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This paper reports on using the NetSolve metacomputing system to provide remote 
access to HPC platforms for users of the SARA3D structural acoustics code. NetSolve is 
a client/server system that provides access to HPC hardware and software from familiar 
desktop environments, using a variety of client interfaces, including Fortran, C, and Java 
programming interfaces, and MATLAB and Mathematica interactive interfaces. 
SARA3D is a finite element program for computing the frequency response of general, 
three-dimensional structural acoustics problems.  NetSolve is being used to provide real-
time response for post-processing and visualization of large-scale SARA3D output data. 
SARA3D has been implemented as a NetSolve service which runs on HPC machines.  
SARA3D can be invoked remotely from the NetSolve MATLAB or Fortran or C client 
interfaces on the user's workstation.  The SARA3D input file is transferred by NetSolve 
from the client to the server, and the SARA3D output is transferred from the server to the 
client when the SARA3D computation is finished.  Nonblocking NetSolve calls are used 
to obtain coarse-grained parallelism.  
 
Introduction 
 
SARA3D is typical of many DoD applications in that it has a computational phase 
followed by a post-processing phase.  In the case of SARA3D, the computational phase 
solves a coupled fluid-structure model to produce a large output file containing 
displacements and pressure throughout the model.  The output data many then be post-
processed in various ways to produce smaller data sets suitable for analysis and 
visualization.   
 
Previously, the SARA3D computation and post-processing were carried out on large 
HPC machines at ERDC.  The computational portion has been parallelized using a 
combination of MPI and OpenMP.  The post-processing portion uses non-parallel Fortran 
subroutines which output a MATLAB data file.  The MATLAB file is transferred to the 
user’s home machine for analysis and/or visualization.  Because the post-processing is 
serial, it is a bottleneck for the performance of SARA3D. 
 
The use of NetSolve allows the user to interactively invoke and control execution of the 
computational and post-processing portions of SARA3D.  The SARA3D input file is 
transferred by NetSolve from the NetSolve client running on the user’s workstation to a 
NetSolve server that provides the SARA3D service.  Depending on the input file, the 
NetSolve request may invoke the main SARA3D computation and/or a post-processing 
operation.  A NetSolve request may invoke post-processing on an output file that was 
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generated from a previous SARA3D computation.  Nonblocking NetSolve calls allow 
post-processing operations to be performed concurrently, thus obtaining coarse-grained 
parallelism without requiring any parallel code to be written.  Because the separate post-
processing tasks require no intercommunication, the parallel speedup is essentially linear. 
 
Current work involves building a repository of SARA3D output data that may be shared 
among users.  In addition, we are constructing a Web interface to the NetSolve SARA3D 
service that will enable users to invoke and control SARA3D computations and post-
processing from a Web browser. 
 
2 SARA3D 
 
SARA3D is a finite element program for computing the frequency response of general, 
three-dimensional structural acoustics problems[1].  SARA3D can also be used to solve 
structural vibrations, radiation, scattering, and electroelasticity  problems. In structural 
acoutistics problems, SARA3D solves the time harmonic problem of a structure 
submerged in an infinite fluid subjected to incident traveling waves or to vibrational 
loads within the structure.  Separate fluid and structure models are created and connected 
via coupling elements.  The coupled fluid structure model results in a complex, 
symmetric, banded set of equations that can be efficiently solved by Gaussian elimination 
for displacements and pressures throughout the model.  Farfield or nearfield pressures 
can be computed from the normal velocities and pressures calculated on the surface of the 
structure. 
 
