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Abstract. We investigate and compare stable parallel algorithms for solving diagonally domi-
nant and general narrow-banded linear systems of equations. Narrow-banded means that the band-
width is very small compared with the matrix order and is typically between 1 and 100. The solvers
compared are the banded system solvers of ScaLAPACK [11] and those investigated by Arbenz and
Hegland [3, 6]. For the diagonally dominant case, the algorithms are analogs of the well-known
tridiagonal cyclic reduction algorithm, while the inspiration for the general case is the lesser-known
bidiagonal cyclic reduction, which allows a clean parallel implementation of partial pivoting. These
divide-and-conquer type algorithms complement �ne-grained algorithms which perform well only for
wide-banded matrices, with each family of algorithms having a range of problem sizes for which it
is superior. We present theoretical analyses as well as numerical experiments conducted on the Intel
Paragon.

Key words. narrow-banded linear systems, stable factorization, parallel solution, cyclic reduc-
tion, ScaLAPACK

1. Introduction. In this paper we compare implementations of direct parallel
methods for solving banded systems of linear equations

Ax = b: (1.1)

The n-by-n matrix A is assumed to have lower half-bandwidth kl and upper half-
bandwidth ku, meaning that kl and ku are the smallest integers that imply

aij 6= 0 =) �kl � j � i � ku:

We assume that the matrix A has a narrow band, such that kl + ku � n. Linear
systems with wide band can be solved e�ciently by methods similar to full system
solvers. In particular, parallel algorithms using two-dimensional mappings (such as
the torus-wrap mapping) and Gaussian eliminationwith partial pivoting have achieved
reasonable success [16, 10, 18]. The parallelism of these algorithms is the same as that
of dense matrix algorithms applied to matrices of size minfkl; kug, independent of n,
from which it is obvious that small bandwidths severely limit the usefulness of these
algorithms, even for large n.

Parallel algorithms for the solution of banded linear systems with small band-
width have been considered by many authors, both because they serve as a canonical
form of recursive equations, as well as having direct applications. The latter include
the solution of eigenvalue problems with inverse iteration [17], spline interpolation
and smoothing [9], and the solution of boundary value problems for ordinary dif-
ferential equations using �nite di�erence or �nite element methods [27]. For these
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one-dimensional applications, bandwidths typically vary between 2 and 30. The dis-
cretisation of partial di�erential equations leads to applications with slightly larger
bandwidths, for example, the computation of 
uid 
ow in a long narrow pipe. In this
case, the number of grid points orthogonal to the 
ow direction is much smaller than
the number of grid points along the 
ow and this results in a matrix with bandwidth
relatively small compared to the total size of the problem. There is a tradeo� for
these type of problems between band solvers and general sparse techniques, in that
the band solver assumes that all of the entries within the band are nonzero, which
they are not, and thus performs unnecessary computation, but its data structures are
much simpler and there is no indirect addressing as in general sparse methods.

In section 2 we review an algorithm for the class of nonsymmetric narrow-banded
matrices that can be factored stably without pivoting, such as diagonally dominant
matrices or M-matrices. This algorithm has been discussed in detail in [3, 11] where
the performance of implementations of this algorithm on distributed memory mul-
ticomputers like the Intel Paragon [3] or the IBM SP/2 [11] is analyzed as well.
Johnsson [23] considered the same algorithm and its implementation on the Thinking
Machine CM-2 which required a di�erent model for the complexity of the interproces-
sor communication. Related algorithms have been presented in [26, 15, 14, 7, 12, 28]
for shared memory multiprocessors with a small number of processors. The algorithm
that we consider here can be interpreted as a generalization of cyclic reduction (CR), or
more usefully, as Gaussian elimination applied to a symmetrically permuted system of
equations (PAPT )Px = Pb. The latter interpretation has important consequences,
such as it implies that the algorithm is backward stable [5]. It can also be used to show
that the permutation necessarily causes Gaussian elimination to generate �ll-in which
in turn increases the computational complexity as well as the memory requirements
of the algorithm.

In section 3 we consider algorithms for solving (1.1) for arbitrary (narrow-) banded
matrices A that may require pivoting for stability reasons. This algorithm was pro-
posed and thoroughly discussed in [6]. It can be interpreted as a generalization of
the well-known (block) tridiagonal cyclic reduction to (block) bidiagonal matrices,
and again, it is also equivalent to Gaussian elimination applied to a permuted (non-
symmetrically for the general case) system of equations (PAQT )Qx = Pb. Block
bidiagonal cyclic reduction for the solution of banded linear systems was introduced
by Hegland [19].

In section 4 we compare the ScaLAPACK implementations [11] of the two algo-
rithms above with the implementations by Arbenz [3] and Arbenz and Hegland [6],
respectively, by means of numerical experiments conducted on the Intel Paragon.
ScaLAPACK is a software package with a diverse user community. Each subroutine
should have an easily intelligible calling sequence (interface) and work with easily
manageable data distributions. These constraints may reduce the performance of
the code. The other two codes are experimental. They have been optimized for low
communication overhead. The number of messages sent among processors and the
marshaling process has been minimized for the task of solving a system of equations.
The code does, for instance, not split the LU factorization from the forward elimi-
nation which prohibits the solution of a sequence of systems of equations with equal
system matrix (without factoring the system matrix over and over again). Our com-
parisons shall give an answer to the question how much performance the ScaLAPACK
algorithms may have lost through the constraint to be user friendly. We further con-
tinue a discussion started in [5] on the overhead introduced by partial pivoting. Is
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it necessary to have a pivoting as well as a non-pivoting algorithm for nonsymmetric
band systems in ScaLAPACK? In LAPACK [2], for instance, there are only pivoting
subroutine for solving dense and banded systems of equations, respectively.

