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tThis paper dis
usses preliminary work on standardizing and implementing a remote pro
e-dure 
all (RPC) me
hanism for grid 
omputing. The GridRPC API is designed to address oneof the fa
tors that has hindered widespread a

eptan
e of grid 
omputing { the la
k of a stan-dardized, portable, and simple programming interfa
e. In this paper, we examine two 
on
reteimplementations of the GridRPC API based on two di�erent grid 
omputing systems: NetSolveand Ninf. Our initial work on GridRPC shows that 
lient a

ess to existing grid 
omputingsystems su
h as NetSolve and Ninf 
an be uni�ed via a 
ommon API, a task that has proven tobe problemati
 in the past. In addition to these existing grid 
omputing systems, the minimalAPI de�ned in this paper provides a basi
 me
hanism for implementing a wide variety of othergrid-aware appli
ations and servi
es.1 Introdu
tionAlthough Grid 
omputing is regarded as a viable next-generation 
omputing infrastru
ture, itswidespread adoption is still hindered by several fa
tors, one of whi
h is the question \how do we pro-gram on the Grid (in an easy manner)". Currently, the most popular middleware infrastru
ture, theGlobus toolkit, by and large provides the basi
, low-level servi
es, su
h as se
urity/authenti
ation,job laun
hing, dire
tory servi
e, et
. Although su
h servi
es are an absolute ne
essity espe
iallyprovided as a 
ommon platform and abstra
tions a
ross di�erent ma
hines in the Grid for interoper-ability purposes (as su
h it 
ould be said that Globus is a GridOS), there still tends to exist a largegap between the Globus servi
es and the programming-level abstra
tions we are 
ommonly usedto. This is synonymous to the early days of parallel programming, where the programming toolsand abstra
tions available to the programmers were low-level libraries su
h as (low-level) messagepassing and/or thread libraries. In a metaphori
 sense, programming dire
tly on top of only GlobusI/O 
an be regarded as performing parallel programming using only the Linux API on a beowulf
luster.By all means there have been various attempts to provide a programming model and a 
orre-sponding system or a language appropriate for the Grid. Many su
h e�orts have been 
olle
ted and
atalogued by the Advan
ed Programming Models Resear
h Group of the Global Grid Forum [1℄.One parti
ular programming model that has proven to be viable is an RPC me
hanism tailored forthe Grid, or \GridRPC". Although at a very high level view the programming model provided by�This work funded in part by a grant from the NSF EIA-9975015.yDepartment of Computer S
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GridRPC is that of standard RPC plus asyn
hronous 
oarse-grained parallel tasking, in pra
ti
ethere are a variety of features that will largely hide the dynami
ity, inse
urity, and instability of theGrid from the programmers. These are namely:� Ability to 
ope with medium to 
oarse-grained 
alls, with 
all durations ranging from > 1se
ond to < 1 week.� Various styles of asyn
hronous, task-parallel programming on the Grid, with thousands ofs
alable 
on
urrent 
alls.� \Dynami
" RPC, e.g., dynami
 resour
e dis
overy and s
heduling.� S
ienti�
 datatypes and IDL, e.g., large matri
es and �les as arguments, 
all-by-referen
e andshared-memory matrix arguments with se
tions/strides as part of a \S
ienti�
 IDL".� Grid-level dependability and se
urity, e.g., grid se
urity with GSI, automated fault toleran
ewith 
he
kpoint/rollba
k and/or retries.� Simple 
lient-side programming and management, i.e., no 
lient-side IDL management andvery little state left on the 
lient.� Server-side-only management of IDLs, RPC stubs, \gridi�ed" exe
utables, job monitoring,
ontrol, et
.� Very (bandwidth) eÆ
ient|does not send entire matrix when strides and array-se
tions arespe
i�ed.As su
h, GridRPC allows not only enabling individual appli
ations to be distributed, but also 
anserve as the basis for even higher-level software substrates su
h as distributed, s
ienti�
 
