number of other fronts, 
revealed problems and limitations in NetSolve’s design and implementation that need to be addressed if its user 
community is to have the kind of next generation working environment that they require. Although NetSolve will 
continue to serve as a research vehicle, the effort to create GridSolve that we propose here reflects the lessons we 
have learned from exploring Grid computing through NetSolve in the context of the broader evolution of the Grid 
computing. Below we discuss this experience in more detail. 
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2.2 Research experience with Network Enabled Servers as a driver for GridRPC and 

GridSolve 

Since the mid-nineties various experimental systems [2, 4, 6, 10-12] have been created that use a variation of the 
classic  remote procedure call (RPC) paradigm to aggregate hardware and software resources in the fashion of 
today’s Grid. Some of these systems, often referred to as Network Enabled Servers (NES), predate the development 
of today’s Grid, but have always been considered to be a key part of the movement [9]. NES systems change the 
RPC model in a number of important ways, some of which involve resource discovery, dynamic problem solving 
capabilities, load balancing, fault tolerance asynchronicity, security, etc. One of the important outcomes is a 
“brokering” process that determines dynamically, when 
the client makes its request, which server out of the 
server pool is the best one to handle that request.  

As illustrated in Figure 1., an NES system consists of a 
client (or set of clients), a pool of servers, and a set of 
resource management functions that may or may not be 
implemented as separate pieces of software. All NES 
systems can be cast into this model, and the most 
prominent ones, viz. NetSolve and Ninf, follow it 
reasonably closely. Of the five main elements that we 
distinguish [7], only the Client and the Servers (taken 
singly) interact with each other through the RPC 
mechanism; the other elements do not participate in but 
only broker that interaction, i.e. they provide the 
information and the decision making algorithm necessary 
to select the individual server to which the client request 
is to be sent. In NetSolve (current version 1.4), these 
elements can be described as follows: 

? ? NetSolve Client: The NetSolve client library is 
linked in with the user’s application (written for 
example, in Matlab), which makes calls to 
NetSolve’s application programming interface (API) for specific services. Current clients include C, 
Fortran, Matlab, and Mathmatica; plans for Octave, Scilab, and Excel clients are underway. 

? ? NetSolve Servers: The NetSolve server is a daemon process that awaits client requests. The server can run 
on various kinds of architectures, including single workstations, clusters of workstations, symmetric multi-
processors or machines with massively parallel processors. Just as importantly, NetSolve server software 
includes not only standard numerical libraries (e.g. LAPACK, BLAS) but also more specialized and hard to 
install packages (e.g. Aztec, PETSC). With NetSolve, users can employ their familiar client interfaces to 
easily utilize (via an RPC like model) valuable combinations of hardware and software that would 
otherwise be difficult or practically impossible to access. 

? ? NetSolve Agent: The NetSolve agent combines both a Scheduler that decides which server the client should 
submit its job too and a Database containing the resource information (e.g. installed software, sever load, 
available bandwidth, etc.) necessary to make that decision.  

? ? NetSolve Monitoring: In NetSolve, the monitoring function is spread out among a number of different 
processes, some running on the servers themselves, others operating as separate middleware services. The 
current version of NetSolve uses the Network Weather Service (NWS) [13] to provide the most sophisticate 
information and forecasts of resource status and availability. 

In evaluating both the need and the work required to create GridRPC and to transform NetSolve into GridSolve, our 
experience and the experience of others in the NES community [14] shows that it is important to distinguish 
between two sets of questions: there are issues that center on how, if at all, the generic RPC mechanism itself needs 
to be modified or augmented to adapt it to the special conditions of Grid computing; and there is a much larger raft 
of issues that surround the choice of components, architecture, deployment scheme and configuration of the 
processes for resource management that must be engaged to provide the “brokering” and other services (e.g. 

 
Figure 1: The Basic Network Enabled Server (NES) 
Architecture  
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security) necessary to use the RPC mechanism effectively in the context of the trajectory of Grid computing today. 
In some respects the latter set of issues is more daunting because it deals with a myriad of different technologies, 
many of them in different states of development, interoperability, and standardization. In section 3.2 below we will 
lay out some of the choices we have made or will evaluate, in areas such as scheduling, resource discovery, and 
security, as part of the process of designing and implementing GridSolve.  

The issues that surround the creation of GridRPC are in some degree more basic, since they affect the mechanism 
that is intended to be a standard for Grid computing generally and at the core of future NES approaches, including 
GridSolve. For example, NetSolve and Ninf, which are two prominent and widely used NES systems, agree on the 
way the RPC mechanism needs to be implemented in some respects, but not in others. Both agree in the type of 
connection protocol they use and that client proxies are necessary to deal with the heterogeneity of Grid backend 
resources. But they diverge on the crucial question of the Interface Definition Language (IDL), which is used by 
both the client and the server to marshal input and output data arguments and place actual calls to the appropriate 
software modules. Likewise they use different wire protocols to communicate between client and server. The result 
is that, despite several years of active cooperation and mutually beneficial discussion, these leading NES systems do 
not interoperate in any significant degree.  

Certainly these questions must be worked out and settled as part of a community process, and both the NES 
community (privately) and the larger Grid community (through the Global Grid forum) have begun to participate in 
this process. We believe that the importance of creating a standard RPC mechanism for the Grid community, along 
with the maturation of other branches of Grid computing, creates an ideal opportunity to achieve consensus. 
Happily, early working consensus has already emerged on some questions; for example, that the initial 
standardization effort should focus on the client API and that it needs to be able to scale as regards the granularity of 
the calls (<sec to >week) that it can make. But there are three issues —  interoperability with other NES systems, 
ability to use other types of Grid “backends” (e.g. Globus and Condor), and the ability to utilize network storage 
resources for data logistics (e.g. caching and distributed state management, especially in parameter sweep 
applications) —  which our experience with NetSolve and the AppLeS Parameter Sweep Template shows will be 
especially important to address in the design of GridRPC. Below, we briefly discuss our experience in each of these 
areas. 