2. Parallel Gaussian elimination for the diagonally dominant case. In
this section we assume that the matrix A = [aij]i;j=1;:::;n in (1.1) is diagonally domi-
nant, i.e., that

jaiij >
nX
j=1
j 6=i

jaijj; i = 1; : : : ; n:

Then the system of equations can be solved by Gaussian elimination without pivoting
in the following three steps:

1. Factorization into A = LU .
2. Solution of Lz = y (forward elimination)
3. Solution of Ux = z (backward substitution)

The lower and upper triangular Gauss factors L and U are banded with bandwidths
kl and ku, respectively, where kl and ku are the half-bandwidths of A. The number
of 
oating point operations 'n for solving the banded system (1.1) with r right-hand
sides by Gaussian elimination is (see also e.g. [17])

'n = (2ku+1)kln + (2kl+2ku�1)rn+ O((k+r)k2); k := maxfkl; kug: (2.1)

For solving (1.1) in parallel on a p processor multicomputer we partition the
matrix A, the solution vector x and the right-hand hand side b according to

0
BBBBBBB@

A1 BU
1

BL
1 C1 DU

2

DL
2 A2 BU

2

. . .
. . .

. . .

BL
p�1 Cp�1 DU

p

DL
p Ap

1
CCCCCCCA

0
BBBBBBB@

x1
�1
x2
...

�p�1
xp

1
CCCCCCCA

=

0
BBBBBBB@

b1
�1
b2
...

�p�1
bp

1
CCCCCCCA
; (2.2)

where Ai 2 R
ni�ni ; Ci 2 R

k�k; xi; bi 2 R
ni; �i; �i 2 R

k; and
Pp

i=1 ni+(p�1)k = n.
This block tridiagonal partition is feasible only if ni > k. This condition restricts the
degree of parallelism, i.e. the maximal number of processor p that can be exploited for
parallel execution, p < (n+k)=(2k). The structure of A and its submatrices is depicted
in Fig. 2.1(a) for the case p = 4. In ScaLAPACK [11, 8], the local portions of A on
each processor are stored in the LAPACK scheme as depicted in Fig. 2.2. This input
scheme requires a preliminary step of moving the triangular block DL

i from processor
i�1 to processor i. This transfer of the block can be overlapped with computation
and has a negligible e�ect on the overall performance of the algorithm [11]. The input
format used by Arbenz does not require this initial data movement.
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(a) (b)

Fig. 2.1. Non-zero structure (shaded area) of (a) the original and (b) the block odd-even
permuted band matrix with kl > ku.

Fig. 2.2. Storage scheme of the band matrix. The thick lines frame the local portions of A.

We now execute the �rst step of block-cyclic reduction [22]. This is best regarded
as block Gaussian elimination of the block odd-even permuted A,

2
66666666666666664

A1 BU
1

A2 DL
2 BU

2

. . .
. . .

. . .

Ap�1

. . . BU
p�1

Ap DL
p

BL
1 DU

2 C1

BL
2

. . . C2

. . .
. . .

. . .

BL
p�1 DU

p Cp�1

3
77777777777777775

2
666666666666664

x1
x2
...

xp�1
xp
�1
�2
...

�p�1

3
777777777777775

=

2
666666666666664

b1
b2
...

bp�1
bp
�1
�2
...

�p�1

3
777777777777775

: (2.3)

The structure of this matrix is depicted in Fig. 2.1(b). We write (2.3) in the form

�
Â BU

BL C

� �
x

�

�
=

�
b

�

�
; (2.4)

where the respective submatrices and subvectors are indicated by the lines in equa-
tion (2.3). If LR = Â is the ordinary LU factorization of Â then

�
Â BU

BL C

�
=

�
L 0

BLR�1 I

� �
R L�1BU

0 S

�
; S = C �BLÂ�1BU : (2.5)

The matrices BL
i R

�1
i , L�1i BU

i , D
U
i R

�1
i , and L�1i DL

i overwrite BL
i , B

U
i , D

U
i , and

DU
i , respectively. As D

U
i , and DL

i , su�er from �ll-in, cf. Fig. 2.3, additional memory
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Fig. 2.3. Fill-in produced by block Gaussian elimination. The bright-shaded areas indicate
original nonzeros, the dark-shaded areas indicate the (potential) �ll-in.

space for (kl + ku)n 
oating point numbers has to be provided. The overall memory
requirement of the parallel algorithm is about twice as high as that of the sequential
algorithm. The blocks BL

i R
�1
i and L�1i BU

i keep the structure of BL
i and BU

i and can
be stored at their original places, cf. Fig. 2.2.

The Schur complement S of Â in A is a diagonally dominant (p�1)-by-(p�1)
block tridiagonal matrix whereby the blocks are k-by-k,

S =

0
BBBBBB@

T1 U2
V2 T2 U3

. . .
. . .

. . .