omponentson the Grid. Moreover, re
ent work [2℄ has shown that GridRPC 
ould be e�e
tively built uponfuture Grid software based on Web Servi
es su
h as OGSA [3℄.Some representative GridRPC systems are NetSolve [4℄, and Ninf [5℄. Histori
ally, both proje
tsstarted about the same time, and in fa
t both systems fa
ilitate similar sets of features as des
ribedabove. On the other hand, be
ause of di�eren
es in the proto
ols and the APIs as well as theirfun
tionalities, interoperability between the two systems has been poor at best. There had been
rude attempts at a
hieving interoperability between the two systems using proto
ol translation viaproxy-like adapters [5℄, but for various te
hni
al reasons full support of mutual features proved tobe diÆ
ult.This experien
e motivated the need for a more uni�ed e�ort by both parties to understandthe requirements of the GridRPC API, proto
ols, and features, and 
ome to a 
ommon ground forpotential standardization. In fa
t, as the Grid be
ame widespread, the need for a uni�ed stan-dard GridRPC be
ame quite apparent, in the same manner as MPI standardization, based on pastexperien
es with di�erent message passing systems, 
atapulted the adoption of portable parallelprogramming on large-s
ale MPPs and 
lusters.This paper reports on the 
urrent status of GridRPC standardization. Based on the lessonsand experien
es learned from the MPI standardization pro
ess as well as deployment of respe
tivesystems, both groups determined several design 
riteria as follows:1. A small team of people experien
ed in GridRPC design and deployment would 
ollaborativelydesign the API, taking into a

ount the 
urrent RPC designs from NetSolve and Ninf as wellas existing RPC standards su
h as CORBA.2. The initial goal is to standardize the API so that programmers 
an assume portability oftheir sour
e a
ross the platforms. The proto
ol standardization is more diÆ
ult and willbe dealt with eventually (this is the same situation with MPI, and CORBA until IIOP wasstandardized.) 2



3. De�ne a minimal set of features �rst, then investigate if higher-level features 
ould be built ontop of the minimal features and their API.4. Have several referen
e implementations, if possible, based on existing NetSolve/Ninf 
ode, oreven a new 
ode base.The rest of the paper will des
ribe the fundamental features of the GridRPC model, the proposedstandard API, and the details of two referen
e implementations.2 The GridRPC Model and APIIn this se
tion, we informally des
ribe the GridRPC model and the fun
tions that 
omprise the API.Appendix A 
ontains a detailed listing of the fun
tion prototypes.2.1 Fun
tion Handles and Session IDsTwo fundamental obje
ts in the GridRPC model are fun
tion handles and the session IDs. Thefun
tion handle represents a mapping from a fun
tion name to an instan
e of that fun
tion ona parti
ular server. The GridRPC API does not di
tate the me
hani
s of resour
e dis
overy sin
edi�erent underlying GridRPC implementations may use vastly di�erent proto
ols. On
e a parti
ularfun
tion-to-server mapping has been established by initializing a fun
tion handle, all RPC 
alls usingthat fun
tion handle will be exe
uted on the server spe
i�ed in that binding. A session ID is anidenti�er representing a parti
ular non-blo
king RPC 
all. The session ID is used throughout theAPI to allow users to obtain the status of a previously submitted non-blo
king 
all, to wait for a
all to 
omplete, to 
an
el a 
all, or to 
he
k the error 
ode of a 
all.2.2 Initializing and Finalizing Fun
tionsThe initialize and �nalize fun
tions are similar to the MPI initialize and �nalize 
alls. ClientGridRPC 
alls before initialization or after �nalization will fail.� grp
 initialize reads the 
on�guration �le and initializes the required modules.� grp
 finalize releases any resour
es being used by GridRPC.2.3 Remote Fun
tion Handle Management Fun
tionsThe fun
tion handle management group of fun
tions allows 
reating and destroying fun
tion handles.� grp
 fun
tion handle default 
reates a new fun
tion handle using the default server. This
ould be a pre-determined server name or it 
ould be a server that is dynami
ally 
hosen bythe resour
e dis
overy me
hanisms of the underlying GridRPC implementation, su
h as theNetSolve agent.� grp
 fun
tion handle init 
reates a new fun
tion handle with a server expli
itly spe
i�edby the user.� grp
 fun
tion handle destru
t releases the memory asso
iated with the spe
i�ed fun
tionhandle.� grp
 get handle returns the fun
tion handle 
orresponding to the given session ID (that is,
orresponding to that parti
ular non-blo
king request).
3