It is natural to ask if one of the industry oriented efforts in this arena might address such problems. One such effort 
is the Common Object Request Broker Architecture (CORBA) defined by the Object Management Group (OMG). 
OMG is an independent consortium of vendors; consequently, the standard it defined is open (vendor independent) 
and has resulted in many independent implementations for a variety of platforms. In order to provide interoperability 
between these diverse implementations, CORBA defines interoperability mechanisms. A high level, distributed 
computing model, vendor independence, and a strong interoperability thrust all combined to make CORBA an 
attractive and popular distributed computing standard; but it has also been recognized as being poorly adapted in 
some respects to the needs of high performance computing [15]. As such, CORBA meets the necessary requirements 
to be seriously considered by application developers as part of the Grid infrastructure.  Recently, a number of 
research groups have started to investigate Commodity Grid Kits (CoG Kits) (http://www.globus.org/cog/) in order 
to explore the affinities of the Grid and commodity technologies.  Developers of CoG Kits have the common goal of 
developing mappings and interfaces between Grid services and a particular commodity technology. We believe that 
CoG Kits will encourage and facilitate the use of Grid technologies, while at the same time leveraging the benefits 
of the commodity technology.  We will track the work of this group to use these ideas in our effort when possible.  

2.2.1 Integration of Grid backends: The NetSolve proxy interface 
Since most NES systems began to be developed before the advent of the current Grid model, they tended to closely 
couple their clients and servers: NetSolve clients worked with NetSolve servers, and similarly for Ninf and other 
systems. But as the hardware and software systems deployed under other systems that used different, non-RPC 
programming paradigms, NES systems have worked to adapt in ways that give their users access to a variety of 
these other “backend” systems. In NetSolve and Ninf, this is accomplished through the use of client proxies. 

A client proxy is a process that resides on the client host and acts on behalf of the NetSolve client to handle all 
interactions with a specific kind of Grid backend. Each different backend  has its own characteristics and requires its 
own proxy to shield the client from the details of that interaction. For example, to enable NetSolve to interact with 
the Globus system we built a proxy for the NetSolve client that knows how to interact with and make use of Globus 
resources.  By using proxies that abstract away the details of the intersystem communication, the NetSolve Client 
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API can stay consistent while the Grid systems it can utilize can change and grow. With a standard interface 
between the client and all proxies, it is possible, especially for third party developers, to easily add new language 
support to the NetSolve system.  They simply write libraries that interface the NetSolve proxies from their language 
of choice, allowing programs of that language to become NetSolve-enabled.  The client libraries interact with the 
proxy thanks to a standard API and the proxy interacts with the Grid system using system-specific mechanisms, i.e. 
it interacts not just with the computational servers of the system, but also with some or all of the system’s own 
resource management services. This has allowed NetSolve-enabled clients to leverage other Grid resources (e.g. 
Globus systems) apart from those provided by NetSolve. 

But while the Proxy approach has been used successfully by NetSolve and other NES systems (e.g. Ninf), it is not 
without problems. For example, a NetSolve user who wants to access Globus resources must, according to the 
Globus security model, have authorization to use all the systems they want to use; but the Globus proxy may neither 
know nor have an easy way to discover this information. Moreover, interacting with a multiplicity of backends 
requires a multiplicity of proxies, which can raise problems about how they interact with one another and with the 
client. In NetSolve, for instance, trying to make the client switch back and forth smoothly among proxies for 
different systems has proved problematic. Since we want to provide the GridSolve user community with access to 
the widest possible set of Grid resources, designing an improved proxy interface to address these problems for the 
major Grid systems will be a high priority. 

2.2.2 RPC and the need for data logistics: 
While early efforts in Grid computing focused on harnessing distributed computational cycles, applications 
involving large-scale, data intensive simulation have made it clear that computational and data services, which were 
once distinguished and addressed separately by distributed systems developers, need to be addressed simultaneously 
in this context [16]. We use the term data logistics to refer to the problem of managing the locality of data so that it 
is where it needs to be and when in relation to available computational or network resources, in order to be 
efficiently utilized and with good performance by Grid applications. Our experience with NetSolve led us to explore 
techniques that exploit the relative cheapness of storage in order to achieve high levels of computational throughput 
in the presence of large datasets or congested networks through the use of good data logistics [17]. The results of 
that work, plus the experience of many other middleware and applications groups, are persuasive in pointing to 
issues of data logistics as a key challenge for Grid computing generally, and therefore as critical to the design of 
GridRPC and GridSolve. 

Typical forms of data logistics include caching, replication, and prestaging, and since all these forms and more are 
relevant to Grid computing, they will also be so for GridRPC and GridSolve. Our experiments with NetSolve 
focused primarily on “supply side” caching, in which the application at the client layer of the system is the supplier 
of data to the computational servers on the Grid, and the data is cached near those servers in a set of storage 
“depots,” called a Distributed Storage Infrastructure (DSI), for reuse in servicing successive client requests. For our 
experiments, we place a NetSolve client application at the University of California, San Diego and experimented 
with requests to a pool of computational servers and DSI depots at the University of Tennessee. The most notable 
result was that, for a file size that is modest by Grid standards (2.68MB), only two accesses were needed before the 
overhead added by the DSI was outweighed by the reduction of network activity caused by the reuse of cached data, 
which reaches an asymptotic level when the cache enhanced system shows three times (3X) speed up over the 
unenhanced system. More encouraging still, the limit in speed up was reached because of server overload, not a 
bottleneck in bandwidth or latency [17]. 