. . .
. . . Up�1
Vp�1 Tp�1

1
CCCCCCA
; (2.6)

where

Ti = Ci �BL
i A

�1
i BU

i �DU
i+1A

�1
i+1D

L
i+1

= Ci � (BL
i R

�1
i )(L�1i BU

i )� (DU
i+1R

�1
i+1)(L

�1
i+1D

L
i+1);

Ui = �(DU
i R

�1
i )(L�1i BU

i ); Vi = �(BL
i R

�1
i )(L�1i DL

i ):

As indicated in Fig. 2.3 these blocks are not full if kl < k or ku < k. This is taken
into account in the ScaLAPACK implementation but not in the implementation by
Arbenz where the block-tridiagonal CR solver treats the k-by-k blocks as full blocks.
Using the factorization (2.5), (2.4) gets

�
R L�1BU

S

� �
x

�

�
=

�
L

BLR�1 I

��1 �
b

�

�
=

�
L�1

�BLR�1L�1 I

� �
b

�

�
=:

�
c




�
; (2.7)

where the sections ci and �i of the vectors c and � are given by

ci = L�1i bi; 
i = �i � BL
i R

�1
i ci �DU

i+1R
�1
i+1ci+1:

Up to this point of the algorithm, no interprocessor communication is necessary,
as each processor independently factors its diagonal block of Â, Ai = LiRi, and
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computes the blocks BL
i R

�1
i , L�1i BU

i , D
U
i R

�1
i , L�1i DL

i , and L�1i bi. Each processor
forms its portions of the reduced system S� = 
 ,

�
�DU

i R
�1
i L�1i DL

i �DU
i R

�1
i L�1i BU

i

�BL
i R

�1
i L�1i DL

i Ci � BL
i R

�1
i L�1i BU

i

�
2 R2k�2k and

�
�DU

i R
�1
i ci

�i �BL
i R

�1
i ci

�
2 R2k:

Standard theory in Gaussian elimination shows that the reduced system is diagonally
dominant. One option is to solve the reduced system on a single processor. This may
be reasonable on shared memory multiprocessors with small processor numbers [25,
p.124], but complexity analysis reveals that this quickly dominates total computation
time on multicomputers with many processors. An attractive parallel alternative for
solving the system S� = 
 is block cyclic reduction [4]. Implementationally, the
reduction step described above is repeated until the reduced system becomes a dense
k-by-k system, which is trivially solved on a single processor. Since the order of the
remaining system is halved in each reduction step, blog2(p�1)c steps are needed. Note
that the degree of parallelism is also halved in each step.

In order to understand how we proceed with CR we take another look at how
the (2p�1)-by-(2p�1) block tridiagonal matrix A in (2.2) is distributed over the p

processors. Processor i, i < p, holds the 2-by-2 diagonal block

�
Ai BU

i

BL
i Ci

�
together

with the block DU
i above it and the block DL

i to the left of it. To obtain a similar

situation with the reduced system we want the 2-by-2 diagonal blocks

�
Ti�1 Ui
Vi Ti

�

of S in (2.6) together with the block Ui�1 above and Vi�1 to the left to reside on
processor i, i = 2; 4; : : : which then allows to proceed with these reduced number of
processors as earlier. To that end the odd-numbered processor i has to send some
of its portion of S to the neighboring processors i�1 and i+1. The even-numbered
processors will then continue to compute the even-numbered portions of �. Having
done so the odd-numbered processors receive �i�1 and �i+1 from their neighboring
processors which allows them to compute their portion �i of � provided they know
the i-th block row of S. This is easily attained if in the beginning of this CR step
not only the odd-numbered but all processors send the needed information to their
neighbors.

Finally, if the vectors �i; 1 � i < p; are known, each processor can compute its
section of x,

x1 = R�11 (c1 � L�1i BU
1 �1);

xi = R�1i (ci � L�1i DL
1 �i�1 � L�1i BU

i �i); 1 < i < p;

xp = R�1p (cp � L�1p DL
p �p�1):

(2.8)

Notice that the even-numbered processors have to receive �i�1 from their direct neigh-
bors. In the back substitution phase (2.8) each processor can again proceed indepen-
dently without interprocessor communication.

The parallel complexity of the above divide-and-conquer algorithm as imple-
mented by Arbenz [4, 3] is

'AHn;p � 2kl(4ku+1)
n

p
+ (4kl+4ku + 1)r

n

p

+

�
32

3
k3 + 9k2r + 4ts + 4k(k + r)tw

�
blog2(p � 1)c:

(2.9)
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In the ScaLAPACK implementation, the factorization phase is separated from the
forward substitution phase. This allows a user to solve several systems of equations
without the need to factor the system matrix over and over again. In the implementa-
tion by Arbenz, several systems can be solved simultaneously but only in connection
with the matrix factorization. The close coupling of factorization and forward substi-
tution reduces communication at the expense of 
exibility of the code. In the ScaLA-
PACK solver the number of messages sent is higher while overall message volume and
operation count remain the same,

'ScaLAPACKn;p � 2kl(4ku+1)
n

p
+ (4kl+4ku + 1)r

n

p

+

�
32

3
k3 + 9k2r + 6ts + 4k(k + r)tw

�
blog2(p � 1)c:

(2.10)

The complexity for solving a system with an already factored matrix consists of the
terms in (2.10) containing r, the number of right-hand sides. In (2.9) and (2.10) we
have assumed that the time for the transmission of a message of length n 
oating
point numbers from one to another processor is independent of the processor distance
and can be represented in the form [24]

ts + ntw:

ts denotes the startup time relative to the time of a 
oating point operation, i.e.
the number of 
ops that can be executed during the startup time. tw denotes the
number of 
oating point operations that can be executed during the transmission
of one word, here a (8-Byte) 
oating point number. Notice that ts is much larger
than tw. On the Intel Paragon, for instance, the transmission of m bytes takes about
0:11+5:9�10�5m msec. The bandwidth between applications is thus about 68 MB/s.
Comparing with the 10 M
op/s performance for the LINPACK benchmark we get
ts�1100 and tw�4:7 if 
oating point numbers are stored in 8 bytes of memory. On
the SP/2 or the SGI/Cray T3D the characteristic numbers ts and tw are even bigger.

