r THE UNIVERSITY OF

DPLASMA o

EFFICIENT DENSE LINEAR ALGEBRA ON DISTRIBUTED HYBRID MANYCORE SYSTEMS

s \

Distributed Parallel Linear Algebra Software for Multicore Architectures
(DPLASMA) is the leading implementation of a dense linear algebra
package for distributed heterogeneous systems. Unlike any predecessor,
DPLASMA depicts algorithms using data flow principles as pure data
dependencies between BLAS kernels. The resulting dataflow depiction
takes advantage of the state-of-the-art distributed runtime, PaRSEC, to
achieve portable and sustained performance never seen before on
heterogeneous distributed systems.

User Defined Data Placement

In addition to traditional ScaLAPACK (block-cyclic) data distribution,
DPLASMA provides interfaces to define arbitrary data collections with
unrestrained distributions. The DPLASMA data flow algorithms
transparently operate on local data, or introduce implicit communications
to resolve dependencies, thereby removing the burden of initial data
re-shuffle and providing the user a novel approach to address load
balance.

FUNCTIONALITY COVERAGE Features Future Plans
Linear Systems of Equations Cholesky, LU (inc. pivoting, PP), and Recursive DAG IrPstar_matlon, al.lowmg Two-sided Factorizations
LDL (prototype) heterogeneous tile size executions to Distributed Sparse Solver
tune for heterogeneous devices More GPU k lsi .
Least Squares QR and LQ . o ore ernels integration
L . Covering four precisions: double real, LU+RBT
Symmetric Eigenvalue Problem Reduction to Band (prototype) double complex, single real, and single
Level3 Tile BLAS GEMM, TRSM, TRMM, HEMM / SYMM, HERK / complex (D, Z, S, C) BLR Solver
SYRK, and HER2K / SYR2K Providing ScaLAPACK-compatible Elgenyalue Decomposition o
Auxiliary Subroutines Matrix generation (PLRNT, PLGHE / PLGSY, interface for matrices in F77 and Singular Value Decomposition
PLTMG), Norm computation (LANGE, LANHE column-major layout
/LANSY, LANTR), Extra functions (LASET, SUppOFtil‘lg: Linux, Windows, macOS,
LACPY, LASCAL, GEAD, TRADD, PRINT), and UN*X (depends on MPI, hwloc)
Generic Map functions ’ . . .
Fine-grain Composition of Operations
Performance Results
PROBLEM AND NODE SCALING OF A PROBLEM SCALING OF A CHOLESKY ENERGY CONSUMPTION SOLVING A LINEAR
MATRIX MULTIPLY (DGEMM) FACTORIZATION (DPOTRF) LEAST SQUARE PROBLEM (DGEQRF)
Summit: 2-72 nodes (40 cores each with 6 V100s) Shaheen I1: 512 nodes (32 cores each)
with a 1024 x 1024 tile size with a 400 x 400 tile size. . ScaLAPACK
x 100 - T T T - DPLASMATile Matrix g um
£] E e i=/ 1\
-§ :z 7‘/2/8 B B g 1 200 [ScalAPACK 1-Proc/Node T;.' m System
8 7 Yo T [
a H Memory
#3500 o 150 - : v‘v ﬁ';?wurk
@300 0 put matrix f ts on GPU memory % IRV 3 80
Sas00 Nomatrix fts on 6PUmemory [- = = fred
£ 2000 % > = F 100 v DPLASMA
£ 1500 : 4 -
£ 1000 _p;: 1 50 g oo /—VWVV\\
t s00 e : 1 E System
0 0 200000 400000 600000 800000 1000000 0 ";n Z;m 3;'0 “;0 g E\?g]‘“’i
M=N=K Matrix Size (10° double) . " e ©
2x2 Proc. (12 GPUs) 6x6 Proc. (108 GPUs) —— 10x10 Proc. (300 GPUs) ——
4x4 Proc. (48 GPUs) —— 8x8 Proc. (192 GPUs) —— 12x12 Proc. (432 GPUs) —— Time (seto“ds)
IN COLLABORATION WITH SPONSORED BY
2 R N . U.S. DEPARTMENT OF Office of —_— \ L Na.tiona|
Cra— (@Wwust @ gsivercsms ENERGY | il ECP Qe

(

OkZl0)
. . i
ICL INNOVATIVE COMPUTING LABORATORY hitps://githulcomicidisco/dplasma fir%Ek

' THE UNIVERSITY OF

P R 5 E c ;EIE)NIISL]FSSSEE

PARALLEL RUNTIME AND EXECUTION CONTROLLER

ICL's Parallel Runtime and Execution Controller (PaRSEC) project is a generic framework for architecture-aware scheduling and management of
microtasks on distributed, many-core, heterogeneous architectures. The PaRSEC environment also provides a runtime component for dynamically
executing tasks on heterogeneous distributed systems along with a productivity toolbox and development framework that supports multiple
domain-specific languages (DSLs) and extensions and tools for debugging, trace collection, and analysis.