The DSI API we created for NetSolve to support this effort is designed to be general in at least two ways.  First, the 
DSI API and collateral modifications to the NetSolve object model were designed to allow the NetSolve community 
to use DSIs to build applications that make use of a variety of data logistical techniques on the Grid, but without 
modifying the standard NetSolve functions for computational requests. Preserving such strategic flexibility in data 
logistics while continuing to support general purpose SCEs will be an important element of GridSolve.  

Second, attempts to deal with data logistics in a general way must confront the fact that the kind of ubiquitous and 
application independent access to transmission bandwidth that the Internet supplies does not exist for the storage 
resources that sit on top the network fabric. Several experimental DSIs are now under study, including the Internet 
Backplane Protocol (IBP) [18], GridFTP [19], Global Access to Secondary Storage (GASS) [20], and NeST [21]. 
Unless there's a logical reason for doing so, I would remove italics here.For our NetSolve experiments, we used IBP, 
which is middleware designed and developed by PIs Beck and Plank in order to manage distributed storage for 
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logistical purposes in large scale, distributed systems such as NetSolve. By providing a uniform, application-
independent interface to network storage that can be scalably shared, IBP makes it possible for applications of all 
kinds to use logistical networking to exploit data locality and more effectively manage buffer resources. The goal is 
to allow distributed applications that need to manage storage for data logistics to benefit from the kind of 
standardization, interoperability, and scalability currently enjoyed by IP-based network technologies. Although  our  
research actually used an IBP DSI, the DSI API was carefully designed and implemented so as not to be dependent 
on the underlying DSI. Then, as now, the area of data logistics and DSIs are active areas of research, with various 
promising technologies (e.g. IBP, GridFTP, NeST, GASS) under active development. Consequently the data 
logistics strategy we plan for GridSolve/GridRPC, discussed below, will have the same kind of DSI independence 
possessed by the DSI interface for NetSolve. 

2.2.3 Task parallelism on the Grid and the problem of co-scheduling transport and storage: 
APST 

The APST project [22] started in 1999 and builds on the findings and techniques developed as part of the 
Application-Level Scheduling (AppLeS) project [23].  AppLeS focused on the design and development of Grid-
enabled high-performance schedulers for distributed applications. The first generation of AppLeS schedulers 
demonstrated that simultaneously taking into account application- and system-level information makes it possible to 
effectively schedule applications on the Grid. However, each scheduler was embedded within the application itself 
and thus difficult to re-use for other applications. The next logical step was to consider classes of applications that 
are structurally similar and to develop independent software frameworks, i.e. templates, which can target all 
applications within a specific class.  This led to the development of APST for Parameter Sweep Applications.  

APST's goal is twofold: (i) Investigate scheduling strategies for PSAs; (ii) provide transparent application 
deployment on Grid resources. The work in [8] details novel adaptive scheduling approaches used in the current 
APST implementation. Transparent deployment is achieved with a modular design that allows APST to use many 
Grid middleware back-ends simultaneously. The philosophy here is that the user should be able to use a single 
application execution environment for all the resources he can access. For instance, APST can launch application 
tasks using Globus [24], NetSolve, Condor [25], or even via a default SSH mechanism. In terms of Data Grid 
middleware, APST provides support for GASS, GridFTP, IBP, and can default to FTP or Scp. SRB [26] support is 
underway. APST's user interface is extremely simple and the user can describe his/her application and Grid 
resources via XML files. APST is currently used in production and evaluation by applications in several research 
institutions. It is gaining momentum in the scientific communities as it provides disciplinary scientists with a 
straightforward way to benefit from the Grid.  The software was demonstrated both at SuperComputing'99 and 
SuperComputing'01 and version 1.1 was publicly released in February 2002. 

3. Proposed Work 

3.1 GridRPC as basic middleware for Grid-enabled SCEs 

A reasonable way to draw the distinction between GridRPC and GridSolve is to say that GridRPC is a basic 
mechanism while GridSolve is a full-blown NES. More precisely, the GridRPC layer focuses on the mechanisms 
that are necessary for the correct execution of a remote procedure call on the Grid, with careful attention to keeping 
it as simple and generic as possible; this ensures that GridRPC is usable for a wide spectrum of applications and that 
it can be integrated easily into many existing projects.  GridSolve, by contrast, encompasses the other middleware 
required —  proxies, schedulers, monitors, security, monitors, etc. —  to enable desktop SCEs to use utilize Grid 
resources as easily and efficiently as possible. The diversity of approaches that are now being explored on many of 
these fronts by the Grid community makes the issues and choices for GridSolve more complex. For example, 
consider the case of scheduling. Many Grid projects that can benefit from GridRPC (NetSolve, Ninf, AppLeS, 
APST, Nimrod [10]) address the question of scheduling in very diverse ways. NetSolve, the ancestor of GridSolve, 
relies on an external entity, the NetSolve agent, in order to select appropriate resources for task executions. In its 
first incarnation, GridSolve will rely on a similar strategy. Therefore, the GridSolve client, before issuing each RPC 
call via the GridRPC client, will query an external agent in order to obtain a resource to which the call should be 
sent. This approach has the advantage that the decision making process stays external to GridSolve, that it has a 
single point of entry into GridSolve, and that it can therefore be easily replaced and modified. But part of the 
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GridSolve effort will be experimenting with other approaches (e.g. the approach of APST) for incorporation into 
GridSolve in its subsequent phases. 

