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Distributed Parallel Linear Algebra Software for Multicore Architectures
(DPLASMA) is the leading implementation of a dense linear algebra
package for distributed heterogeneous systems. Unlike any predecessor,
DPLASMA depicts algorithms using data flow principles as pure data
dependencies between BLAS kernels. The resulting dataflow depiction
takes advantage of the state-of-the-art distributed runtime, PaRSEC, to
achieve portable and sustained performance never seen before on
heterogeneous distributed systems.

User Defined Data Placement

In addition to traditional ScaLAPACK (block-cyclic) data distribution,
DPLASMA provides interfaces to define arbitrary data collections with
unrestrained distributions. The DPLASMA data flow algorithms
transparently operate on local data, or introduce implicit communications
to resolve dependencies, thereby removing the burden of initial data
re-shuffle and providing the user a novel approach to address load
balance.
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PARALLEL RUNTIME AND EXECUTION CONTROLLER

ICL's Parallel Runtime and Execution Controller (PaRSEC) project is a generic framework for architecture-aware scheduling and management of
microtasks on distributed, many-core, heterogeneous architectures. The PaRSEC environment also provides a runtime component for dynamically
executing tasks on heterogeneous distributed systems along with a productivity toolbox and development framework that supports multiple
domain-specific languages (DSLs) and extensions and tools for debugging, trace collection, and analysis.
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— Dataflow e Dynamic Task Discovery (DTD)
P ion |~ representation —> DYNAMIC TASK DTDs enable a sequential description of application
of dataflow SIS STl data and tasks dependencies similar to OpenMP:
/F Tasks are presented using an insert_task directive,
Slzglglsalfrf‘lrée _ Jfinskeads e ‘ with an option to declare typed dependencies (e.g-,
translator D MORY j;gp read, write, and atomic update), including on'hybrid
X distributed environments.
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L Lyt DSL |/ DTE includes a set of C++ Template classes to
Compiler N N . express dynamic DAGs for heterogeneous datasets.
-- -- -- At the heart of TTG lie the Operand class (which
. . represents Tasks) and the Terminal class (which

connects Operands together). In the Operand body,
the programmer explicitly transmits data to output

A Generic Runtime for Domain-specific Language/Extensions L A e

The PaRSEC engine enables the domain scientist to implement a DSL to efficiently interact with the runtime, thereby destination tasks. The language is heavily
improving productivity and portability. templated, moving all compiler-decidable

With PaRSEC, applications are expressed as a direct acyclic graph (DAG) of tasks with edges designating data decisions at compile time and uses the Standard
dependencies. This DAG dataflow paradigm attacks both sides of the exascale challenge: managing extreme-scale Template Library to encapsulate communications
parallelism and maintaining the performance portability of the code. between Operands.

The ECP Distributed Tasking at Exascale (DTE) effort is a vital extension that ensures that PaRSEC meets the critical
needs of ECP application communities in terms of scalability, interoperability, and productivity.

Parameterized Task Graph (PTG)

A PTG is a concise, symbolic, problem

Accelerate your Application with PaRSEC size-independent task graph representation, with
Write once, execute on any hardware: adding distributed memory and GPU acceleration to a PaRSEC code is simple, implicit data movements that supports hybrid
and performance portable, thanks to implicit data movement. architectures via multiple task incarnation. In PTG,

the developer expresses all flows of data between
tasks in an analytical way using the tasks
parameters. This representation is then used by
PaRSEC to track dependencies and schedule tasks
and data movement.

Write your main code in C, Templated C++, Fortran, Python, etc., your PaRSEC application is modular, and you can
accelerate critical routines only, and use Open MP, Kokkos, Cuda etc. as the main body for your tasks. The PaRSEC
ecosystems comes with tools for debugging, performance analysis as well as documentation.

Installing PaRSEC on leadership class hardware and workstations alike is simple with CMake, Spack, PkgConfig
integrations.
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