Dividing (2.1) by (2.9) and by (2.10), respectively, the speedups become

SAHn;p =
'n
'AHn;p

; SScaLAPACKn;p =
'n

'ScaLAPACKn;p

; (2.11)

The processor number for which highest speedup is observed is O(n=k) [4]. Speedup
and e�ciency are relatively small, however, due to the high redundancy of the parallel
algorithm. Redundancy is the ratio of the serial complexity of the parallel algorithm
and the serial algorithm, i.e. it indicates the parallelization overhead with respect to

oating point operations. If r is small, say r= 1, then the redundancy is about 4 if
kl = ku and even higher otherwise [5]. If r is bigger, then the redundancy tends to
2. In Fig 2.4 speedup is plotted versus processor number for three di�erent problem
sizes as predicted by (2.11). The Paragon values for ts = 1000 and tw = 4:7 have
been chosen. Because there are fewer messages sent in the Arbenz/Hegland imple-
mentation than in the ScaLAPACK implementation, the former can be expected to
yield slightly higher speedups. However, the gain in 
exibility with the ScaLAPACK
routine certainly justi�es the small performance loss. Notice however that the formu-
lae given for 'AHn;p and for 'ScaLAPACKn;p must be considered very approximative. The
assumption that all 
oating point operations take the same amount of time is com-
pletely unrealistic on modern RISC processors. Also, the numbers tw and ts are crude
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Fig. 2.4. Speedups vs. processor numbers for various problem-sizes as predicted by (2.11).
Drawn lines indicate the Arbenz/Hegland implementation, dashed lines the ScaLAPACK implemen-
tation.

estimates of the reality. However, the saw-teeth caused by the term blog2(p� 1)c are
clearly visible in timings [3]. The numerical experiments of section 4 will give a more
realistic comparison of the implementations and will tell more on the value of the
above complexity measures.

3. Parallel Gaussian elimination with partial pivoting. In this section we
treat the case where A is not diagonally dominant. Then the LU factorization may
not exist or its computation may be unstable. Thus, it is advisable to use partial
pivoting with elimination in this case. The corresponding factorization is PA = LU
where P is the row permutation matrix. Pivoting requires additionally about kln
comparisons and n row interchanges. More importantly, the bandwidth of U can get
as large as kl + ku. (L looses its bandedness but has still only kl + 1 nonzeros per
column and can therefore be stored at its original place.) The wider the band of U
the higher the number of arithmetic operations and our previous upper bound for the

oating point operations increases in the worst case to

'ppn = (2kl+ 2ku+1)kln + (4kl+2ku+1)rn+ O((k+r)k2); k := kl + ku; (3.1)

where again r is the number of right-hand sides. This bound is obtained by counting
the 
ops for solving a banded system with lower and upper half-bandwidth kl and
kl + ku, respectively, without pivoting. The overhead introduced by pivoting, which
may be as big as (kl+ku+1)=(ku+1), is inevitable if stability of the LU factorization
cannot be guaranteed. Therefore the methods for solving banded systems in packages
like LAPACK incorporate partial pivoting and accept the overhead. (This is actually
a de�ciency of LAPACK which has been eliminated in ScaLAPACK: the memory
space wasted is simply too big. Further, back-substitution can be implemented faster
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if it is known that there are no row interchanges.) Note that this overhead is particular
for banded and sparse linear systems, it does not occur with dense matrices!

(a) (b)

Fig. 3.1. Non-zero structure (shaded area) of (a) the original and (b) the block column permuted
band matrix with kl > ku.

The partition (2.2) is not suited for the parallel solution of (1.1) if partial pivoting
is to be applied. In order that pivoting can take place independently in block columns
they must not have elements in the same row. Therefore, the separators have to be
k := kl + ku columns wide, cf. Fig. 3.1(a). As discussed in detail in [6] we consider
the matrix A as a cyclic band matrix by moving the last kl rows to the top. Then we
partition this matrix into a cyclic lower block bidiagonal matrix,

0
BBBBBBB@

A1 D1

B1 C1
D2 A2

. . .
. . .

Dp Ap

Bp Cp

1
CCCCCCCA

0
BBBBBBB@

x1
�1
x2
...
xp
�p

1
CCCCCCCA

=

0
BBBBBBB@

b1
�1
b2
...
bp
�p

1
CCCCCCCA
; (3.2)

where Ai 2 R
mi�ni ; Ci 2 R

k�k; xi; bi 2 R
ni; �i; �i 2 R

k; k := kl + ku; andPp

i=1mi = n, mi = ni + k. If ni > 0 for all i, then the degree of parallelism is p [6].
For solving Ax = b in parallel we apply a generalization of cyclic reduction that

permits pivoting [19]. We again discuss the �rst step more closely. The later steps are
similar except the matrix blocks are square. We �rst (formally) apply a block odd-
even permutation to the columns of the matrix in (3.2). For simplicity of exposition
we consider the case p = 4. Then, the permuted system becomes2

66666666664

A1 D1

B1 C1
A2 D2

B2 C2
A3 D3

B3 C3
A4 D4

B4 C4

3
77777777775

0
BBBBBBBB@

x1
...
x4
�1
...
�4

1
CCCCCCCCA

=

0
BBBBBBB@

b1
�1
b2
...
b4
�4

1
CCCCCCCA
: (3.3)



10 P. ARBENZ, A. CLEARY, J. DONGARRA, AND M. HEGLAND

The structure of the matrix in (3.3) is depicted in Fig. 3.1(b). Notice that the permu-
tation that moves the last rows to the top was done for pedagogical reasons: it makes
the diagonal blocks Ai and Ci square and the �rst elimination step gets formally
equal with e the successive ones. A di�erent point of view (which leads to the same
factorisation) could allow the �rst and the last diagonal blocks to be non-square.