Ongoing discussions within the NES community and through the Global Forum have produced certain rough 
consensus on the development path for the GridRPC mechanism itself [27]. Leaving aside the difficult issues of the 
IDL and the wire protocol for the second and third phases of the effort, the initial focus will be on creating a 
standard client API. The basic goals would be to allow different NESs to share client programs and to provide the 
basic building blocks for writing task parallel programs on the Grid, whether through an NES or independently, e.g. 
through the APST. The list of generally agreed upon client features include the following: 1) Medium to coarse 
grained calls (duration <1sec to > week); 2) Task-parallel programming on the Grid (Asynchronous calls, 1000s of 
scalable concurrent calls); 3) Dynamic RPC: Resource discovery and scheduling; 4) Large matrix data and file 
transfer (Call-by-reference, shared memory matrix arguments, scientific IDL); 5) Grid-level security (Ninf-G with 
GSI Implemented with Globus toolkit); 6) Simple Client-side programming and management (no client-side stub 
programming or IDL management); 7) Server job monitoring and control; 8) Make it very bandwidth efficient.  

As part of this project, we will help lead the NES and Grid Community effort to create a standard client and to do a 
robust reference implementation of it.  By building GridSolve around this common foundation, we hope to  set the 
stage for further agreement on the thornier issues of a standard GridRPC (e.g. the IDL), and at the same time assure 
that the SCE user community will be investing in a technology that will exhibit reasonable longevity. But a review 
of several of the items in the desired feature list for the client (viz. task parallel grid programming, large data sets, 
call by reference, efficient bandwidth usage) shows that they all relate in one way or another to issues of data 
logistics, which our previous research has identified as critical RPC-based programming on the Grid. Below we 
describe an innovative idea we plan to explore in that arena. 

3.2 Stages in the evolution from NetSolve to GridSolve 

Since the purpose of GridSolve is to enable a multitude of general-purpose SCE users to tap into the power of the 
Grid, it is important in our view to 
engage with their experience early and 
often during the development of 
GridSolve and the GridRPC middleware 
on which it depends. Achieving this 
intermediate goal requires the rapid 
implementation of Grid middleware 
adhering to the GridRPC API (as it 
stabilizes), the development of a generic 
GridRPC client, the creation of Matlab 
and Mathematica clients by wrapping the 
GridRPC client, and the promulgation of 
this early prototype within the 
Computational Science community. The 
existence of NetSolve software and of the 
growing NetSolve community provides 
an ideal vehicle for engaging quickly 
with this large and important class of 
potential Grid users. The ultimate goal of 
to create a three-part system that 
conforms to the NES model, but uses 
GridRPC and consolidates what the NES 
community has learned about Grid 
computing and what it can anticipate for 
its future. Figure 2 presents a picture of 
GridSolve in it’s fully developed form. 

Our plan for developing GridSolve falls into 3 stages. At the first stage, we will work with the NES and Grid 
communities to specify and develop the GridRPC API quickly, and then we will do an initial implementation of it 
inside the NetSolve framework. Although it is not strictly necessary to use NetSolve  as the prototype middleware, 
doing so will greatly accelerate the process of getting a working version of GridSolve/GridRPC into the hands of its 

 
Figure 2:  GridSolve in its mature form. Not pictured here is the use of 

the exNode structure to provide data logistics (sec. 3.4) 
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intended user community.  NetSolve provides various components that will be helpful in the initial stages of 
implementation. It has Matlab and Mathematica interfaces that can be re-worked in terms of the GridRPC API.  
Also, NetSolve has proxies that know how to “speak” to other back-end servers (Globus, for example). Finally, the 
NetSolve agent has resource management capabilities that an NES requires to make GridRPC useful on the Grid 
immediately. Initially, the early implementation of GridRPC would consist of a wrapper around the NetSolve C 
interface. Most of the calls in the GridRPC, in its current outlines, can be easily mapped to the NetSolve interface 
and the others could be straightforwardly implemented.  This work would also allow us to begin to address potential 
limitations to the GridRPC API somewhat, regarding the lack of certain features required by SCEs, such as the 
ability to specify the data layout (row major vs. column major). It will be necessary to write a Matlab interface to 
GridRPC, but since we have the NetSolve Matlab interface to consult, this should not prove difficult. With this 
initial implementation, the client may only be able to interact with a single back-end since it is unclear whether the 
proxy limitations can be easily resolved (the limitation is that only one proxy can be used in any one session). By 
wrapping other elements of NetSolve around the initial implementation of GridRPC, the Grid application 
community will have a usable prototype of GridSolve in their hands quickly. 

In the second phase we will work to get the existing proxies for different Grid back-ends working seamlessly.  This 
could include developing a plugin interface that allows a developer to easily insert support for other back-ends into 
the middleware without touching the middleware code itself. The most critical problem in this regard is how we 
address issues of resource discovery, selection, and scheduling. This is a complicated issue for a variety of reasons, 
not the least of which is the fact that it is an active area of research among groups trying to realize the original vision 
of the Grid [28]. While we have already done some preliminary experimentation in this area (with the APST for 
example [22]), before selecting a design and the requisite components, we plan to explore several technologies. To 
illustrate, here are two likely candidates: 

? ? Globus Metadata Directory Service (MDS) – MDS provides for static resource allocation and advanced 
reservation of resources. Resource capabilities are advertised in MDS. The user  searches MDS and submits 
jobs to the appropriate resource. Coarse-grained  user directed scheduling.   

? ? Condor Class-Ad mechanism —  Provides mechanisms for resources to advertise available  capabilities and 
for jobs to advertise wanted capabilities. Provides a matching mechanism to pair jobs and resources. Also 
allows migration of jobs to other matching resources should the current resource be needed  for other work. 
Finer grained automatic scheduling. 

Given the established capabilities of the Globus toolkit, it could provide many of the functions we envision needing. 
We already plan to ensure that GridSolve utilizes the Globus Security Infrastructure [29]. Given the importance of 
security, we describe this separately below. On a separate note, the use of the Network Weather Service (NWS) [13] 
for resource monitoring is also and obvious early choice because of it is both capable and increasingly ubiquitous.  