The main computational portion of  SARA3D outputs a very large file that provides 
surface pressures and surface velocities at the fluid-structure interface as a function of 
frequency.  This file may then be post-processed to calculate the following quantities: 
 

1. Three-dimensional representation of field pressures in the nearfield as a function 
of frequency, 

2. Three-dimensional representation of field pressures in the farfield as a function of 
frequency, 

3. Three-dimensional representation of radiated power as a function of frequency. 
 
A portion of a SARA3D input file is shown below: 
 
fsweep,,fstart,fend,finc 
wet_vp,5 
end,fsweep 
$ 
ainc=10. 
sx=1, xy=1, sz=0 
contours,pressure,,rad,,,ainc,phi1,,sx,sy,sz 
contours,pressure,,rad,,,ainc,phi2,,sx,sy,sz 
 
The above example input skips the beginning of the input file which specifies the mesh 
generation and element and boundary condition commands.   



 
fsweep performs the direct solution of the equations at the specified frequencies.  This 
command calls the subroutines which calculate the element matrices and load vectors and 
the solver which assembles and solves the equations.  wet_vp computes the normal 
velocities and pressure at the fluid structure interface and places these on an output file 
(called tape23 by default).  This command also computes radiated power which is placed 
on another output file (called tape53 by default).  The contours,pressure command takes 
tape23 as input and creates an output file (tape41 by default) for contour plotting of field 
pressures.  By specifying different azimuthal angles (arguments phi1 and phi2 in the 
above example), contour plotting data for different output planes can be generated.  The 
contours,pressure calculations for each plane are completely independent and thus can 
be performed concurrently.  See section 4 for a description of how such concurrency has 
been achieved using nonblocking NetSolve calls.  Within a plane, each calculation of 
field pressure (i.e., each point in both space and time) is totally independent of the other 
calculations.  Thus, coarse-grained parallelism with no communication between 
concurrent tasks could be used for these computations as well, which should further 
improve post-processing response time.   
 
The restart command is used to restart an analysis that has been previously partially 
completed.  For example, the input file below would use an output file previously 
generated by wet_vp (tape23 by default) to carry out further post-processing. 
 
$restart after fsweep (requires tape23) 
restart 
ainc=10. 
sx=1, sy=1, sz=0 
contours,pressure,,,,,ainc,,,sx,sy,xz 
stop 
 
SARA3D runs can generate a number of output files in addition to those discussed above.  
Table 1 lists all the disk files used in SARA3D.   
 
Default 
name 

Description 

tape5 Input data file 
tape6 Output file 
tape7 Log file 
tape11 Binary version of tape5 
tape12 All data describing the model (i.e., coordinates, element connectivity and 

boundary conditions), organized by elements 
tape13 Element nicknames and destinations 
tape15 Structural element stiffness and mass 
tape17 Selected results and coordinates 
tape19 Solution 
tape20 Static displacement 
tape21 Reactions 



tape23 Normal velocities and pressures at the numerical integration points (3 per 
element) on the wetted surface 

tape24 Substructure scale factor 
tape25 Power input to axisymmetric substructure 
tape29 Error summary file 
tape31 Frequency table (ASCII) 
tape33 Tangential and circumferential velocities at the numerical integration 

points on the wetted surface 
tape34 Radial, axial and circumferential velocities or pressure at selected nodes 
tape40a Velocity contour plots (ASCII) 
tape41 Pressure contour plots (binary) 
tape41a Pressure contour plots (ASCII) 
tape43 Pressure contour plots (binary) by mode 
tape43a Pressure contour plots (ASCII) by mode 
tape53 Radiated and electrical power 
 
   Table 1.  SARA3D File Summary 
 
3 The NetSolve System 
 
The NetSolve system allows users to access computational hardware and software 
resources that are distributed across a network[2].  The development of NetSolve was 
motivated by the need for an easy-to-use, efficient mechanism for using computational 
resources remotely.  Ease of use is obtained as a result of different client interfaces, some 
of which require no programming effort from the user.  When given a request, NetSolve 
looks for a computational resource that can solve the problem, chooses the best one 
available, sends the request to the server (with retry for fault tolerance), and returns the 
answer to the user. 
 
NetSolve utilizes standard Internet protocols and is available for all popular variants of 
the UNIX operating system, and parts of the system are available for the Microsoft 
Windows 95, 98 and NT platforms.  Figure 1 shows the architecture of the NetSolve 
system and its relation to the applications that use it.  The shaded parts of the figure 
represent the NetSolve system.  At the top tier, the NetSolve client library is linked with 
the user’s application.  The application then makes calls to NetSolve’s application 
programming interface (API) for specific services.  The client can be a programming 
language, such as Fortran or C, or it can be an interactive interface such as Matlab or 
Mathematica, both of which are widely used by application engineers in specifying and 
solving engineering problems. 
 