The local matrices are stored in the LAPACK storage scheme for non-diagonally
dominant matrices [2, 8]: in addition to the kl + ku + 1 rows that store the original
portions of the matrix, an additional kl+ ku rows have to be provided for storing the
�ll-in. In the ScaLAPACK algorithm processor i stores the blocks Ai, Bi, Ci, Di+1.
In the Arbenz/Hegland implementation processor i stores Ai, Bi, Ci, and Di. It is
assumed that DT

i is stored in an extra k-by-ni array. The ScaLAPACK algorithm
constructs this situation by an initial communication step that consumes a negligible
fraction of the overall computing time, as in the discussion in the previous section. In
both algorithms, the blocks Bp, Cp, and D1 do not really appear but are incorporated
into Ap.

Let

Pi

�
Ai

Bi

�
= Li

�
Ri

Ok�ni

�
; 1 � i � p; (3.4)

be the LU factorizations of the blocks on the left of (3.3), and let

L�1i Pi

�
Omi�k

Ci

�
=

�
Xi

Ti

�
; L�1i Pi

�
Di

Ok�k

�
=

�
Yi
Vi

�
; L�1i Pi

�
bi
�i

�
=

�
ci

i

�
:

(3.5)

Then, we can rewrite (3.3) in the form

(a) (b)

Fig. 3.2. Fill-in produced by GE with partial pivoting. Here p = 4.
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2
664
L�11 P1

L�12 P2
L�13 P3

L�14 P4

3
775

2
66666666664

A1 D1

B1 C1
A2 D2

B2 C2
A3 D3

B3 C3
A4 D4

B4 C4

3
77777777775

=

2
66666666664

R1 X1 Y1
O T1 V1

R2 Y2 X2

O V2 T2
R3 Y3 X3

O V3 T3
R4 Y4 X4

O V4 T4

3
77777777775

= P

2
66666666664

R1 X1 Y1
R2 Y2 X2

R3 Y3 X3

R4 Y4 X4

T1 V1
V2 T2

V3 T3
V4 T4

3
77777777775

(3.6)

P denotes odd-even permutation of the rows. The structure of the second and third
matrix in (3.6) is depicted in Fig. 3.2(a) and 3.2(b), respectively. The last equation
shows that again we end up with a reduced system

S� =

0
BBB@
T1 V1
V2 T2

. . .
. . .

Vp Tp

1
CCCA � = 
 (3.7)

with the same cyclic block bidiagonal structure as the original matrix A in (3.2).
The reduced system can be treated as before by dp=2e processors. This procedure

is discussed in detail by Arbenz and Hegland [6].
Finally, if the vectors �i; 1 � i < p; are known, each processor can compute its

section of x,

x1 = R�11 (c1 �X1�1 � Y1�p); (3.8)

xi = R�1i (ci � Yi�i�1 �Xi�i); 1 < i � p: (3.9)

The back substitution phase does not need interprocessor communication.
The parallel complexity of this algorithm is

'pp;AHn;p � (4k2 + (6k � 1)r)
n

p
+

�
23

3
k3 + 12k2r + 2ts + 3k2tw

�
blog2(p)c: (3.10)
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in the Arbenz/Hegland implementation [6] and

'pp;ScaLAPACKn;p = 'pp;AHn;p + tsblog2(p)c: (3.11)

in the ScaLAPACK implementation. We treat the blocks in S as full k-by-k blocks,
as their non-zero pattern is not predictable due to the pivoting process. The speedups
for these algorithms are

Spp;AHn;p =
'ppn

'pp;AHn;p

Spp;ScaLAPACKn;p =
'ppn

'pp;ScaLAPACKn;p

: (3.12)

In general, the redundancy of the pivoting algorithm is only about 2 for small numbers
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Fig. 3.3. Speedups vs. processor numbers for various problem-sizes as predicted by (3.12) in
linear scale (left) and doubly logarithmic scale (right).

r of right-hand sides and around 1.5 if r is large. Note, though, that the redundancy
varies according to the speci�c sequence of interchanges during partial pivoting. Here,
we have always assumed that �ll-in is the worst possible.

We make particular note of the following: since the matrix is partitioned dif-
ferently than in the diagonally dominant case, this algorithm results in a di�erent
factorization than the diagonally dominant algorithm even if the original matrix A is
diagonally dominant. In particular, the diagonal blocks Ai, 1 < i < p, are treated like
banded lower triangular matrices. In fact, the case of a diagonally dominant matrix
is a somewhat poor case for this algorithm. This is easily seen: by reordering each
diagonal block to be lower triangular, we have moved the largest elements from the
diagonal and put them in the middle of each column, thus forcing interchanges for
the partial pivoting algorithm when they were not necessary for the input matrix.

In Fig. 3.3 we have again plotted predicted speedups for two problem sizes and
di�erent numbers of right-hand sides. We do not distinguish between the two imple-
mentations as the ts term is small compared with the others even for k = kl+ku = 20.
The plot on the right shows the same in doubly logarithmic scale. This plot shows
that the speedup is close to ideal for (very) small processor numbers and then detori-
ates. The gap between the actual and the ideal speedup for small processor numbers
illustrates the impact of the redundancy.

Remark 1. If the original problem were actually cyclic-banded the redundancy
would be 1, i.e. the parallel algorithm has (essentially) the same complexity as the
serial algorithm [6]. This is so, as in this case, also the serial code generates �ll-in.
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Remark 2. In (3.4) instead of the LU factorization a QR factorization could
be computed [6, 20]. This doubles the computational e�ort but enhances stability.
Similar ideas are pursued by Amestoy et al.[1] for the parallel computation of the QR
factorization of large sparse matrices.