For the third stage of the project our goal is to forge key agreements within the NES community on the IDL and 
wire protocol for GridRPC. Once the back-ends support that protocol, the proxy/plugin becomes superfluous since 
the client can communicate with any GridRPC-compliant back-end. At this point, we would need to develop a new 
GridRPC implementation because the current implementation would, presumably, not conform to the agreed upon 
protocols. We may also develop a GridRPC plugin that would allow clients to call both the new GridRPC-compliant 
back-ends and non-compliant back-ends.  The higher-level services built on top of the NetSolve-based GridRPC 
would not need modification. 

3.3 Security: GrisSolve and GSI 

During its first phase, GridSolve will automatically inherit NetSolve’s current security model, which is based on the 
ability to generate access control lists that are used to grant and deny access to the NetSolve servers.  The NetSolve 
developers opted for using Kerberos V5 services because it is one of the most trusted and popular infrastructures for 
authentication services. The server implements access control via a simple list of Kerberos principal names that 
usually consist of a name (often a UNIX username) and a realm, which defines the Kerberos "domain".  This list of 
principals is maintained by the NetSolve server administrator and is kept in a private text file, which is consulted by 
the server.  A request to a NetSolve server must be made on behalf of one of those principal names.  If the principal 
name associated with the Kerberos credentials in the request appears in the list, and the credentials are otherwise 
valid, the request will be honored.  Otherwise, the request will be denied. 
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The NetSolve system supports the interoperation of Kerberized and non-Kerberized components.  In either case the 
client sends a request to the server, and the established protocol dictates that, if required, the server must send an 
explicit request for authentication.  At this point, the client can either abort the transaction (knowing it does not have 
the proper credentials) or attempt to authenticate itself to receive proper servicing.  Currently, there is no mechanism 
to allow the client to insist on authentication of the server - a Kerberized client will happily talk with either 
Kerberized or non-Kerberized servers.  At this time, the Kerberized version of NetSolve performs no encryption of 
the data exchanged among NetSolve clients, servers, or agents, nor is there any integrity protection for the data 
stream. 

With the proposed GridSolve activities we will investigate the design and implement a security model based on the 
Globus Toolkit’s Grid Security Infrastructure (GSI) for enabling secure authentication and communication over an 
open network. We view GSI support as essential in giving GridSolve’s target user community full access  to the 
growing resources of the Grid; such support will therefore be one of the main features that distinguishes GridSolve 
from NetSolve.  

The primary motivations behind the GSI are: 

? ? The need to provide for mutual authentication and single sign-on 
? ? The need for secure communication (authenticated and perhaps confidential) between elements of a 

computational Grid.  
? ? The need to support security across organizational boundaries, thus prohibiting a centrally-managed 

security system.  
? ? The need to support "single sign-on" for users of the Grid, including delegation of credentials for 

computations that involve multiple resources and/or sites.  
GSI is based on public key encryption, X.509 certificates, and the Secure Sockets Layer (SSL) communication 
protocol.  Extensions to these standards have been added for single sign-on and delegation.  The Globus Toolkit's 
implementation of the GSI adheres to the Generic Security Service API (GSS-API), which is a standard API for 
security systems promoted by the Internet Engineering Task Force (IETF). 

3.4 Support for data logistics in GridRPC and GridSolve: the exNode 

A key part of our work with GridRPC and GridSolve are data logistics. The temptation, to keep the interface and 
software simple, is to keep references to data simple and falling into one of three classes: 

? ? Direct inclusions of data.  These are the arguments marshalled into a serialization format and passed to the 
server.  All RPC engines have to include basic functionalities for direct inclusion of data. 

? ? Actively transported files.  Often it is easier for the server to use standard file primitives and be passed a 
pointer to a file that is actively transported with the RPC arguments.   This allows a highly optimized file 
transport mechanism such as GridFTP to perform the data movement. 

? ? Lazily transported files.  As an optimization, the client may desire to pass the server a pointer to a file that 
may or may not exist at the client.  The server may then find and download the file at its leisure, again 
potentially using highly optimized transport mechanisms. This allows for third-party interactions apart from 
the client and server and also for the server to use data that is close to it. 

Each of these classes have difficulties: direct inclusion/serializations can be cumbersome or even impossible for data 
structures that exceed the size of the receiver's available storage; and file pointers may not allow the receiver to take 
advantage of locality by moving portions of the data close to it itself, or may not scale across loosely connected sites 
and different administrative domains.  Thus the combination of these three classes gives a rather rich suite of data 
logistic alternatives, we view them as too limited.  We propose an alternative to lazily transported files: exNodes.   

exNodes are XML-based serializations that allow one to compose remote allocations of data into something like a 
file.  However, there are key differences between exNode “files" and standard files.  The main difference is that a 
file is composed of disk blocks local to the machine that houses the file.  An exNode “file” is composed of 
allocations (typically IBP because of its great flexibility [30], but others are possible) that can be dispersed across 
the wide area, and in fact across the world.  Additionally, exNodes allow for flexible aggregation of storage 
allocations in its compositions.  For example, exNodes allow for arbitrary replication and partitioning of data. 
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The exNode is an approach to the representation of data aggregates that allows the use of network storage resources 
to implement logistical strategies.  The exNode represents aggregation and redundancy in a manner that is akin to a 
file descriptor such as the Unix inode. The exNode thus allows the implementation across the wide area network of 
logistical strategies including aggregation to increase capacity, caching and staging to improve performance through 
locality, and redundancy for error detections and correction. 

The use of the exNode to implement logistical algorithms means that it is possible to pass an aggregate across the 
network by simply serializing and sending the exNode data structure rather than the data it represents.  In that way, 
it is like sending  lazily transported files.  However, unlike the lazily transported files, exNodes expose the state of 
the logical-to-physical mapping that enables logistical data storage and movement and allows it to be transferred 
between widely distributed network nodes. 

