DEVELOPMENT OF THE
PICMSSNETSOLVE SERVICE

A Report
Presented for the
Master of Science
Degree
The University of Tennessee, Knoxville

D. Matthew Kelleher Jr.
April 2002

Innovative Computing Laboratory Technical Report
ICL-UT-02-04

ABSTRACT

This report describes the installation of the PICMSS (Parallel Interoperable
Computational Mechanics System Simulator) computational fluid dynamics (CFD)
program as a NetSolve service in NetSolve version 1.4. The PICMSS system uses state-
of-the-art techniques for setting up and performing CFD calculations. It consists of a
front-end program that runs on use systems and prepares program input, a compute
engine that runs on parallel systems and cal culaes results, and post-processing programs
that run on user systems and analyze and present results. The PICMSS compute engine
was installed as a NetSolve service on three parallel systems and was tested on four user
systems. NetSolve provides the infrastructure required to run the compute engne on the
parallel systems and transfer program input and output files between user systems and
parallel systems. The results of this project show that using NetSolve to run paralel
programs s an efective and productive alternaive to directly executing pardlel programs
on aparallel system.

TABLE OF CONTENTS

1 INTRODUCTION . . .o e e e 1
2. PICMSSSERVICEREQUIREMENTSo 3
3. PICMSSSERVICE SOFTWARE 6
4. PICMSS SERVICE EVALUATION RESULTSo 10
5. CONCLUSIONS . . . e 13
6. FUTUREWORK e 14
LISTOF REFERENCES e 15
APPEND X . 17

1. INTRODUCTION

The University of Tennessee Computational Fluid Dynamics Laboratory (CFDL) and
Joint Institute for Computer Science (JICS) are collaborating to develop a new computer
software system for performing computational fluid dynamics (CFD) calculations called
Parallel Interoperable Computational Mechanics System Simulator (PICMSS) [Wong
2000, Wong 2001]. This CFD code uses state-of-the-art techniques for setting up,
performing, and analyzing CFD calculations. PICMSS consists of afront-end program
that prepares program input, a compute engine that calculates results, and post-processing
programs that analyze and present results. The front-end program uses a graphical user
interface and has tools that allow a user to completely specify the problem to be solved.
The compute engine uses parallel processing technigues to quickly perform the required
calculations. Post-processing programs, for example, convert cdculated results to forms
that can be used as input to plotting packages.

The PICM SS compute engine is a versatile implicit three-dimensional finite el ement
program designed to solve awiderange of fluid dynamics prablems [Wong 1995]. It is
designed to run in parallel on awide range of platforms ranging from single workstations
to workstation clusters to large supercomputers. The program iswritten in C, uses the
Message Passing Interface [MPI] protocol to communicate between processes, and uses
the Aztec [Aztec] library to perform its linear algebra calculations. The program reads
data from fourteen input files and writes its resultsin aset of output files. The first
parallel process reads the input files and distributes the data to the other processes. Each
process works with other processes to perform the required calculations and all processes
write results separately into output files.

PICMSS is designed to allow front-end and post-processing programs to run on auser’s
local system and for the compute engine to run on a system built and managed to run
parallel programs. Thisrequires development or use of a system that transfers compute
engine input files from the user system to the parallel system, runs the compute engine on
the parallel system, and delivers output files back to the user system. PICMSS developers
determined that NetSolve [Arnold 2001] developed at the University of Tennessee,
Knoxville can run the PICM SS compute engine and provide the required file transfer
services.

NetSolve was designed to provide high-performance network-based computational
services to scientific users. It consists of clients that use NetSolve services, servers
accessible across a network that provide services, and agents that connect clientsto
servers. A NetSol ve client program isany program that usesaNetSol ve service. It
typically runson auser’slocal system. Serversrun on high-performance networked
systems and provide awide range of computing services such assolving dense and sparse
systems of linear equations, parameter optimization, and data sorting. Agents run on

central network systems and use the available servers, the services they provide, their
relative performance, and current workload to identify the server best able to provide a
serviceto aclient.

The NetSolve client interface is implemented as a set of library routines called from a
user’s program. To add a NetSolve service to a program, the user adds acall to a
NetSolve interface routine and adds the NetSolve client library to the program. The call
specifies the name of the service to be performed, pointers to the data required by the
service, and pointers to locations where the results will be stored. When the program
runs, it calls the NetSolve interface routine in the client library. The NetSolve client
library contacts an agent and tells it the name of the serviceit needs. The agent identifies
the server best able to provide that service and returns its network address to the client
library. Theclient library contects the specified server and givesit the name of the
service and the required data. The server performs the service and returns the results to
the client library. The client library stores the results in the specified location then returns
to the calling program. The program then uses the results.

The NetSolve client and server can aso transfer files between client and server systems.
Thisfeatureisrequired for the PICM SS compute engine because it gets dl its datafrom
filesand writes all itsresultsin files.

The PICMSS service was added to NetSolve to meet the needs of the Virtual Human
project at Oak Ridge National Laboratory (ORNL). Virtual Human was an ORNL

L aboratory-Directed Research and Development (LDRD) project to bring cutting-edge
computational techniques to modeling complex biologicd systems [Ward 2001]. These
models require capabilities not available in commercia CFD packages. Virtual Human
researchers identified PICM SS as a good package for performing these cal culations
because it has the flexibility and power required to model complex biological systems and
the usability required to efficiently prepare and perform calculations and analyze the
results. However, before the project could use PICMSS effectively, the system had to be
installed as a NetSolve service.

This report describes the installation of the PICM SS compute engine as a NetSolve
service. It lists the service requirements, describes how these requirements were satisfied,
and shows that the PICM SS NetSolve service is an efficient and easy-to-use system for
performing CFD calculations.

