THE UNIVERSITY OF

u L F M ;EEQIISLESSEE

USER LEVEL FAILURE MITIGATION

User Level Failure Mitigation is a set of MPI extensions to report errors, provide interfaces to

stabilize the distributed state, and restore the communication capabilities in applications affected by ULFM FEATURES
process failures. Relevant communicators, RMA windows, and 1/0O files can be reconstructed online, FLEXIBILITY
without restarting the application, as required by the user recovery strategy. No predefined recovery model is imposed or favored.
Instead, a set of versatile APIs is included to provide
ULFM's capability to restore communication after a fault is crucial infrastructure for supporting the support for different recovery styles (e.g., checkpoint,
. ABFT, iterative, Master-Worker).
design and deployment of production-grade recovery strategies. Multiple applications and S .
) X . . Application directs the recovery, and it only pays for the
programming frameworks are already taking advantage of ULFM constructs to deliver varied fault level of protection it needs.
tolerance strategies- from run-through algorithms that continue without rejuvenating the lost Recovery can be restricted to a subgroup, thereby
processes, to methods that restore the lost processes and their dataset-either from checkpoints or i scalability and easing the composition of
from checkpoint-free forward recovery techniques.
PERFORMANCE
Protective actions are outside of critical MPI routines.
' \) MPI implementors can uphold communication,
OPENMPI ULFMS5.0 ULFM USER COMMUNITIES e GO0 E S U
Distributed as part of Open MP1 5.0 Programming languages Encourages programs to be reactive to failures, and cost
. . manifests only at recovery.
All new features of Open MPI with resilience support X10 over MPI with "DeadPlace” exception support
Inherits the same build and runtime arguments and CoArrays Fortran with “Failedimages"” extension PRODUCTIVITY
same modular software stack as Open MPI Checkpointing Frameworks Backward compatible with legacy, fragile applications.
Resilience support with most networks and job i ili i
cchedulore: PP J Fenix, CRAFTS, LFLR, VELOC Slmp.le and familiar concepts to repair MPI.
. L Provides key MPI concepts to enable FT support from
Networks: UCX, uGNI, Open IB, TCP, CMA Applications library, runtime, and language extensions.
Shared-memory PDE solvers, FTLA
Launchers: Slurm, ALPS, PBS Non-HPC workloads STANDARDIZATION
. Parts of ULFM, like the operational error model and the
No measurable failure-free overhead on HPC SAP Databases, Hadoop over MPI fact that errors should not "break" MPI, have already
networks been standardized in MPI 4.0.
Beta resilience support for Open Fabric transport, Standardization effort continues to integrate advanced
RMA, and FILE operations recovery features (like non-blocking recovery, session
recovery) in MPI 5.0.
FAILURE DETECTION AGREEMENT RELIABLE BROADCAST
New flexible group-centric failure detection modes let Users can stabilize the global state after a failure with this Revoke permits disseminating fault information. It's
applications monitor more processes at no cost with consensus operation. ERA (early returning agreement) latency is lower than a barrier. A reliable broadcast causes
regard to fault free performance. latency is only double Cray's optimized, non-resilient only a short burst of network activity (~700 ps).
N . . Allreduce.
Comparison beé\gﬁe(ﬂ?xepl;'r;’zélfrz:;fs)'aélzdnglazg ;f;lltgg[;::n':ljx)ermr reporting 180 Revoke time and Pertubation in Barrier (np=6000)
1o Early Returning Agreement (Cray XC30) 170
10k 80 T T T T
Pingpong w/ group detector AlReduce w/ group detector 1st post-reyoke Barrigr X X
- \gpong w/ group: - group: L J 160
& Pingpong & AUReduce 70){ \)/ /Y
i 60 | g 150 /\/\(wa
3 T 50 b i E. 140
‘é aul i E 130 2pd post-revoke Barrier -
§ 30] F 120 - _Sthpast-revoke Barrier -
100 2l i 110 Fault Free Barrier
10 b ERA Agreement (hierachical bin/bin tree) 4 100
) Cray AllReduce (4Bytes) (not fault tolerant), el
T4 6 ek e oK oz 01 4 16 60 26 K A oK ek M 1k % 3« 4k sk ok 7 \| R
MESSAGE SIZE (Bytes) MESSAGE SIZE (Bytes) #processes 80 1K 2K 3K 4K 5K 6K
Revoke Initiator Rank
4 “.) N\
LoD
ULFM 472/ :SC23
SPONSORED BY Denver,Co| arn hpe
TUTORIAL Sunday, November 12 BOF Tuesday, November 14
U.S. DEPARTMENT OF Office of Room 405 8:30am to 5:00pm MST Room 205-207 12:15pm to 1:15pm MST
EN ERGY Science Fault-Tolerance for High Performance and Introducing MPI 41, the Newest Version of
Big Data Applications: Theory and Practice ~ the Message Passing Interface Standard
National Science WORKSHOP Monday, November 13 BOF Wednesday, November 15
Eoundation Room 501-502 3:50pm to 4:10pm MST Room 405-406-407 12:15pm to 1_:15pm MST
Elastic Deep Learning through Resilient Open MPI State of the Union
Collective Operations