Exposing the logistical state of a linear aggregation is a powerful tool 
for sharing of data without the limitations of either direct inclusion or 
standard files.  However, there is an additional challenge: the 
logistical management of linear data aggregates in the network 
requires not only the ability to map linear extents to various storage 
resources, but it also requires the application of algorithms and 
additional state information to correctly and efficiently map the 
logical data structure onto those resources.  In the case of direct 
inclusion, the algorithms and state are stripped off through 
serialization and rebuilt during deserialization (or, in the case of Java 
serialization, both are serialized and sent with the data itself as byte 
code, creating performance difficulties); in the case of file pointers, 
these are either eagerly transported in their entirety to the client or 
remain totally at a remote site.   

In the case of the exNode, additional state information can be passed 
as part of the exNode serialization in the form of XML-encoded 
metadata, but algorithms that interpret that state information must be 
implemented at each network node.  In the case where the state 
information is highly specialized to the application domain, it may be 
necessary to employ user-level libraries to interpret it. 

We plan to develop user libraries for a class of vector and matrix data 
representations for data stored in the network that have 
representations as exNodes with additional metadata that describes 
the mapping from numerical data structures to storage resources.  A 

number of logistical operations will be implemented, ranging from some very generic operations that apply in non-
numeric applications to others that are closely tied to the underlying linear algebra operations. 

By its nature as a Grid RPC system for the HPC community, GridSolve will be heavily focused on linear algebra. 
The data files will often be large, and will need to be staged to the computational backends provided by GridSolve. 
The most economical way to achieve data staging in a late-binding environment such as GridSolve is to store data 
files on the network rather than locally. The growing number of network storage solutions dictates that you be able 
to store data to the network and talk about its location in an architecture-independent manner. The exNode is the 
answer to this problem. 

Furthermore, it will be necessary to assert things about the data referenced by an exNode in a generic way. In 
particular, we will want to make assertions about input matrices. Enter the first application-specific exNode: the 
matNode. A matNode is an exNode that is required to have a certain amount of matrix specific metadata. This 
metadata might include matrix structure, storage orientation (row-major, column-major), dimensions, precision 
(double, single, arbitrary) and so on. Conceptually, the matNode becomes a generic way to move matrices around 
the grid in a storage-independent manner. 

3.5 GridRPC and APST: A foundation for task parallel applications 

Providing a first implementation of GridRPC for this project has two major impacts: (i) it will be key for evolving 
from the NetSolve model into GridSolve, with more flexible/extensible design as well as more robust 

 

Figure 2: The exNode compared to a Unix 
inode. While IBP depots are pictured, the 
exNode data structure supports URIs for a 
variety of types of storage, such as 
GridFTP, NeST, and SRB. 
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implementation; (ii) it will allow other projects to benefit from GridRPC. Among those projects are Grid application 
execution environments that allow for the transparent scheduling and deployment of applications on Grid resources.  
One such environment, the AppLeS Parameter Sweep Template (APST) project (http://grail.sdsc.edu/projects/apst) 
developed by one of the PIs, targets applications consisting of many independent computational tasks [22]. APST 
uses sophisticated scheduling techniques [8] with the goal of co-locating application data with compute resources in 
a view to reducing application execution time. Given the structure of the target applications, APST needs an RPC 
programming model for launching application tasks on many Grid resources. 

The overall APST philosophy is to focus on scheduling issues and re-use software provided by the Grid community 
for all deployment concerns. In its current incarnation, APST "emulates" RPC access to Grid resources by 
implementing many software layers between its scheduler and several mechanisms that can be used to launch 
remote processes. Currently APST supports Globus, NetSolve, Condor, and Ssh. Having to implement interfaces to 
all those systems greatly adds to the complexity of the APST software. Furthermore, that emulation of the RPC 
programming model is tied to the APST implementation and cannot be easily re-used for other projects.  In that 
sense, APST needs a component that provides an "RPC abstraction".  

GridRPC will provide that abstraction. In the first phase of this project we will add GridRPC support to APST and 
perform validation experiments. The first round of experiments will be qualitative, in order to evaluate whether the 
GridRPC API is amenable for integration within APST. This will allow us to evolve the GridRPC API with hands-
on experience with a Grid application execution environment. We will also characterize the reduction in APST 
software complexity if GridRPC were the only mechanism needed for launching remote processes.  As the proposed 
GridRPC development makes progress, we will also perform quantitative experiments. The goal will be to measure 
the overhead incurred when going through the GridRPC layer. We will repeat those experiments for each 
incarnation of our proposed GridRPC implementation and report on the reduction in overhead. 

In the last year of the proposal's time-frame we will package, document, and release a GridRPC-enabled version of 
APST. That version of APST will allow us to gather user feedback about GridRPC for hardening the 
implementation, as well as for collecting usage statistics and measure the impact of our work.  Finally, our 
APST/GridRPC integration will allow for APST to seamlessly benefit from future GridRPC development. 

3.6 GridSolve as a educational tool for simulation science 

Given the community that Gridsolve seeks to serve, an educational strategy is centrally important to its success. As 
computationally intensive modeling and simulation become staples of scientific life across every domain and 
discipline, the difficulty of acquiring and sustaining the necessary expertise in scientific computing is becoming 
increasingly acute for the broad rank and file of students and professionals. While access to necessary computing 
and information technology has improved dramatically over the past decade, the efficient application of scientific 
computing techniques still requires specialized knowledge of numerical methods and their implementation in 
mathematical software libraries that many students, scientists, and engineers working beyond the already strenuous 
demands of their particular field, must struggle to achieve. To address this problem, we have initiated a project that 
combines NetSolve and Netlib, the on-line repository of choice for numerical software for science and engineering, 
to create an active collection of mathematical software for science and engineering education. GridSolve will build 
on this foundation. 