This report assumes the reader is familiar with NetSolve and how the client, agent, and
server work together to provide computational servicesto the client program. A user
should be familiar with the material in the NetSolve 1.4 Users Manual [Arnold 2001]
before using the material in this report to develop asimilar service.

2. PICMSS SERVICE REQUIREMENTS

The PICMSS compute engine was designed to run as a stand-alone program on a paral€l
system. To run the program by itself, auser first prepares a set of input files that
describes the problem. If these files cannot accessed by PICM SS on the parallel system,
the user must move them to the parallel system. The user then logs into the parallel
system, runs PICMSS, and waits for the results. After the program stops, the user either
analyzes the results on the parallel system or moves results files to another system for
later analysis.

The overall requirement of the PICM SS NetSolve service is that it must be at least as
easy to use as the stand-alone version. It must also provide a sarvice comparable to or
better than the service now provided by the compute engine running on a paralel
processing system. The nine requirements listed inthis section ensured that the PICMSS
NetSolve servicemet this generd requirement.

1 The PICMSS service will be provided by a client that runs on the user’ s machine
and a service associated with a NetSolve server. The client will be a standard
NetSolve client that uses the PICMSS service by calling NetSolve routinesin the
NetSolve client library. Theservice will be astandard NetSolve service and will
consist of all the software required to run the PICM SS compute engine under the
control of aNetSdve server. Theservice software will be as similar as possible
to existing NetSolve services.

This requirement ensured that the PICM SS service is a standard NetSolve service. Users
familiar with NetSolve will know what to expect and new users can learn to understand
and use the PICM SS service from NetSolve documentaion and examples. This
requirement also helps ensure that PICM SS can be parted to new NetSol ve rel eases.

2. The client must be a stand-alone program that does nothing but provide the
PICMSS service.

The PICMSS front-end software is currently being developed so it cannot now serve as
the client program. Until this program isready for use, the PICM SS compute engine
must be run under NetSolve the same way it is run as a stand-alone program. This
requirement allows the user to develop the input files by hand on alocal system, run the
program as a NetSolve service, and get the results files back on the local system. When
the front-end software is completed, this stand-aloneclient can be integrated into it.

3. The client must run on every system for which NetSolve client libraries are
available.

NetSolve client libraries are currently available for common UNIX systems and Windows
family systems. The client must run on these systems.

4, The PICMSS service must be executed from a shell script that is run by NetSolve
and supplied by the user.

The PICMSS compute engine is still under development so versions can beexpected to
be created frequently and multiple versions can coexist. This allows usersto specify the
versions of the PICMSS comput e engi ne to use when they request PICM SS services. It
also makes the PICM SS service different from other NetSolve services. However, the
code used to execute programs and shell scriptsis similar, so the shell script can easily be
replaced by direct program execution similar to other NetSolve pardlel services when
development ends and a production version is created.

A second reason to use a shell script isto allow a user to specify afile containingalist of
the processors to use during arun. Some operating systems such as AIX on the ORNL
Eagle system automatically allocae available nodes to a submitted job. However,
NetSolve and MPI do not provide this service. A user on systems that just use MPI (such
asthe SINRG systems) must tell MPI which nodes to use for arun. If the job specifies an
unavailable node thejob fails. Thisallowsauser to indude afile that tdls the PICMSS
service which nodesto use for arun.

5. The client must get the number of processors required from an input file and
supply that number to the server.

This number is needed on the server side because number of processors required for a
calculation depends on the problem being solved. It allows the user to use the same shell
script for al calculations and makesit easier to eventually run the program directly from
the PICMSS service program. Thenumber is aready present inthe PICM SS compute
engine input file inpara.indat so no input file changes are required.

6. Client and service must work together to move all PICMSS input and output files
between the client and server. The client must get al input datafiles required by
the PICM SS compute engine from the user’ s current directory and transmit them
to the PICMSS service. The service must receive the input files sent by the dient
and put them in the PICM SS compute engine default diredory. The PICMSS
service must get all output files produced by PICMSS compute engineand send
them to the client. The client must receive the output files produced by the
PICM SS compute engine service and put them in the user’s current directory.
Transmitted input and output files must be written in the destination directory
using end-of-line characters standard for text files on the destination machine.

Program users aeate and the PICM SS compute engine program expeds to read and write
standard system text files. The client and service must ensure that the transmitted files
appear to al users as standard text files.

7. The client must transmit all requiredinput files to the service and transmit
optional filesonlyif present.

The PICM SS compute engine has fourteen required and one optional input file. The
client must fail if arequired fileis not present. It must transmit the optional file only if
present.

8. The PICMSS compute engine service must direct stdout and stderr output to afile
and deliver it to the client.

The NetSolve service captures output written by its services to stdout and stderr and
deliversthem to the client. NetSolve client library routines automatically write them on
the clients' stdout and stderr units. This requirement ensures that they are delivered
instead asfiles that can be later examined by the user.

0. The PICM SS compute engine cannot be changed.

This requirement hel ps ensure that new versions of the program will work with the
NetSolve environment developed by this project.

3. PICMSS SERVICE SOFTWARE

The PICMSS NetSolve service is implemented as a stand-alone client program that runs
on the user’s machine, a PICM SS service integrated with NetSolve server software and
the combined file module that creates the combined file used by both client and service
software to contain the files transmitted between client and server.

The client, service, and combined file module are written in as much aspossiblein
standard C and use commonly available extensions to provide system services not
standardized in the C language. The client and combined file modul e have been compiled
and run successfully on IBM AlX, Sun Solaris, Linux, and Microsoft Windows systems.
The service has been compiled and run successfully on IBM AlX, Sun Solaris, and Linux
systems.

COMBINED FILE MODULE

The major technical challenge in creating the PICM SS NetSolve service was in managing
the program input and output files. The PICMSS compute engine reads fourteen required
and one optional input files and the PICM SS service has one required and one optional
input file. Each parallel process produces its own set of output files. Asaresult, the
client must transmit to the service fourteen to seventeen input files and expects back
many more output files.