2.4 GridRPC Call Fun
tionsThe four GridRPC 
all fun
tions may be 
ategorized by a 
ombination of two properties: blo
kingbehavior and 
alling sequen
e. A 
all may be either blo
king (syn
hronous) or non-blo
king (asyn-
hronous) and it may use either a variable number of arguments (like printf) or an argument sta
k
alling sequen
e. The argument sta
k 
alling sequen
e allows building the list of arguments to thefun
tion at runtime through elementary sta
k operations, su
h as push and pop.� grp
 
all makes a blo
king remote pro
edure 
all with a variable number of arguments.� grp
 
all asyn
 makes a non-blo
king remote pro
edure 
all with a variable number of ar-guments.� grp
 
all argsta
k makes a blo
king 
all using the argument sta
k.� grp
 
all argsta
k asyn
 makes a non-blo
king 
all using the argument sta
k.2.5 Asyn
hronous GridRPC Control Fun
tionsThe following fun
tions apply only to previously submitted non-blo
king requests.� grp
 probe 
he
ks whether the asyn
hronous GridRPC 
all has 
ompleted.� grp
 
an
el 
an
els the spe
i�ed asyn
hronous GridRPC 
all.2.6 Asyn
hronous GridRPC Wait Fun
tionsThe following �ve fun
tions apply only to previously submitted non-blo
king requests. These 
allsallow an appli
ation to express desired non-deterministi
 
ompletion semanti
s to the underlyingsystem, rather than repeatedly polling on a set of sessions IDs. (From an implementation standpoint,su
h information 
ould be 
onveyed to the OS s
heduler to redu
e 
y
les wasted on polling.)� grp
 wait blo
ks until the spe
i�ed non-blo
king requests to 
omplete.� grp
 wait and blo
ks until all of the spe
i�ed non-blo
king requests in a given set have 
om-pleted.� grp
 wait or blo
ks until any of the spe
i�ed non-blo
king requests in a given set has 
om-pleted.� grp
 wait all blo
ks until all previously issued non-blo
king requests have 
ompleted.� grp
 wait any blo
ks until any previously issued non-blo
king request has 
ompleted.2.7 Error Reporting Fun
tionsOf 
ourse it is possible that some GridRPC 
alls 
an fail, so we need to provide the ability to 
he
kthe error 
ode of previously submitted requests. The following error reporting fun
tions provideerror 
odes and human-readable error des
riptions.� grp
 perror prints the error string asso
iated with the last GridRPC 
all.� grp
 error string returns the error des
ription string, given a numeri
 error 
ode.� grp
 get error returns the error 
ode asso
iated with a given non-blo
king request.� grp
 get last error returns the error 
ode for the last invoked GridRPC 
all.4



2.8 Argument Sta
k Fun
tionsWhen des
ribing the GridRPC 
all fun
tions, we mentioned that there is an alternate 
alling stylethat uses an argument sta
k. With the following fun
tions it is possible to 
onstru
t the argumentsto a fun
tion 
all at run-time. When interpreted as a list of arguments, the sta
k is ordered frombottom up. That is, to emulate a fun
tion 
all f(a,b,
), the user would push the arguments in thesame order: push(a); push(b); push(
);.� newArgSta
k 
reates a new argument sta
k.� pushArg pushes the spe
i�ed argument onto the sta
k.� popArg removes the top element from the sta
k.� destru
tArgSta
k frees the memory asso
iated with the spe
i�ed argument sta
k.3 ImplementationsSin
e the GridRPC interfa
e does not di
tate the implementation details of the servers whi
h exe
utethe pro
edure 
all, there may be multiple di�erent implementations of the GridRPC API, ea
h havingthe ability to 
ommuni
ate with one or more Grid 
omputing systems. In fa
t, having multipleimplementations is desirable be
ause it allows GridRPC to ful�ll its goal of unifying di�erent existingsystems. In this se
tion, we des
ribe two implementations of the GridRPC API, one implementedon top of NetSolve and the other on top of Ninf.3.1 GridRPC over NetSolveNetSolve [6℄ is a 
lient-server system whi
h provides remote a