C Code using —— PARSEC

insert task
interface

DOMAIN SPECIFIC LANGUAGES
(DSLs)

N

— Dataflow e Dynamic Task Discovery (DTD)
P ion |~ representation —> DYNAMIC TASK DTDs enable a sequential description of application
of dataflow SIS STl data and tasks dependencies similar to OpenMP:
/F Tasks are presented using an insert_task directive,
Slzglglsalfrf‘lrée _ Jfinskeads e ‘ with an option to declare typed dependencies (e.g-,
translator D MORY j;gp read, write, and atomic update), including on'hybrid
X distributed environments.
- ! NUMA NODE
User-defined DSL Gerl\):'(:ting L AUTOMATIC HANDLING [[| == Templated Task Graph(TTG)
L Lyt DSL |/ DTE includes a set of C++ Template classes to
Compiler N N . express dynamic DAGs for heterogeneous datasets.
-- -- -- At the heart of TTG lie the Operand class (which
. . represents Tasks) and the Terminal class (which

connects Operands together). In the Operand body,
the programmer explicitly transmits data to output

A Generic Runtime for Domain-specific Language/Extensions L A e

The PaRSEC engine enables the domain scientist to implement a DSL to efficiently interact with the runtime, thereby destination tasks. The language is heavily
improving productivity and portability. templated, moving all compiler-decidable

With PaRSEC, applications are expressed as a direct acyclic graph (DAG) of tasks with edges designating data decisions at compile time and uses the Standard
dependencies. This DAG dataflow paradigm attacks both sides of the exascale challenge: managing extreme-scale Template Library to encapsulate communications
parallelism and maintaining the performance portability of the code. between Operands.

The ECP Distributed Tasking at Exascale (DTE) effort is a vital extension that ensures that PaRSEC meets the critical
needs of ECP application communities in terms of scalability, interoperability, and productivity.

Parameterized Task Graph (PTG)

A PTG is a concise, symbolic, problem

Accelerate your Application with PaRSEC size-independent task graph representation, with
Write once, execute on any hardware: adding distributed memory and GPU acceleration to a PaRSEC code is simple, implicit data movements that supports hybrid
and performance portable, thanks to implicit data movement. architectures via multiple task incarnation. In PTG,

the developer expresses all flows of data between
tasks in an analytical way using the tasks
parameters. This representation is then used by
PaRSEC to track dependencies and schedule tasks
and data movement.

Write your main code in C, Templated C++, Fortran, Python, etc., your PaRSEC application is modular, and you can
accelerate critical routines only, and use Open MP, Kokkos, Cuda etc. as the main body for your tasks. The PaRSEC
ecosystems comes with tools for debugging, performance analysis as well as documentation.

Installing PaRSEC on leadership class hardware and workstations alike is simple with CMake, Spack, PkgConfig
integrations.

r PERFORMANCE RESULTS \
PERFORMANCE PORTABILITY ON
1‘;‘; TILE, LOW-RANK, CHOLESKY AMD ROCM HARDWARE:
9% FACTORIZATION FOR LARGE MATRICES Early results for Cholesky Factorization on pre-Frontier systems
Mattern 2D's i Shaheen I1: 4096 nodes 400 "oRSEC DPOTRE, Grusher 64 rodos: 25610 —o—
w500 838 (32 cores each @ 2.30 GHz [Intel Haswell]) as0 | FRSEC DrOTEE Crusherfenades Sy -
PaRSEC DPOTRF, Spock 4 nodes: 16x MI100 —_——
— PaRSEC DPOTRF, Spock 1 node: 4x MI100 ———
3 3000 } Output matrix f s on GPU memory 4 86000 -/ 3 rocsolver DPOTRF, Spock 1 node: 1x MI100 ——
‘g‘ g2 * 65000 -| g 300
S E2 =
E g1 32000 - E 20
Z 3) &8 200 x
E]_? E 16000 E /
2 £ Dense FP64: 4096 Nodes H =™
P MP-+dense: 4096 Nodes 8000 - e /
e MP-+dense/TLR: 4096 Nodes = 100
W Je= MP+dense/TLR: 48384 Nodes w /
= 10 4000 - 16 B st-3D-sqexp a5 e
RO PRGN LAY LY O 080" ‘ L. : L —
oM 10M 20M 30M 40M 0
MATRIX SIZE MATRIX SIZE (10° DOUBLE) 0 50k 100k 150k 200k 250k 300k 350k 400k 450k
MATRIX SIZE (N)
\ J

SPONSORED BY

U.S. DEPARTMENT OF ﬁ' f ’:\ (ll“‘
ENERGY | fe? ECP NISA

National Nuclear Security Administration

This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the
U.S. Department of Energy Office of Science and the National Nuclear Security Administration.

ICL INNOVATIVE COMPUTING LABORATORY https://github.com icldisco/parsec [