NetSolve can transfer files from the client to the server and from the server to the client.
This capability is used by NetSolve, for example, to get routines that calculate objective
function values required by optimiztion services from the user. The client provides the
name of the file containing the objective function calculation in the NetSolve parameter
list. The NetSolve dient and server work together to send the file to the server whereit is
compiled and linked with the parameter optimization service. The service with the user-
provided function work together to calcul ate the optimum value which is returned by
NetSolve to the client.

In NetSolve, the fact that fileswill be transmitted from client to server and from server to
client when a service is executed is specified when the service is defined. The names of
thefilesto be transferred are parameters in the NetSolve interface routine call. Although
predicting the number and names of the filesto be transferred for a PICM SS calculation
is possible, the resulting parameter list would be very long and have different lengths for
each problem solved. Thissimplyisnot practical.

The solution was to have the client combine al input filesinto a single combined input
file and send that file from the client to the server. The PICMSS service unpacks the
combined file andwrites the input files in the default directory used by the PICMSS

compute engine After the compute engine finishes, the PICM SS savice combines dl
output files produced by the engine into a single combined output file and sends that
combined file to theclient where it is unpacked to reproduce the original output files.
Thisway only two files are transfared so only two file names are required in the
parameter list for every PICMSS service cdl.

The combined file module has routines that open a new combined file, add filesto the
combined file, close the combined file, and extract all files from acombined file. To
send input files to the service, the client creates a new combined file, adds the required
and optional (if present) input files to the combined file, then closes the combined file.
When it calls NetSolve, it putsin the parameter list the name of the combined file that
contains al input files and the name of the combined file that will contain all output files.
The server works with the client to transfer the input combined file to the server. The
server starts the PICM SS service which uses the combined file module extraction routine
to extract all filesfrom the input comhined file. The service executes thePICMSS
compute engine which creates a set of output files all ending with the extension “.outdat”.
After the engine is finished, the PICM SS service creates a new combined file, gvesit the
output file name specified in the client parameter list, and addsto it all files with names
ending in .outdat. When the service isfinished NetSolve sends that file back to the client
where it is unpacked.

The combined filemodule also handles al text file end-of-line character conversions.
UNIX systems mark the end of alinein atext file using aline feed character and
Windows-based systems use a carriage return character followed by aline feed character.
To ensure that end-of-line characters are consistently and correctly converted, the module
removes all end-of-line characters and records their locations when files areadded to the
combined file. When thefileis extracted, the module adds the end-of-line characters for
thelocal system in their correct locations. Removing al end-of-line characters from the
file also ensures that lines are not modified by format conversion transformations that
may be applied to thefilein transit between client and server.

PICMSSFILES

Two new input fileswere added to theset of files already required by the PICMSS
compute engine File picmss.sh contains the commands required to execute the PICMSS
compute engineon all parallel systemsthe serviceisinstalled on. Thisshell script must
contain the mpirun command (for MPI systems) or the equivalent command on other
systems that runs parallel programs. NetSolve ervironment variable
NETSOLVE_ARCH can be used to make sure the correct command is executed. The
script can also contain any other programs or shell script commands. This script takes
one parameter, the number of processors required.

The second file isnamed hostfile and contains the names of the processors to use for MPI
systems and other systems where the user must specify the parallel processorsto use.
Thisfileisoptiona so it only needs to be provided where required.

PICMSSCLIENT

The client is a simple stand-alone program that runs on the user’s machine. The client
first reads the number of processors required from file inpara.indat. It then creates the
input combined file and adds all of theinput files to be sent to the server toiit. If a
required fileis missing, it reportsthe missing file and stops. The client then calls
NetSolve with these parameters. PICM SS service name, input combined file name,
output combined file name, and number of processors required. After the NetSolve
service finishes, the client splits the output combined file returned by NetSolve into
individual output files then stops.

PICMSS SERVICE

The NetSolve server calls the PICM SS service moduleto run the PICM SS compute
engine and providesit these three parameters. input combined file name, output
combined file name, and number of processors required. The service extracts the input
files from the input combined file then calls the C system() routine to execute shell script
picmss.sh. The system call gives execute permission to file picmss.sh, executes it using
the number of processors as its sing e parameter, and redirects its standard output to
stdout.outdat and its standard error output to stderr.outdat. After shell script execution
ends, the PICM SS =rvice creates the output combined file, adds all files ending in
.outdat to it, then returns to NetSolve.

COMBINED OPERATION

The client program, NetSolve, and the PICM SS NetSolve service work together to run the
PICMSS compute engine and deliver its resultsto the client. The client program
assembles the input filesinto the combined input file then calls NetSolve. The NetSolve
client contacts the agent and gets from it the address of the NetSolve server it determines
is best ableto provide the PICMSS service to the client. The NetSolve client contacts the
server, tellsit that it wants to execute the PICM SS service, and gives it the input and
output combined file names and number of processors required. The server creates a
temporary directory for the files and the NetSolve client and server work together to
transfer the input combined file to that directory. The NetSolve server calls the PICMSS
service to perform the calculations. The PICMSS service splits the input combined file,
executes picmss.sh, and adds all output files into the output combined file. It returnsto
the NetSolve server which works with the client to transfer the output combined file to
the client’sdirectory. Theclient NetSolve cdl returns and theclient extracts theresults
files from the output combined file.

4. PICMSS SERVICE EVALUATION RESULTS

The PICMSS client and NetSolve service using NetSolve version 1.4 were installed and
tested on the ORNL Center for Computational Sciences Eagle and Bearcat systems and
on the Neo and Cypher clusters, part of the SINRG (Scdable Intracampus Research Grid)
network at the University of Tennessee Knoxville. Eagleisan IBM RS6000-based
parallel processing system running the IBM AlX operating system. Bearcat isadual-
processor RS6000 system running the Al X operating system that operates as asingle
serial processor system. The PICMSS client and NetSolve agent runs on the Bearcat
system and the NetSolve server with PICM SS service runs on the Eggle system.