ICL INNOVATIVE COMPUTING LABORATORY FIND OUT MORE AT https://fault-tolerance.org =

ICL INNOVATIVE COMPUTING LABORATORY. FIND OUT MORE AT https://fault-tolerance.org =

THE UNIVERSITY OF

TENNESSEE

Resilience Extensions for MPIl:ULFM

ULFM provides targeted interfaces to empower recovery strategies with adequate options to restore communication capabilities and global consistency,
at the necessary levels only.

. R ANY
Continue Across Errors D:t:;t(ed W)l

In ULFM, failures do not alter the state of MPI communicators.

Point-to-point operations can continue undisturbed between Master
non-faulty processes. ULFM imposes no recovery cost on simple wi %
communication patterns that can proceed despite failures.

w2

Wn

. . . . Recv(P1): failure
Exceptions in Contained Domains P1 %T P2 cé"s)nevoke
A process can use MPI_[Comm,Win,File]_revoke to propagate an & S

error notification on the entire group, and could, for example, P2 : S >
interrupt other ranks to join a coordinated recovery. P3 E— 3
% <
K ()
Full-Capability Recovery o1 = —
Allowing collective operations to operate on damaged MPI objects
(communicators, RMA windows, or files) would incur unacceptable overhead. P2
The MPI_Comm_shrink routine builds a replacement
communicator-excluding failed processes—that can be used to resume P3
collective operations in malleable applications, spawn replacement
processes in non-moldable applications, and rebuild RMA windows and files. Pn
RECENT RESULTS: Evaluate the Cost and Expressivity of Asynchronous Recovery
Uniformity example:
Error Scoping An erroris r_eporte_d only at some leaf node in a broadcast
Adding per-communicator (window/file) control knobs for the application to control the scope of topology with a failure.
error reporting: set Info key mpix_error_range on a communicator to control which errors
interrupt MPI calls.

- "local”: current ULFM behavior: report an error only when communicating with a failed peer
(e.g., recv from failed process, collective communication) default, current ULFM

- “"group”: report errors (i.e, REVOKE) for a failure at any process with a rank in the
comm/win/file (e.g., in recv from an alive process in comm)
- "universe": report errors (i.e., REVOKE) for a failure anywhere in “universe” o o e °
Error Uniformity
All processes partake in a collective operation, should they return an error in unison? Use sets info Uniform Coltective 05U aver ULFM
key mpix_error_uniform on a communicator to control if error reports need to be uniform. o000 UTK Phi, 768 ranks, 64 nodes, ib40g/CMA
- "local”: errors reported as needed to inform of invalid outputs (buffers/comms) at the —%— g;izfﬁzﬂmm
reporting rank (i.e., other ranks may report success); default, current ULFM O~ Uniform Broadcast
- “create”: if communicator/win/file creation operations (e.g., comm_split, file_open, win_create,
comm_spawn) reports at a rank, it has reported the same ERR_PROC_FAILED/REVOKED at all 1000 |
ranks

- “coll": same as above, for all collective calls (including creates)

TIME (us)

Asynchronous Error Recovery T .00
Error recovery is difficult to overlap, because MPI currently misses asynchronous dynamic 00
processes constructs. 00000

-

* Adding MPI_COMM_ISHRINK to enable asynchronous failed processes exclusion 060000

* Adding MPI_COMM_ISPAWN (and ICONNECT/IACCEPT) to enable asynchronous spare

respawn (as well as many other non-ft application use cases) 1 4 16 64 256 1K 4K 16K 64K 256K 1M
MESSAGE SIZE (Bytes)

=

=