4. Numerical experiments on the Intel Paragon. We compared the algo-
rithms described in the previous two sections by means of three test-problems. The
matrix A has all ones within the band and the number � � 1 on the diagonal. The
problem sizes were (n; kl; ku) = (100000; 10; 10), (n; kl; ku) = (20000; 10; 10), and
(n; kl; ku) = (100000; 50; 50). The condition numbers grow very large as � tends to
one. Estimates of them obtained by Higham's algorithm [21, p.295] are listed in
Tab. 4.1 for various values of �. The right-hand sides were chosen such that the solu-

n (kl; ku) � = 100 � = 10 � = 5 � = 2 � = 1:01
20000 (10,10) 1.3 9.0 4.2e+4 3.3e+6 2.9e+6
100000 (10,10) 1.3 9.0 4.3e+5 3.6e+6 3.8e+6
100000 (50,50) 2.9 1.8e+5 6.0e+6 1.8e+7 4.7e+8

Table 4.1

Estimated condition numbers for systems of equations solved in the above tables.

tion was (1; : : : ; n)T which enabled us to compute the error in the computed solution.
We compiled a program for each problem size, adjusting the arrays to just the needed
size. When compiling we chose the highest optimization level and turned o� IEEE
arithmetic. IEEE arithmetic turned on lead to erratic non-reproducible execution
times [4].

We begin with the discussion of the diagonally dominant case (� = 100). In
Tab. 4.2 the execution times are listed for all problem sizes. For the ScaLAPACK and
the Arbenz/Hegland (AH) implementation the one-processors times are quite close.
The di�erence in this part of the code is that the AH implementation calls the level-2
BLAS based LAPACK routine dgbtf2 for the triangular factorization, whereas in
the ScaLAPACK implementation the level-3 BLAS based routine dgbtrf is called.
The latter is advantageous with the wider bandwidth k = 50, while dgbtf2 performs
(slightly) better with the narrow band.

The two implementations show a noteworthy di�erence in their two-processor
performance. The ScaLAPACK implementation performs about as fast as on one
processor which is to be expected. The AH implementation however looses about
20%. We attribute this loss in performance to the zeroing of auxiliary arrays that are
will be used to store the �ll-in (`spikes'). This is done unnecessarily in the preparation
phase of the algorithm.

In ScaLAPACK, for forward elimination and backward substitution the level-
2 BLAS dtbtrs is called. In the AH implementation this routine is expanded in
order to avoid unnecessary checks if rows have been exchanged in the factorization
phase. This avoids the evaluation of if-statements. In the AH implementation the
above mentioned auxiliary arrays are stored as `lying' blocks to further improve the
scalability and to better exploit the RISC architecture of the underlying hardware [13].
The speedups of the AH implementation relative to the 2-processor performance is
very close to ideal up to at least 64 processors. The ScaLAPACK implementation does
not scale so well. For large processor numbers the di�erence in execution times is about
2/3 which correlates with the ratio of messages sent in the two implementations.

As indicated by (2.10) the speedups for the medium size problem are best. The
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Diagonally dominant case on the Intel Paragon

(n; kl; ku) (20000; 10; 10) (100000; 10; 10) (100000; 50; 50)
p t S " t S " t S "

ScaLAPACK implementation

1 1110 1.0 4e-10 5543 1.0 5e-9 30750 1.0 |
2 1210 .92 4e-10 5572 1.0 4e-9 | | |
4 662 1.7 3e-10 2849 1.9 4e-9 25335 1.2 1e-8
8 398 2.8 2e-10 1489 3.7 3e-9 14347 2.1 8e-9
16 233 4.8 2e-10 814 6.8 2e-9 7341 4.2 6e-9
24 172 6.5 2e-10 593 9.3 2e-9 5032 6.1 5e-9
32 142 7.8 1e-10 482 12 1e-9 3890 7.9 4e-9
48 118 9.4 1e-10 379 15 1e-9 2763 11 4e-9
64 109 10 1e-10 312 18 1e-9 2211 14 3e-9
96 109 10 9e-11 243 23 8e-10 1692 18 3e-9
128 65 17 8e-11 168 33 7e-10 1390 22 2e-9

Arbenz / Hegland implementation

1 1102 1.0 4e-10 5499 1.0 5e-9 32734 1.0 |
2 1369 .81 4e-10 6840 .80 4e-9 | | |
4 687 1.6 3e-10 3423 1.6 4e-9 22908 1.4 9e-9
8 347 3.2 2e-10 1716 3.2 3e-9 11475 2.9 7e-9
16 179 6.2 2e-10 864 6.4 2e-9 5775 5.7 5e-9
24 126 8.7 2e-10 580 9.5 2e-9 3917 8.4 2e-9
32 98 11 1e-10 438 12.6 1e-9 2975 11 4e-9
48 72 15 1e-10 296 18.6 1e-9 2065 16 3e-9
64 59 19 1e-10 228 24.1 1e-9 1598 21 3e-9
96 48 23 8e-11 159 34.6 8e-10 1161 28 2e-9
128 41 27 7e-11 124 44.3 7e-10 930 35 2e-9

Table 4.2

Selected execution times t in milliseconds, speedups S = S(p), and error of the two implemen-
tations for the three problem sizes. " denotes the 2-norm error of the computed solution.

1=p-term that containes the factorization of the Ai and the computations of the `spikes'
DU
i R

�1
i and L�1i DL

i consumes �ve times as much time as with the small problem size
and scales very well. This portion is still increased with the large problem size.
However, there the solution of the reduced system gets expensive also.

We now compare the performance of the ScaLAPACK and the Arbenz-Hegland
implementation of the pivoting algorithm of section 3. Tables 4.3, 4.4, and 4.5 contain
the respective numbers, execution time, speedup and 2-norm of the error, for the three
problem sizes.