Neo isanetwork of sixteen Sun SPARC workstations running Sdaris 7 and Cypher isa
network of sixteen Dell systems with Intel Pentium processors and the Linux operating
system. The ACMSS client, NetSolve agent, and NetSolve server with the PICMSS
service were installed on Neo system neol and on Cypher system cypherO1l. The dient
was also installed and tested on a Pentium Pro system running Windows 98 and used the
agents and servers running on the Neo and Cypher systems.

TEST CASES

The tests were performed using three test cases that each calculate theflow through a
duct. Thesetest cases have analytical solutions and were orignally used by the code
author to validatethe PICM SS compute engine. These cases were used because the data
files were available and the results known to be correct. Case 2DCA SE-2 and 2DCASE-3
are two-dimensional calculations with 2DCA SE-2 representing a 5x5 structured grid and
2DCA SE-3 representing an unstructured grid. Case 3DCASE-0 is a three-dimensional
calculation using a 5x5x5 grid.

ACCURACY TESTS

A set of test cases was used on each system to verify that the PICM SS service produced
the same results as the PICM SS compute engine run separately. Four test cases were
used on the Bearcat and Eagle systems and three used on the Neo and Cypher systems.
All test cases were provided by the PICM SS developers.

Each test was conducted following the same procedure. First, the PICM SS compute
engine executable file was created for each of the three systems using a makefile and
source code provided by the developers. This executable was used for both the stand-
alone program runs and for the NetSolve PICM SS service.

The stand-al one results were produced by running each of the test cases using the
PICMSS executable file and the test case input files. PICMSS was run on the Neo and

10

Cypher machines using a makefile provided by the devel opers and on the Bearcat and
Eagle systems using a shell script provided by the developers. The output written by the
PICMSS compute engine to stdout and stderr was saved in files stdout.outdat and
stderr.outdat so they could be compared to the stdout.outdat and stderr.outdat files
produced by the NetSolve PICM SS service. The output for each case was saved in a
separaedirectory.

The input files were copied to a separate directory on the same system and each case was
run again using the PICM SS client and NetSolve PICM SS service. For the ORNL
systems the client and NetSolve agent ran on the Bearcat system and the NetSolve server
with PICM SS service ran on system eaglel63. For the Neo tests the client, NetSolve
agent, and NetSolve server with PICM SS service ran on system neol. Likewise, for the
Cypher tests, the client, NetSolve agent, and NetSolve server with PICMSS service ran
on system cypherO1. Shell script picmss.sh executed the same PICM SSexecutable file
used to create the stand-alone results for that system.

The UNIX diff command was used to compare each output file produced by the NetSolve
PICMSS servicewith the same file produced by the PICM SS compute engine run asa
stand-alone program. All output files were compared including the stdout.outdat and
stderr.outdat files. The only differencesin the files were in lines reporting timing results.
All reported calculation values were identical.

The Neo system test cases were copied to the Bearcat system and the Neo tests repeated
to confirm that the results did not change when the client and server ran on two different
systems. The output produced by PICM SS running as a stand-alone program and the
output produced by the PICM SS service were compared. The results were identical
except for lines reporting timing results.

PERFORMANCE TESTS

The Neo test cases on the Bearca system were also used to measure the additiond time
required to run the NetSolve PICM SS service compared to the time required to run the
PICMSS compute engine as a stand-alone program. A terminal session was established
with system neol and the NetSolve agent and NetSolve server with the PICM SS service
were started on that system. A performance test directory was set up that contained
copies of the test cases and execution scripts used to create the stand-al one output files.
This directory was created to alow the PICM SS compute engne to be run repeatedly and
to create test case output files without affecting the stand-alone output files used to
confirm the accuracy of the NetSolve calculations.

A separate terminal session was established with the Bearcat system. A paformance

directory was created on this system to contain copies of the files used to test the
NetSolve PICMSS service on the Neo system. This directory was created to allow the

11

NetSolve service to be run repeatedly without affecting the files used to confirm the
accuracy of the NetSolve cdculations.

Together thesetwo terminal sessions were used to compare the times required to execute
PICMSS as a stand-alone program and as a NetSolve service on the Neo system. The
three Neo test cases were used asthe test data. The stand-alone version and the NetSolve
service were each run five times for each test case and the elapsed times recorded. The
runs were interleaved to reduce the effects of other activities present in the systems. The
NetSolve service was started as soon as the stand-alone version finished and the stand-
alone version was started as soon as the NetSolve service finished. The timeswere
collected by the Korn shell timecommand. The output produced by each run was alo
checked to verify that the calcul ated results were corred.

The times recorded for each of the test cases are listed in table 4.1. These results show
that for these short runs NetSolve added a significant amount of time to the length of the
run. They aso show that the time required by NetSolve is proportional to the length of
the run. These are the only test cases provided by the devel oper so longer runs could not
be examined.

Table4.1
Run Time Added by NetSolve

Case Batch Time,s NetSolve Time, s Difference, s
2DCASE-2 51 76 25
2DCASE-3 49 72 23
3DCASE-0 16 23 7

12

5. CONCLUSIONS

These results show that the NetSolve PICM SS service is an effective and productive
aternative to directly executing the PICM SS compute engine on aparalel system. The
calculation reaults were identical but the wall-clock times were higher. However, with
the NetSolve service there is no need to log into the parallel system. Program files can be
created, the PICM SS compute engine program run, and results analyzed directly on a
user’s home machine. This allows theuser to use the usa’s own editors, plot packages,
and other analysistools. It also alows the program that generates input files to be
designed to run on user-oriented systems rather than on pardlel systems better suited for
computational tasks. This convenience factor far outweighs the cost of the added time
required to perform the calcul ations.