ess to hardware and software resour
esthrough a variety of 
lient interfa
es, su
h as C, Fortran, and Matlab. Sin
e NetSolve's mode ofoperation is in terms of RPC-style fun
tion 
alls, it provides mu
h of the infrastru
ture needed toimplement GridRPC.3.1.1 Overview of NetSolveA NetSolve system 
onsists of three entities, as illustrated in Figure 1.� The Client, whi
h needs to exe
ute some fun
tion remotely. In addition to C and Fortranprograms, the NetSolve 
lient may be an intera
tive problem solving environment, su
h asMatlab or Mathemati
a.� The Server exe
utes fun
tions on behalf of the 
lients. The server hardware 
an range in
omplexity from a unipro
essor to a MPP system and similarly the fun
tions exe
uted by theserver 
an be arbitrarily 
omplex. Server administrators 
an straightforwardly add their ownsoftware without a�e
ting the rest of the NetSolve system.� The Agent is the fo
al point of the NetSolve system. It maintains a list of all available serversand performs resour
e sele
tion for all 
lient requests as well as ensuring load balan
ing of theservers.In pra
ti
e, from the user's perspe
tive the me
hanisms employed by NetSolve make the remote
all fairly transparent. However, behind the s
enes, a typi
al 
all to NetSolve involves several steps,as follows:1. The 
lient queries the agent for an appropriate server that 
an exe
ute the desired fun
tion.2. The agent returns a list of available servers, ranked in order of suitability.5



Figure 1: Overview of NetSolve3. The 
lient attempts to 
onta
t a server from the list, starting with the �rst and moving downthrough the list. The 
lient then sends the input data to the server.4. Finally the server exe
utes the fun
tion on behalf of the 
lient and returns the results.3.1.2 Using NetSolve to Implement GridRPCCurrently we have a full implementation of the GridRPC API running on top of the NetSolvesystem. An important fa
tor in enabling the implementation of GridRPC in NetSolve is the strongsimilarity of their APIs. For example, grp
 
all() and grp
 
all asyn
() map dire
tly into thenetsolve() and netsolve nb() 
alls. grp
 probe() and grp
 
an
el() map into the netslpr()and netslkill() 
alls. Some of the other GridRPC fun
tions that do not map dire
tly to theNetSolve API 
an be implemented in terms of those that do. For example, grp
 wait and(),grp
 wait or(), grp
 wait any(), and grp
 wait all(), are all implemented using the elementarygrp
 wait() fun
tion. Some GridRPC fun
tions 
annot be expressed in terms of another existingfun
tion, so we implemented them from s
rat
h. The fun
tion handle 
reation and destru
tionfun
tions fall into that 
ategory sin
e the fun
tion handle 
on
ept does not exist in NetSolve. Also,the argument sta
k 
alling sequen
e required some slight modi�
ation to the NetSolve 
lient be
auseit previously only supported the variable argument list 
alling sequen
e.Besides the advantageous similarity in these APIs, NetSolve has several properties that make itan attra
tive 
hoi
e for implementing GridRPC: fault-toleran
e, load-balan
ing, and se
urity.NetSolve handles fault dete
tion and re
overy in a way that is transparent to the user. Theagent is 
onstantly monitoring the status of all the servers so that in 
ase of a problem, the agent
an 
hoose a new server to handle the problem. The 
lient software submits the problem to the newserver, but the user is unaware of the re-submission, similar to the way that the user of a TCP so
ketis unaware of the retransmission of pa
kets. To fa
ilitate dete
tion of server failures and networkproblems, NetSolve has integrated the Network Weather Servi
e [7℄ and the Heart Beat Monitor [8℄from Globus.NetSolve strives to s
hedule the use of the 
omputational resour
es in the most eÆ
ient manner6
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Figure 2: Overview of Ninf-Gpossible. To that end, NetSolve employs a load-balan
ing strategy that takes into a