A NetSolve client sends a request to a NetSolve agent.  The agent chooses the “best” 
NetSolve resource according to the size and nature of the problem to be solved.  The 
agent maintains a database of NetSolve servers along with their capabilities (hardware 
performance and installed software) and dynamic usage statistics.  The agent, in its 
resource allocation phase, attempts to find the server that will service the request most 
quickly, balance the load among its servers, and keep track of failed servers.  The 



NetSolve server is a daemon process that awaits client requests.  The server can run on 
single workstations, clusters of workstations, symmetric multi-processors, or massively 
parallel computers.  A key component of the NetSolve server is a source code generator 
which parses a NetSolve problem description file (PDF).  The PDF contains information 
that allows the NetSolve system to create new modules and incorporate new 
functionalities.  The software packages thus incorporated may consist of either subroutine 
libraries or stand-alone programs such as SARA3D.  See section 4 for an explanation of 
how a problem description file was written to implement SARA3D as a NetSolve service.  
 
  

 
 
   Figure 1.  The NetSolve System 
 
4 SARA3D as a NetSolve Service 
 
4.1 Installation on the NetSolve server 
 
Implementing SARA3D as a NetSolve service required writing a problem description file 
(PDF) for SARA3D.  A NetSolve problem is defined as a 3-tuple:  
< name,inputs,outputs >, where  

• name is a character string containing the name of the problem 
• inputs is a list of input objects 
• outputs is a list of output objects   

An object is described by an object type and a data type.  In the case of SARA3D, we 
defined the problem to have one input which is a file object of character data type and 
one output which is also a file object of character data type.  We then wrote the wrapper 
code so that the input file would be SARA3D’s default tape5, and the output file would 
be SARA3D’s tape7 (see section 2 for an explanation of SARA3D input and output 
files).   tape7 gives a summary of the run and includes a list of all the output files 
generated by the run which could subsequently be retrieved from the NetSolve server.  
We placed the SARA3D executable on the NetSolve server machine and included the 
SARA3D PDF filename in the NetSolve server’s configuration file to make SARA3D 
available on the server. 
 
 



4.2 Invocation from the MATLAB client on a Windows system  
 
To be able to invoke SARA3D from the NetSolve MATLAB client, the user must have 
installed the NetSolve client software on his or her machine.  The NetSolve client is 
available for both Unix and Windows systems.  The Windows version of the NetSolve 
client is distributed in the form of a self-extracting exe file.  The user can download the 
desired NetSolve client from the NetSolve home page at http://www.cs.utk.edu/netsolve/ 
and follow the installation instructions to install and test the client software.  Once the 
client has been installed, a MATLAB user need only carry out the following steps to be 
able to access NetSolve services from MATLAB: 
 

a. Start up MATLAB 
b. Click on File à  Set Path …  
c. Add the NETSOLVE_DIR\matlab directory to the path 
 

Then typing 
 
>> netsolve(‘?’) 
 
will print the NetSolve agents and servers currently available, and typing 
 
>> netsolve 
 
will print the list of problems that can be solved. 
 
If the user would like more detailed information on a specific problem, e.g., sara3d, he 
can type 
 
>> netsolve(‘sara3d’) 
 
and the output will give a short description, an example of how to invoke the service, and 
a description of the inputs and outputs. 

 
To perform a computation using NetSolve, the user can send either a blocking or a 
nonblocking request.  With a blocking request, control is returned to the user only after 
the computation has been successfully completed on the server.  For example, if the user 
had a SARA3D input named tape5, a blocking request to the SARA3D service could be 
invoked as follows: 
 
>> [outfile] = netsolve(‘sara3d’, ‘tape5’) 

 
A nonblocking request allows the user to regain control and check for completion of the 
request later, while performing other MATLAB operations in the meantime, possibly 
sending multiple requests to NetSolve.  Multiple requests will be solved on different 
processors or machines if possible, thus achieving parallelism.  For example, a 
nonblocking request to the SARA3D service could be sent as follows: 



>> [r] = netsolve_nb(‘send’,’sara3d’,’tape5’) 
 
The left-hand side of a nonblocking request always contains a single argument.  Upon 
completion of this call, that argument contains a NetSolve request handler.   The request 
handler can then be used to probe or wait for completion of the request.   
 