This project also shows that NetSolve can be an effective platform for delivering general
parallel processing servicesto users. Many pardlel applications operate the same way as
the PICM SS compute engine: They read input files, perform cal culations, and write
output files. Infact, the PICMSS client and service programs can bemodified to run
almost any parallel program even though they were designed specifically to run the
PICMSS compute engine. Of course, it wouldn’t be simple. The input files needed by the
program would have to be renamed to the names used for the PICM SS compute engine
then renamed to their original names by the shdl script. The shell script would haveto
run the other program and would have to give al its output files the .outdat extension.
The inpara.indat file would have to specify the number of processors needed. Y et the fact
that it would work shows how simple adapting this software to run other parallel
applications would be.

13

6. FUTURE WORK

Extending this work to other applications that use pardlel computationsisrelatively
simple. The PICMSS client and service can already be used without change for any
parallel application as described in the conclusions. The PICMSS client can be changed
into ageneral purpose parallel program client by giving it alist of input files to add to the
input combined fileand by giving it the number of processors required. The PICMSS
service can bechanged into a general purpose parallel processing service by giving it a
list of the output filesto return in the output combined file. The parallel program would
continue to be specified in the shell script sent from the client to the server. If these
actions are taken, a NetSolve server with this service installed could run any non-
interactive parallel program installed on that system for users on the network. This new
service would bea change from the services NetSolve currently provides but it would
provide avaluale new service toparalel program users.

If NetSolve will continue to be used to provide parallel processing services, the
calculations used to measure server workloads should be redesigned to measure
workloads on parallel systems. The current load-balancing dgorithms used by NetSolve
agentsto identify the server best able to perform a cdculation for a user assume that the
service will be provided by a serial processor. If aserver machineis lightly loaded but
other machines in the cluster are heavily loaded, an agent may assign the job to the server.
Asaresult, thisjob may take much longer than it would have if assigned to another
server.

For those MPI systems where the user must specify the nodes to be used for a calculation,
the server should be able to tell the service which nodesto use. NetSolvenow uses a
fixed list of available nodes. If one of these nodesis down and a parallel program uses
thislist to get avalable nodes, the job will fail when it atempts to use the unavailable
node. Currently thislist must be manual ly maintained by a system administrator. It
would be much bette if the NetSolve saver could monitor cluster performance and use
the information to dynamically maintain the MPI host list. When a parallel service stats,
the server could provide it with alist of nodes to use sorted by workload. Thiswould
allow the serviceto use the nodes with the lightest workload to perform its cal cul ations.

14

LIST OF REFERENCES

15

LIST OF REFERENCES

[Arnold 2001]

Dorian Arnold, S. Agrawal, S. Blackford, J. Dongara, M. Miller, K. Sagi, Z. Shi, S.
Vadhiyar, Users' Guide to NetSolve V1.4, Computer Science Dept. Technicd Report CS-
01-467, University of Tennessee, Knoxville, July 2001.

[Aztec]
R. S. Tuminaro, et. d., Official Aztec User's Guide: Version 2.1, Sandia National
Laboratories, December, 1999.

[LAPACK 1999]

SIAM, LAPACK Users Guide, Third Edition, 0-89871-447-8, E. Anderson, Z. Bai, C.
Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Craz, A. Greenbaum, S.
Hammarling, A.McKenney, and D. Sorensen.

[MPI]

William Gropp and Eugene Lusk, Users Guide for mpich, a portable implementation of
MPI Version 1.2.2, Report ANL/MCS-TM-ANL-96/6 Rev. D, Argonne National
Laboratory, undated.

[Ward 2001]
R. C. Ward, €t. al., Integrated Respiratory System Model for the Virtual Human, Oak
Ridge National Laboratory, LDRD Final Report, November 2001.

[Wong 1995]
Kwai L. Wong, A Parallel Finite Element Algorithm for 3D Incompressible Flow in
Velocity-Vortidty Form, Ph. D. Dissertation, University of Tennessee, Knoxville, 1995.

[Wong 2000]
Kwai L. Wong and A. J. Baker, Computer-Based Simulation Maturationin Y 2K,
available from www.picmss.org, (January 21, 2002).

[Wong 2001]
Kwai L. Wong, A Parallel Interoperable Computational Mechanics System
Smulator (PICMSS), February 2, 2001, http://www.picmss.org (January 21, 2002)

16

APPENDIX

17

A. INSTALLING AND USING
NETSOLVE 1.4 PICMSS SERVICE
ON SINRG NEO AND CYPHER CLUSTERS

NetSolve version 1.4 and the PICM SS service were installed and tested on the SINRG
Neo and Cypher clusters and on the ORNL Bearcat and Eagle systems. The procedures
used for the Neo and Cypher clusters are described in this appendix; the procedures used
on Bearcat and Eagle are similar but not described further as these systems are not likely
to be available much longer. The makefiles used to create them are included in the
PICMSS directories on the SINRG system.

INSTALL NETSOLVE 1.4

NetSolve version 14 isinstalled by downloading thetar file from the NetSolve web site
and unpacking itin the directory that will be the NetSolve root directory. The README
and INSTALL files unloaded from the tar file describe the procedures that must be
followed from that point forward. These procedures require the installer to run the
configure script then run the makefile produced by the configure script. NetSdveis
ready for use after the makefile ends.

On Neo the following directory must be permanently added to the PATH variable before
the configure script is run:

{usr/local/SUNWspro/bin

Thisfileisrequired to find the Fortran compiler. The current directory must alsobein
the PATH variable for the NetSolve configure script to work. Once configure has been
run the current directory can be removed from the PATH variable. No path changes are
required on Cypher.