Relative to the AH implementation the execution times for ScaLAPACK comprise
overhead proportional to the problem size, mainly zeroing elements of work arrays.
This is done in the AH implementation during the building of the matrices. Therefore,
the comparison in the non-diagonally dominant case should not be based on execution
times but on speedups. Nevertheless, it should be noted that the computing time
increases with the di�culty, i.e. with the condition, of the problem. They are of
course hard or even impossible to predict as the pivoting procedure is unknown. At
least the two problems with bandwidth k = kl+ku = 20 can be discussed along similar
lines. The AH implementation scales better than ScaLAPACK. Its execution times
for large processor numbers is about 2/3 of that of the ScaLAPACK implementation
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Non-diagonally dominant case on the Intel Paragon. Small problem size.

� = 10 � = 5 � = 2 � = 1:01
p t S " t S " t S " t S "

ScaLAPACK implementation

1 1669 1.0 6e-10 1700 1.0 6e-8 2352 1.0 2e-6 2354 1.0 2e-7
2 1717 1.0 6e-10 1715 1.0 7e-8 1946 1.2 4e-6 1879 1.3 2e-6
4 867 1.9 4e-10 868 2.0 3e-8 982 2.4 2e-6 948 2.5 7e-7
8 455 3.7 3e-10 455 3.7 4e-8 514 4.6 1e-6 497 4.7 1e-7
16 252 6.6 3e-10 254 6.7 3e-8 283 8.3 1e-6 276 8.5 5e-7
24 184 9.1 3e-10 185 9.2 2e-8 207 11 1e-6 199 12 6e-7
32 159 11 3e-10 160 11 2e-8 177 13 5e-7 172 14 2e-7
48 113 15 3e-10 114 15 2e-8 128 18 1e-6 124 19 3e-7
64 127 13 2e-10 127 13 2e-8 138 17 4e-7 133 18 4e-8
96 124 14 2e-10 125 14 1e-8 134 18 2e-6 132 18 1e-7
128 84 20 2e-10 87 20 1e-8 94 25 2e-7 92 26 1e-7

Arbenz / Hegland implementation

1 1329 1.0 7e-10 1362 1.0 9e-8 2030 1.0 2e-6 2033 1.0 2e-6
2 1306 1.0 6e-10 1305 1.0 3e-8 1526 1.3 4e-6 1482 1.4 3e-7
4 663 2.0 5e-10 662 2.1 5e-8 773 2.6 2e-6 750 2.7 6e-7
8 342 3.9 4e-10 342 4.0 3e-8 396 5.1 1e-6 386 5.3 3e-7
16 184 7.2 3e-10 184 7.4 1e-8 211 9.6 1e-6 206 9.9 2e-7
24 135 9.8 3e-10 135 10.1 1e-8 153 13 5e-7 149 14 1e-7
32 108 12 3e-10 108 13 2e-8 121 17 2e-7 118 17 1e-7
48 86 16 3e-10 86 16 1e-8 94 22 1e-6 93 22 1e-7
64 72 19 3e-10 73 19 1e-8 79 26 2e-7 78 26 1e-7
96 64 21 3e-10 64 21 1e-8 68 30 1e-7 68 30 1e-7
128 57 23 2e-10 57 24 1e-8 61 33 1e-6 60 34 2e-7

Table 4.3

Selected execution times t in milliseconds, speedups S, and 2-norm errors " of the two imple-
mentations for the small problem size (n;kl; ku) = (20000;10;10) with varying �.

again re
ecting the ratio of messages sent. Notice that here the block size of the
reduced system but also of the �ll-in blocks (`spikes') are twice as big as in the
diagonally dominant case. Therefore, the performance in M
op/s is higher here.
This plays a role mainly in the computation of the �ll-in. The redundancy does not
have the high weight that the 
op count of the previous section indicates. In fact,
the pivoting algorithm performs almost as good or sometimes even better than the
algorithm for the diagonally dominant case. This may suggest to always use the former
algorithm [5]. This consideration is correct with respect to computing time. It must
however be remembered that the pivoting algorithm requires twice as much memory
space as the algorithm for the diagonally dominant case. (In the serial algorithm
the ratio is only (2kl + ku)=(kl + ku).) In any case, the overhead for pivoting in the
solution of the reduced system by bidiagonal cyclic reduction is not so big that it
justi�es sacri�cing stability.

The picture is di�erent for the largest problem size. Here, ScaLAPACK scales
quite a bit better than the implementation by Arbenz and Hegland. The reduction
of the number of messages and marshaling overhead without regard to the message
volume is counterproductive here. With the wide band, the volume of the message
times tw by far outweighs the cumulated startup-times, cf. (3.10). So, for the largest
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processor numbers ScaLAPACK is fastest and yields the highest speedups.

Non-diagonally dominant case on the Intel Paragon. Intermediate problem size.