The purpose of this system, called Active Netlib, is to provide the kind of rich, highly interactive, and inquiry-based 
learning environment needed to enable students and application scientists to attain the confident mastery of 
numerical methods and software libraries their work in this new era requires. While base content for the collection is 
supplied by Netlib, NetSolve will provide users access to  Active Netlib and will make  Netlib’s numerical software 
directly usable by students on servers over the network from Matlab, Mathematica, Fortran, and C interfaces, 
without requiring them to download and install the software themselves. NetSolve’s adaptive solver interface, which 
guides users in selecting appropriate software in setting parameters correctly, and in interpreting numerical results, is 
being further extended to provide more detailed feedback to users about the heuristics it uses and the decisions it 
makes in selecting Netlib software to solve a particular problem. GridSolve will immediately leverage the work that 
is now being done on NetSolve to provide an active interface to the Netlib collection that supports direct, hands-on 
learning with its contents. It will also provide new interfaces (e.g. Octave and Scilab) and improved access to a 
wider array of Grid resources. 
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3.7 Standards and Community Effort 

Standards will play an increasingly important role as Grid computing begins to gain wider acceptance. The standards 
development process for GridRPC has already begun in the Global Grid Forum and we plan to continue it there. The 
Global Grid Forum (GGF) is a community-driven set of working groups that are developing standards and best 
practices for distributed computing ("Grids" and "Metacomputing") efforts including those specifically aimed at 
very large data sets, high performance computing, and increasingly, those efforts that industry is calling "Peer-to-
Peer."  GGF represents a merger of three technical communities: those in North America (originally called "Grid 
Forum"), Asia Pacific, and the European Grid Forum (eGrid). 

We will engage the Grid  users' community in developing the framework described in this proposal. This will be 
accomplished by using a similar mechanism as was used for the MPI standardization process. We will hold 
workshops, we will disseminate the resulting documents and software, and we will engage the user community in 
the concepts and prototype implementations of the design. 

4. Related Work 
As a Network Enabled Server (NES) system designed for desktop Scientific Computing Environments (SCE), the 
GridSolve project embraces a wide range of related topics, from distributed computing generally, to problem solving 
environments, to distributed storage. A wide variety of RPC systems are currently in experimental or production 
deployments within the computational science community, including NetSolve [2, 3], Ninf [4], Cactus [5], and 
NEOS [6]. Some RPC based Grid systems also focus on task parallel and parameter sweep applications, including 
APST and Nimrod. Only NetSolve, however, has provided significant support to the general purpose SCE 
community in the form of Matlab and Mathematica  clients, and GridSolve will carry on and expand this heritage. 
Also, while NES systems generally are experimenting with different approaches to distributed storage and data 
logistics, we expect that the exNode [31] will prove an exceptionally capable and general mechanism for GridSolve 
and GridRPC to use. 

The current effort in Grid computing [28] embraces important systems that do not use the RPC mechanism and are 
not NES systems.   Leading projects that fall into this general category include Globus [24], Legion [32], Condor 
[25].  All of these projects build on current systems for the definition and management of storage and computing 
functions, layering their own tools on top of them. A key goal of the GridSolve project is to enable the SCE 
community to utilize these systems and their resources. 

As regards distributed storage infrastructure for managing data logistics, a number of systems have been developed 
for Grid computing as a layer on top of existing file management systems, such as the Unix file system, HPSS [33] 
and DPSS [34]. Examples of these systems are Global Access to Storage Services (GASS) [20], the Storage 
Resource Broker [26], and GridFTP [35]. GASS uses URLs as a global namespace and provides copy-on-open 
caching of files. SRB maintains its own cross-platform file directory and provides a uniform API for accessing and 
caching files. Neither of these  system provides fine-grained control over data placement, lightweight allocation or 
unbrokered sharing of storage resources that the combination of IBP and the exNode can supply. But the exNode 
can work with URIs from any of those sources and represents a general solution.  

5. Goals and Planned Deliverables 

 
Year 1 

? ? Preliminary design of system for binding NetSolve to Globus and Condor as 
well as integration of NetSolve with other metacomputing paradigms, 
including resource balancing using Network Weather Service and data 
transfers using exNode 

? ? Study and include preliminary interoperations with Matlab, Mathematica, 
Octave, and SciRun  as well as investigate interoperations of NetSolve with 
other GRPC systems like Ninf, NEOS, Punch, Cactus 

? ? Establish common set of concepts for interoperations with GridRPC 
systems 

? ? Engage the participation of MathWorks and Mathematica in the 
development of this framework 

? ? Study and devise solution to NATS 
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Year 2 

? ? Hold a workshop with participation from industry partners, government labs 
and agencies for the development and adoption of these ideas. 

? ? Develop and deploy interfaces for Globus, Condor, NWS, and the exNode 
as well as distribute a working version of NetSolve that will interface with 
Matlab, Mathematica, Octave, SciRun 

? ? Interact with the Common Component Architecture community as well as 
engage the Grid community to develop standards for Grid remote procedure 
calls 

? ? Develop software toolkit for including additional component into NetSolve 
? ? Work with the NPACI and the Alliance to foster the use of these enabling 

technologies in their applications 

 
Year 3 

? ? Experimentation on a number of applications from the NSF PACI and other 
computational science projects 

? ? Implementation and evaluation of fault-tolerance and migration in NetSolve 
? ? Demonstration of technology to use in various systems like Matlab, 

Mathematica, etc, and work with these companies for including Grid 
concepts into their platforms 

? ? Develop Grid/industry standard for GRPC and interoperability of systems 
? ? Hold tutorials at conferences like SC’XY, All-Hands meeting for the 

Alliance and NPACI, and Users Groups for Globus, Condor, MathWorks, 
and Mathematica 

Many of the positive benefits associated with these activities will be derived directly from external visibility. 
In addition to the normal academic venues (publication in journals and conferences, external talks, and 
software distribution), we will pursue a number of opportunities to raise its public profile. 