On Cypher the makefile produced by configure contains aflaw that causesthe make to
fail. The makefile reportsit cannot find /usr/local/bin/ar which is supposed to be the
UNIX archive program. Change varieble AR which specifies the archive program
location in SNETSOLVE_ROOT/conf/Makefile.i686_pc linux_gnu.inc to correct
directory /usr/bin/ar then repeat the make command to complete the installation.

To test the NetSolveinstallation, set the NETSOLVE_AGENT environment variable to
point to the system, edit the server_config file to tell the server to use the local system as
the NetSolve agent, start the agent then the server, run the Test script in the
bin/sparc_sun_solaris2_7 or bin/i686_pc_linux_gnu directory, and follow the instructions
written by the script. If all tests return success, NetSolve is working correctly.

18

CREATE PICMSSFILES

The PICMSSfiles are stored in a directory structure with the PICM SS directory at the top
and directories CFMODULE, CLIENT, SERVER, and TEST at the next level.
CFMODULE contains the combined file module, CLIENT contains the files required to
create the PICMSS client, and SERV ER contains the files required to create the PICMSS
service. Thelevel below these directories identifies the program version number,
currently V01.00.001. Thefilesrequired to create the programs are in the version
directories. Bdow the version directories are directories used to test the program and to
store Neo and Cypher executable files.

The combined file module must be created before the client or service can be crested. To
create this module, change to the PICM SS/CFM ODUL E/V01.00.001 directory and run
make. This program creates the CAModule object filerequired by the other two programs
and programs combfile and splitfile that can be used to test the program. Program
combfileisrunin directory COMBTEST and creaes a combined file Program splitfile
isrunindirectory SPLITTEST and splits a combined file beck into its individual files. A
script in SPLITTEST can be used to confirm that the files split from the combined file are
identical to the original filesin COMBTEST.

The client is created next from the source filesin directory PICM SS/CLIENT/-
V01.00.001. The makefiles used to create the client on Neo and Cypher are different, so
first copy mekefile.neo or makefile.cypher to makefilesys. 1f the NETSOLVE_ARCH
variable is not defined, it must be defined to be the name of the architecture subdirectory
of the SNETSOLVE_ROOQT/lib directory. For Neo NETSOLVE_ARCH must be
sparc_sun_solaris2_7 and for Cypher it must be i686_pc linux_gnu. Run “make”’ by
itself to create the picmss client program and “ make picmsstest” to create a program that
can be used to test the picmss client program. To test the client program, change to the
TEST subdirectory and execute picmsstest. This program creates a combined input file,
simulates a NetSolve execution, and splits an output combined file back into individual
files.

The server software is created from the filesin PICMSS/'SERVER/V01.00.001. The
makefilein this directory creates archive file libPICM SS.a and program picmsstest. To
test the service, copy the input combined file created by the client picmsstest program to
the TEST directory and run picmsstest in the TEST directory. This program splits an
input file into separate files, runs the picmss.sh shell script, then copies all the *.outdat
filesto the output combined file. The difffile script in the TEST directory can be used to
confirm that the input files are the same as the files in PICM SS/CLIENT/V01.00.001/-
TEST. The output combined file can be copied to the client program test directory and
picmsstest run again in that directory. Shell script difffile in that directory can be used to
verify that the output files are the same.

19

ADD PICMSS SERVICE TO NETSOLVE

PICMSS isinstalled as a customized service in NetSolve similar to other NetSolve
services that perform parallel processing. All parallel processing servicesin NetSolve are
installed as customized services because, due to MPI limitations, these services cannot
use a directory descended from the system /tmp directory. These three changes must be
made to NetSolve file generateservice.c to add PICM SS as a customized service:

1

Add PICMSS o the list of servicestha use aworking directory descended from a
permanent directory instead of a directory descended from /tmp. All current
NetSolve services that perform parallel processing use directories not descended
from /tmp, so just add PICM SS to this|list of services.

Change the temporary directory used by PICM SS and the other parallel servicesto
adirectory descended from $SNETSOLVE_ROOT/tmp. The default isto place
these filesin a directory descended from $NETSOLV E/src/Server which isan
Inappropriate location.

Add PICMSS as a customized service that calls the standard file service File
generateservice.c was written assuming each customized service would havea
special service routine.

Now execute this procedure to add PICMSS to NetSolve version 1.4:

=

Define SNET SOLV E_ROOT to point to the NetSol ve root directory.

Define environment variable NETSOLVE_ARCH to be the name of the directory
below the SNETSOLVE_ROOT/bin that contains the executable files for this
architecture. For the Neo systems NETSOLVE_ARCH must be
sparc_sun_solaris2_7 and for the Cypher systemsit must be i686_pc_linux_gnu.
Copy NetSolve problem definitionfile picmss from PICM SS/SERV ER/-
V01.00.001 to SNETSOLVE_ROOT/problems.

Add problem ./problems/PICMSS to SNETSOLVE_ROOT/server_config.

Copy PICMSSlibrary routine libPICM SS.ain PICM SS/SERVER/V01.00.001 to
SNETSOLVE _ROOT/Iib/$NETSOLVE_ARCH.

Execute make server in the SNETSOLVE_ROOT directory.

When the make fails because target libPICM SS.ais not found or reports
permission denied, copy SNETSOLVE_ROOT/Makefile.numerical to
src/Makefilenumerical. This has to be done to get around a bug in NetSolve.
Create aNETSOLVE_ROOT/tmp directory to contain the PICMSS input and
output fil eswhile the serviceis running.

When the make completes, the PICMSS serviceisready for use. Thetmp directory in the
SNETSOLVE_ROQT directory is used for temporary directories that store PICMSS files

while the PICM SS compute engine is running. These directories are created by NetSolve
when the PICM SS service starts and are supposed to be deleted by NetSolve when the

20

service ends. However, on Neo and Cypher the empty directories remain after the
NetSolve service ends and must be manually deleted using the rmdir * command. They
are deleted correctly on IBM AlX systems, so this may be an artifact of the network file
service used on these systems. The location of this directory is different from the
standard NetSolve 1.4 distribution which places these filesin the SNETSOLVE_ROOT/-
src/Server directory, an inappropriate location.