� = 10 � = 5 � = 2 � = 1:01
p t S " t S " t S " t S "

ScaLAPACK implementation

1 8331 1.0 7e-9 8489 1.0 9e-7 11759 1.0 2e-5 11756 1.0 1e-5
2 8528 1.0 7e-9 8516 1.0 2e-6 9689 1.2 2e-5 9327 1.3 6e-6
4 4277 1.9 6e-9 4274 2.0 2e-6 4856 2.4 1e-5 4684 2.5 5e-6
8 2157 3.9 5e-9 2156 3.9 1e-6 2448 4.8 8e-6 2365 5.0 5e-6
16 1103 7.6 3e-9 1103 7.7 1e-6 1251 9.4 8e-6 1210 9.7 1e-6
24 770 11 3e-9 771 11 9e-7 870 14 5e-6 842 14 1e-6
32 585 14 2e-9 588 14 1e-6 663 18 4e-6 642 18 1e-6
48 429 19 2e-9 431 20 8e-7 481 24 6e-6 450 26 1e-6
64 338 25 2e-9 342 25 7e-7 382 31 5e-6 370 32 7e-7
96 264 32 2e-9 268 32 3e-7 296 40 2e-6 290 42 5e-7
128 188 44 1e-9 193 44 4e-7 215 55 2e-6 206 57 8e-7

Arbenz / Hegland implementation

1 6645 1.0 8e-9 6811 1.0 2e-6 10158 1.0 2e-5 10178 1.0 7e-6
2 6499 1.0 8e-9 6493 1.0 7e-7 7614 1.3 2e-5 7418 1.4 9e-6
4 3260 2.0 6e-9 3257 2.1 7e-7 3815 2.7 1e-5 3715 2.7 2e-6
8 1640 4.1 5e-9 1639 4.2 6e-7 1917 5.3 9e-6 1869 5.4 2e-6
16 834 8.0 4e-9 833 8.2 1e-6 971 11 5e-6 949 11 2e-6
24 569 12 3e-9 569 12 5e-7 660 15 5e-6 643 16 1e-6
32 433 15 3e-9 433 16 5e-7 501 20 4e-6 490 21 2e-6
48 303 22 2e-9 302 23 4e-7 348 29 4e-6 340 30 1e-6
64 236 28 2e-9 235 29 6e-7 269 38 5e-6 263 39 4e-7
96 173 38 2e-9 172 40 2e-7 195 52 2e-6 191 53 6e-7
128 139 48 2e-9 139 49 4e-7 155 66 6e-6 153 67 9e-7

Table 4.4

Selected execution times t in milliseconds, speedups S, and 2-norm errors " of the two imple-
mentations for the medium problem size (n; kl; ku) = (100000;10;10) with varying �.

5. Conclusion. We have shown that the algorithms implemented in ScaLA-
PACK are stable and perform reasonably well. The comparison with the implementa-
tions of the same algorithms by Arbenz and Hegland that are designed to reduce the
number of messages that are communicated are faster for very small bandwidth. The
di�erence is however not too big. The 
exibility and versatility of the ScaLAPACK
justi�es the loss in performance.

Nevertheless, it may be useful to have in ScaLAPACK a routine that combines
the factorization and solution phase. Appropriate routines would be the `drivers'
pddbsv.f for the diagonally dominant case and pdgbsv.f for the non-diagonally dom-
inant case. In the present version of ScaLAPACK, the former routine consecutively
calls pddbtrf.f and pddbtrs.f, the latter calls pdgbtrf.f and pdgbtrs.f, respec-
tively. The storage policy could stay the same. So, the 
exibility in how to apply the
routines remains.

We found that the pivoting algorithm does not imply a large computational over-
head over the solver for the diagonally dominant systems of equations. We even
observed shorter solution times in some cases. However, as the pivoting algorithm
requires twice as much memory space it should only be used in uncertain situations.
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Non-diagonally dominant case on the Intel Paragon. Large problem size.

� = 10 � = 5 � = 2 � = 1:01
p t S " t S " t S " t S "

ScaLAPACK implementation

1 41089 1.0 | 45619 1.0 | 68553 1.0 | 68737 1.0 |
8 24540 1.7 2e-6 24524 1.9 7e-5 30820 2.2 2e-4 27857 2.5 8e-5
16 12931 3.2 3e-6 12926 3.5 3e-5 16000 4.3 1e-4 14567 4.7 8e-5
24 9035 4.5 2e-6 9020 5.1 3e-5 11053 6.2 1e-4 10112 6.8 8e-5
32 7319 5.6 2e-6 7305 6.2 1e-5 8790 7.8 1e-4 8111 8.5 8e-5
48 5313 7.7 1e-6 5309 8.6 5e-6 6255 11 1e-4 5830 12 8e-5
64 4670 8.8 2e-6 4665 9.8 6e-6 5345 13 1e-4 5034 14 2e-4
96 3690 11 1e-6 3680 12 1e-5 4101 17 1e-4 3926 18 2e-5
128 3470 12 1e-6 3459 13 1e-5 3744 18 1e-4 3632 19 2e-5

Arbenz / Hegland implementation

1 36333 1.0 | 40785 1.0 | 64100 1.0 | 64308 1.0 |
8 21598 1.7 2e-6 21647 1.9 6e-6 27929 2.3 1e-4 24837 2.6 3e-4
16 11734 3.1 2e-6 11767 3.5 2e-6 14863 4.3 1e-4 13334 4.8 5e-5
24 8737 4.2 1e-6 8740 4.7 3e-6 10787 5.9 2e-4 9777 6.6 1e-4
32 7019 5.2 2e-6 7023 5.8 9e-6 8537 7.5 1e-4 7798 8.2 1e-4
48 5716 6.4 2e-6 5721 7.1 2e-5 6704 9.6 1e-4 6208 10 8e-5
64 4858 7.5 1e-6 4855 8.4 5e-6 5575 12 1e-4 5226 12 6e-6
96 4415 8.2 1e-6 4402 9.3 6e-6 4861 13 2e-4 4648 14 8e-5
128 3981 9.1 7e-7 3973 10 1e-5 4301 15 8e-5 4149 16 3e-5

Table 4.5

Selected execution times t in milliseconds, speedups S, and 2-norm errors " of the two im-
plementations for the large problem size (n; kl; ku) = (100000;50;50) with varying �. The single
processor execution times (in italics) have been estimated.
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