>> [status] = netsolve_nb(‘probe’,r) 
 
returns immediately and prints the status of a pending request.  To obtain the result of a 
computation one must use the ‘wait’ action: 
 
>> [outfile] = netsolve_nb(‘wait’,r) 
 
Typing the following command will return a description of all pending requests which 
includes an estimate of times to completion. 
 
>> netsolve_nb(‘status’) 
    

 
5 Conclusions and Future Work 
 
The usefulness of NetSolve for performing SARA3D post-processing computations in an 
efficient manner and for invoking such computations remotely from MATLAB on the 
user’s desktop workstation has been demonstrated on testbed machines at the University 
of Tennessee and BBN Technologies.  Making the NetSolve SARA3D service available 
to ERDC users will require integrating NetSolve with the ERDC environment.  The two 
main problems that need to be solved are 1) authentication of NetSolve requests and 2) 
interfacing with the batch queueing systems. 
 
A version of NetSolve is available that includes Kerberos support[3, 4].  Kerberized 
NetSolve clients can interoperate with both Kerberized and non-Kerberized NetSolve 
servers.  In either case the client sends a request to the server.  A non-Kerberized server 
will return a status code indicating it will accept the requested operation.  A Kerberized 
server will return an “authentication required” response.  The client is then required to 
send Kerberos credentials to the server before the request will be processed.  Provided the 
user has run kinit and the ticket-granting ticket has not expired, the NetSolve client 
automatically contacts the Kerberos Key Distribution Center for a ticket and sends it to 
the server.  The server implements access control via a simple list of Kerberos principal 
names.  If the principal name associated with the Kerberos credentials in the request 
appears in the list and the credentials are otherwise valid, the request will be honored.  
Otherwise, the request will be denied.  Since the NetSolve server was not designed to run 
as a set-uid program, it is not currently feasible to have the NetSolve server run processes 
using the userid of the particular UNIX user who submitted the request.  The current 
version of Kerberized NetSolve performs no encryption of the data exchanged among 
NetSolve clients, servers, or agents.   Feedback is needed on whether this currently 



provided Kerberos authentication capability for NetSolve meets the MSRC security 
requirements.    
 
In order to satisfy the BBN Technologies goal of using NetSolve to provide access for 
their users to the SARA3D service on large MSRC machines, NetSolve will need to work 
within the batch queueing environment of these machines.  Because NetSolve is designed 
to be an interactive system, some mechanism will need to be found to support such 
interactive use in the batch queueing environment.  It  may be sufficient to service quick 
requests on a NetSolve server running on a login node, and have that server submit 
longer-running and/or parallel computations to the queueing system.  
 
NetSolve has a mechanism called task farming which is a way of managing large 
numbers of requests for a single NetSolve problem[3, 5].  In the present distribution, the 
netsl_farm() call is only available from C, but it will soon be made available from 
MATLAB.   This call is appropriate when many somewhat similar computations must be 
performed in parallel.  The call manages the requests for the user so that only one call 
need be made to submit all the requests and another call to retrieve all the results.  When 
this call becomes available from MATLAB, we plan to use it to obtain parallelism for 
SARA3D post-processing in a more convenient and efficient manner than the current 
method of using nonblocking NetSolve calls. 
 
Other future work includes using the NetSolve adaptive solver interface to incorporate 
new solvers into the current SARA3D code[6].  In addition, we plan to provide a Web 
interface to the SARA3D service similar to the Web interface already provided for the 
IPARS subsurface modeling code[7].  Finally, in order to allow SARA3D users to 
archive and share SARA3D data files, we plan to implement a repository of SARA3D 
data sets using the Repository in a Box (RIB) toolkit which is already in use at the 
MSRCs for cataloging software[8]. 
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