The PICMSS/TEST directory contains three test cases that can be used to verify that the
NetSolve service produces the same results as the PICM SS compute engine run by itself.
The TEST directory isdivided into aBATCH directory containing the results from
executing the PICM SS compute engine as a stand-alone program and the NETSOLVE
directory that contains the results from executing the NetSolve service. Each of these two
directories contains directories 2DCA SE-2, 2DCASE-3, and 3DCA SE-O0 for the three test
cases provided by PICMSS devel opers.

The BATCH output files were created by executing amakefile provided by the
developersin the case file directories. The “make mprun5" command was used for the 5-
processor cases (2DCASE-2 and 3DCASE-0) and the “make mprun3" command was
used for the 3-processor test case 2DCASE-3. The PICM SS compute engine executable
file and hostfile are in another subdirectory in BATCH as required by the makefile.

The NETSOLVE output files were created by running PICM SS dient program picmssin
each of the test case directories. The picmss program used isin the NETSOLVE
directory. The shell scriptsused are in the case file directory and reference a PICMSS
compute engineexecutable and haost file that are identical to the executable and hostfile
used to create the BATCH directory output. Shdl script diffoutda in each of the test case
directories compares the output in the NETSOLVE test case directory with the same
output in the BATCH test case directory. These scripts can be used to verify that the
calculation results are the same.

RUNNING THE PICMSSNETSOLVE SERVICE

The PICM SS NetSolve service is run from a user’ s machine simply by executing the
PICMSS client program in the directory containing the input files. ThePICMSS client
creates the input combined file, gets the server name from the agent, sends the input
combined file and other informationto the NetSolve server, then waits for the server to
finish. The NetSolve server executes the PICM SS compute engine, creates the output
combined file, and sends it back to theclient machine. When NetSolve serve finishes,
the client program breaks the output combined file into individual files.

The PICM SS NetSolve client program gets the address of the NetSolve agent from
environment variable NETSOLVE_AGENT so this variable must be set to the |P name or

21

address of the NetSolve agent before the client isrun. For example, to use an agent on
neol set NETSOLVE_AGENT to neol.sinrg.cs.utk.edu.

The fourteen required PICMSS input files listed below must be present in the directory
before the PICMSS client can be started:

inbcon.indat inegnt.indat initer.indat inproc.indat
inbindx.indat Ingeom.indat inpara.indat inwall.indat
indmsr.indat ingrid.indat inphys.indat

inelem.indat inicon.indat inpinf.indat

If the files are not needed, they can be completely empty but they must be present. This
standard PICM SS input file is optiond:

restart.indat

It will be sent to the server only if present in the directory. Please see PICMSS
documentation or contact the devel gpers for more information about thedata required in
PICMSS input files

The PICMSS service uses two additional files that arenot standard PICM SS input files:

picmss.sh
hostfile

File picmss.sh is required and file hostfile is optional.

File picmss.sh is a shell script that executes the PICM SS compute engine on the NetSolve
server. This command must contain the operating system command used to execute the
PICM SS compute engine and any parameters required by that program. The shell script
executes using the default shell on the server, so the appropriate command must be
present in the first record of the script to execute another shell. The shell script has one
parameter, the number of processors required. For example, this shell script might be
used to execute the PICM SS compute engine on the Neo cluster:

[usr/local/npich/bin/npirun -np $1

-machinefile hostfile
/ homel/ user/ Pl CVBS/ NEQ npexe

Script picmss.sh can contain any legal shell commands and execute any program on the
system.

File hostfile is provided to allow users to specify the hosts to use for the calculations on
those systems where the pardlel processing environment does not assign jobs to

22

processors. The example above uses a user-supplied hostfile. A standard hostfile can
also be used on the system.

The PICMSS client program produces the following messages reparting its progress:

Pl CVBSS Net Sol ve Cient Version 1.00.001
Processors Required: 5

I nput Files Read

Initializing NetSolve...

Initializing NetSolve Conplete

Sendi ng I nput to Server neol.sinrg.cs.utk. edu
Downl oadi ng Qut put from Server neol.sinrg.cs.utk.edu
Pl CVBS service version 1.00.001 started

Input files created from conbined input file
Shel | script execution started

Shel | script execution conpleted

Val ue returned: 8192

Conmbi ned output file created

Ret urni ng conbi ned output file

See stdout.outdat and stderr.outdat for program
nmessages

Pl CMSS service conpl et ed

Net Sol ve Returned: O

Qutput Files Witten

The client writes the messages reporting the program version, number of processors
required, and the successful creation of the input combined file. The NetSolve client
library code writes the initializing NetSolve messages while it contacts the agent and the
sending input to server message after it has established contact with the server. The
remaining messages are written after the PICM SS service ends. These messages report
the PICM SS service version number, the value returned by the system call that executed
picmss.sh and the creation and return of the output combined file. The program
generally pauses after it reports the value NeSolve returned while it breaks up the output
combined file into individual files before ending.

NETSOLVE PROBLEMS

Four problems were encountered with NetSolve version 1.4 when NetSolve was installed
on the four systems and when the PICM SS servicewas added to NetSdve. These
problems and their work-arounds are listed below:

1. The NetSolve code generator produced a Makefile.numerical file that did not

correctly link the PICM SS compute engine savice. This problem occurred on all
systems and was corrected by manually adding the required code to the makefile.

23

The configure program does nat work correctly if the current directory isnat in
the path. This problem was encountered on the Neo system and was corrected by
adding the current directory to the path.

The configure script on the Cypher system recorded the wrong location for the
UNIX ar command. Thiswas manually corrected in file Makefile.-
i686_pc_linux_gnu.inc.