? ? We will maintain a central Web site, produced and maintained the the NetSolve staff that will include 
information on all aspects of this activity (research, education, outreach, and tech transfer).   

? ? We will host technical workshops for the scientific community on topics related to this area of research.  
These workshops will bring the community together with potential users, collaborators, and other 
researchers from outside of our activity to discuss problems and progress in the area. 

6. Results of Prior 

6.1 Jack Dongarra, University of Tennessee 

New Technologies (now Advanced Computational Research)  

NSF ACI-9876895, NetSolve —  An Enabling Environment for Fault Tolerant, High Performance Network 
Computing  

The advances in computer and network technologies that are fueling the evolution of the global information 
infrastructure are also producing a new vision of how that infrastructure will be used. The concept of a 
Computational Power Grid has emerged as a way of capturing the vision of a network computing system that 
provides broad access not only to massive information resources, but to massive computational resources as well. 
Such computational power grids will use high-performance networking to connect hardware, software, instruments, 
databases, and people into a seamless web that supports a new generation of computation-rich scientific computing 
environments for scientists and engineers. NetSolve is a software environment for network computing that addresses 
the complexities of such systems.  Its main purpose is to enable the creation of complex applications that harness the 
immense power of the grid, yet are simple to use and easy to deploy.  NetSolve uses a modular, client-agent-server 
architecture to create a system that is very easy to use.  Moreover, it is designed to be highly composable in that it 
readily permits new resources to be added by anyone willing to do so. In these respects, NetSolve is to the Grid what 
the World Wide Web is to the Internet. But like the Web, the design that makes these wonderful features possible can 
also impose significant limitations on the performance and robustness of a NetSolve system. This project is 
exploring the design innovations that push the performance and robustness of the NetSolve paradigm as far as 
possible without sacrificing the Web-like ease of use and composability that make it so powerful.  
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Students Supported: Graduate: Sudesh Agrawal, Dorian Arnold, Kiran Sagi, Sathish Vadhiyar, Nathan Garner, 
Yan Huang 

Publications: Published papers: [7, 17, 36-41] 

Software release: NetSolve, version 1.4,was released July 2001. The software can be downloaded free of charge 
from the web at: http://icl.cs.utk.edu/netsolve/. Enhancements and new features include: Distributed Storage 
Infrastructures, Mathematica Interface, Sparse Matrix Data Structure, Sparse Solver Services, Dense Solver 
Services, NWS Integration, Globus proxy, Request Sequencing/Data Persistence, Security via Kerberos, Problem 
Description File Generator, User's Guide/Tutorials, and Transaction Logging Facilities 

6.2 James S. Plank and Micah Beck, University of Tennessee 

Next Generation Software 

NSF EIA-9975015, Logistical QoS through Application-Driven Scheduling of Remote Storage 

The major contribution of this work is the definition of an area within computer science called "logistical 
scheduling," where the placement of data within (perhaps widely) distributed applications is as important a 
scheduling parameter as the processor and network speeds.  As demonstrated by the interest generated in the 
NetStore 99 Conference (an entire conference dedicated to storage as a network resource), this is an area of research 
whose time is coming.  The focus of this particular NGS grant is to apply these principles in Grid applications.  
Although the work is young, the preliminary results (as published in the “Heuristics for Scheduling Parameter 
Sweep Applications in Grid Environments” paper), show that logistical scheduling should indeed be pursued further 
in the area of Grid computing.  

Students Supported: Graduate —  Ilwoo Park; Haihang You; Kim Buckner; Eric Wing, Sathish Vadhiyar; 
Ganapathy Raman; Tinghua Xu; Wael R Elwasif; Xiang Li; Ling Wo; Zheng Yong Zheng; Erika Fuentes. 
Undergraduate — Stephen Soltesz. 

Publications: [8, 17, 22, 30, 39, 40, 42-48] 

Software release: Software components of this project (IBP, NetSolve, the Network Weather Service, AppLes) 
have been made available to the computer science community at http:loci.cs.utk.edu.  

6.3 Henri Casanova, University of California San Diego 
Information Technology Research 

Virtual Instruments: Scalable Software Instruments for the Grid 

This project addresses the significant computer science problems that arise from the need to support steerable 
scientific simulations in large-scale Computational Grid environments. To investigate those issues, we are designing 
and prototyping a Virtual Software Instrument. Context for this work is provided by the MCell computational 
neuroscience application [49]. The virtual instrument will present the user with an intuitive graphical user interface, 
3-D rendering capabilities, a computational steering feature, and will transparently use the tremendous amount of 
computational and storage power that is becoming increasingly available in Computational Grids.  At the core of the 
virtual instrument is a scheduler, which takes into account application characteristics, user behavior, available static 
and dynamic resource information, and computational requirements to assign tasks to resources. The project will 
have an impact on the Grid computing community as well as the computational neuroscience community by leading 
it to a new set of disciplinary results. The current research performed by Casanova, Berman, and their research team 
has led to accomplishments along two fronts. First, they have finalized the design and implemented a prototype of 
the core Virtual Instrument software. The prototype is being tested and experiments will start in early 2002. Second, 
Casanova, Berman and their graduate students have developed novel scheduling strategies that are crucial to 
scheduling scientific simulations such as MCell on the Computational Grid.  

Students supported: Graduate —  Marcio Faerman, Alan Su 

Publications: [7, 47, 50, 51] 
  