NetSolve on Neo and Cypher empties but does not delete the temporary
directoriesit createsto run parallel services. The empty directories have to be
manually ddeted. It does delete them on AIX systems.

24

B. PICMSSPROBLEM DEFINITIONFILE

The PICM SS NetSolve service problem definition file (PDF) islisted below:

@ROBLEM PI CMVSS

@I B $(NETSOLVE_ROOT) /|'i b/ $(NETSOLVE_ARCH) / | i bPI CVBS. a

@ UNCTI ON PI CVBS

@ANGUAGE C

@AIOR ROW

@PATH / PI CMSS/ Pl CVSS/

@ESCRI PTI ON

This service is the conpute engine for PICMSS (Parallel |nteroperable
Conput ati onal Mechani cs System Si mul ator) devel oped by the UTK Joint Institute
for Computational Science (JICS) and the Conputational Fluid Dynam cs
Laboratory (CFDL). PICMSS is a versatile inplicit finite element 3D CFD
platformthat can admit various fornulations of fluid simulations. This
service performs the finite el ement cal cul ati ons for Pl CVSS.

@ NPUT 2

@BJIECT FILE I nput Conbined File

This file is a conbined file that contains all programinput files and shell
script picnss.sh. The conbined file is a single file created by the Pl CMBS
client programthat contains the contents of other files. This fileis
sent by NetSolve to the server systemwhere it is unpacked by the PICMSS
service programinto separate files before the PICMSS service is run. For
nore information about the combined file and the files required to run the
Net Sol ve PI CMSS service, please see the PICMSS service docunentation. For
nore information about the PICMSS input files, please see the PICMS
docunent ati on.

@BJECT SCALAR | Nunber of processors required

The PICMSS client programgets the nunber of processors required fromfile

i npara.indat and supplies it to the PICMSS service using this paraneter.
@UTPUT 1

@BJECT FILE CQutput Comnbined File

This file is a conbined file that contains all of the output files

witten by PICMSS and the standard out and standard error output produced by
Pl CV5S and the shell script. This conbined file is created by the Pl CMSS
service, transmitted by NetSolve to the client, and unpacked by the PICVSS
client programinto individual files on the client machine. For nore

i nformati on about the conbined file and the files produced by the Net Solve
Pl CVBS service, please see the PICMSS service docunentation. For nore

i nformati on about the PICVSS input files, please see the PICMSS docunentation.
@OWLEXITY 1,1

@USTOM ZED PI CVsS

@CALLI NGSEQUENCE

@\RG 10

@\RG Q0

@\RG 11

@2ODE

extern void PICMSS Service (char *, char *, int *);

PI CVBS _Service (@0@ @@ @1Q@;

@END_CODE

25

C. COMBINED FILELAYOUT

The combined file and its format were created to allow the PICMSS client to send the
input files required to run the program to the NetSolve PICMSS servicein asinglefile
and to alow the PICMSS service to send al the output files produced by the program
back to the client in asinglefile. The combined fileis afile that contains one or more
files stored within it using a format that allows them to be extracted from thefile. The
format of the file also alowstext files extracted from the combined file to be stored using
the end-of-line character convention used on the machine on which they are extracted.
Thefile is designed to be transmitted as a binary file between systems. However, al end-
of-line characters have been removed from the file so the file will not be changed if end-
of-line character transformations are applied to the file.

FILE STRUCTURE

The combined file has the structure of an XML file but is not formally defined as an

XML file. The file consists of records defined by start and end tags. Within these records
are other records also delimited by start and end tags. Start tags also have attributes that
describe the records they enclose.

Thetop level structure isthe entire file and is delimited by <combined-file> and
</combined-file> tags. The <combined-file> tag has attribute version which currently
has value 1 which meansthisisthefirst version of thefile.

The <combined-file> tags enclose a set of files, each delimited by <file> and </file> tags.
The <file> tag has required attribute type and optional atribute size. Attribute type has
values “binary” or “text.” Binary files are transferred without translation. Text filesare
transferred without translation except that newline characters areremoved from thefile
and their locations recorded. Binary files also have the size attribute which specifies the
length of the file in bytes. The entire file content appears beween the <file> and </file>

tags.

Text files do not use the size attribute. Instead, the individual lines that make up text files
are delimited by <line> and </line> tags. These tags are used to ensure that newline
characters are translated correctly. Each <line> tag has attributes length and newline.
When alineisread, all characters through the next newline character, end of the read
buffer, or end of thefile, whichever is smallest, areread. If all characters through the
next newline character are read, the newline is removed from the line, the newline
attribute set to “y,” and the length is set to the number of characters read minus the
newline. Otherwise the length is set to the total number of characters read and the
newline attribute set to “n.” When the line is written, the number of characters between
the tagsiswritten inthefile. Then, if newlineis“y” anewline character is written in the

26

file. The routines used to read and write the newlines are required by standardsto
tranglate the newline to and from the end-of-line convention used on the computer.

A simple example of acombined file formatted to ook good in print is shown below:

<combined-file version="1">

<file type="binary” size="5">abcde</file>

<file type="text” ><line length="13" newline="y” >line with end</line></file>
<file type="text><line length="16" newline="n">line with no end</line>
</combined-file>

The combined files written by the client and service program is a single stream without
embedded newlines.

COMBINED FILE MODULE

Module CFM odule contains routines that create, add files to, and close combined files
and aroutine that extracts files from a combined file. Three routines are used to create a
combined file: CFCreateFile which creates anew combined file, CFAddTextFile which
adds atext file to the combined file, and CFCloseFile which closes the combined file.
Routine CFSplitFile splits a combined file back into its component files. All routine
names start with the CF prefix to help prevent name clashes with routinesin other
packages. Both the PICMSS client and service use CFModule to create the input and
output combined files and to extract the files contained within them.

27