ount severalsystem parameters, su
h as network bandwidth and laten
y, server workload and performan
e, and
omplexity of the fun
tion to be exe
uted. The NetSolve agent uses this load-balan
ing algorithmto sele
t the most suitable server to exe
ute a given request, thereby providing the user with thebest response time as well as maintaining balan
ed usage of all the hardware resour
es.Starting with version 1.4, NetSolve has support for basi
 Kerberos authenti
ation. Kerberosis a network authenti
ation proto
ol \designed to provide strong authenti
ation for 
lient/serverappli
ations by using se
ret-key 
ryptography". Using Kerberos, the NetSolve 
lient must prove itsidentity to the server before being allowed to exe
ute a task on that server.3.2 GridRPC over Ninf3.2.1 Overview of Ninf-GNinf-G is a re-implementation of the Ninf system [5℄ on top of the Globus Toolkit [9℄. The Globustoolkit provides a referen
e implementation of standard (or subje
t to proposed standardization)proto
ols and APIs for Grid 
omputing. Globus serves as a solid and 
ommon platform for im-plementing higher-level middleware and programming tools, et
., ensuring interoperability amongstsu
h high-level 
omponents, one of whi
h is Ninf-G. Figure 2 shows an overview of the Ninf-G systemin this regard.Ninf-G is designed fo
using on simpli
ity. In 
ontrast with NetSolve, Ninf-G does not providefault dete
tion, re
overy or load-balan
ing by itself. Instead, Ninf-G assumes that ba
kend queuingsystem, su
h as Condor[10℄, takes responsibility for these fun
tionality. Ninf-G fully deploys GlobusSe
urity Infrastru
ture. It means that not only all the 
omponents are prote
ted properly, but alsothey 
an utilize other Globus 
omponents, su
h as GridFTP servers, seamlessly and se
urely.Client API. Largely speaking, Ninf-G has two 
ategories of API. One is the GridRPC API whi
his dis
ussed in this paper, and another is the Ninf API whi
h is provided only for 
ompatibility withthe old Ninf system. Ninf-G also provides various other tools to \gridify" libraries and appli
ations,su
h as a 
ompile driver whi
h automates the 
ompilation and linkage of Ninf-G 
lient programs.Server side IDL. In order to \gridify" a library, the Ninf library provider des
ribes the interfa
eof the library fun
tion using the Ninf IDL to publish his library fun
tion, whi
h are only manifestedand handled at the server side. Besides supporting a

ess spe
i�ers su
h as IN and OUT denotingwhether an argument is read or written, the Ninf IDL supports datatypes mainly tailored for servingnumeri
al appli
ations. For example, the basi
 datatypes in
lude s
alars and their multi-dimensionalarrays. There are also spe
ial provisions su
h as support for expressions involving input arguments7



to 
ompute array sizes, designation of temporary array arguments that need to be allo
ated on theserver side but not transferred, et
. This allows dire
t \gridifying" of existing libraries that assumearray arguments to be passed by 
all-by-referen
e (thus requiring shared-memory support a
rossnodes via software), and supplementing the information la
king in the C and Fortran typesystemsregarding array sizes, array stride usage, array se
tions, et
.Ninf-G and the Globus toolkit. Ninf-G employs the following 
omponents from the Globustoolkit.� GRAM (Globus Resour
e Allo
ation Manager) is a \se
ure inetd" whi
h authenti
ates 
lientsusing GSI-based 
erti�
ates, maps to the lo
al user a

ount, and invokes exe
utable �les.� MDS (Monitoring and Dis
overing Servi
e) is a dire
tory servi
e to provide resour
e infor-mation within the Grid. Ninf-G uses the MDS to publish interfa
e information about theGridRPC 
omponents.� Globus-I/O enables se
ure 
ommuni
ation using GSI, providing blo
king and non-blo
kingI/O that is integrated with Globus threads. In Ninf-G, the 
lient and remote exe
utable
ommuni
ate with ea
h other using Globus-I/O.3.2.2 Using Ninf-G to Implement GridRPCAs in NetSolve, the Ninf-G design allows dire
t support for the GridRPC model and API. The stepsin making an a
tual Ninf-G GridRPC 
all 
an be broken down into those shown in Figure 2.1. Retrieval of interfa
e information and exe
utable pathname. The 
lient retrieves this informa-tion registered in the MDS using the library signature as a key. The retrieved info is 
a
hedin the 
lient program to redu
e the MDS retrieval overhead.2. MDS sends ba
k the requested information.3. Invoking remote exe
utable. The 
lient invokes the remote exe
utable via the Globus GRAM,spe
ifying the remote exe
utable path obtained from the MDS and a port address that a

eptsthe 
allba
k from the remote exe
utable. Here, the a

epting port authenti
ates its peer usingGlobus-I/O, preventing mali
ious third party atta
ks as only the party that owns the properGlobus proxy 
erti�
ates derived from the 
lient user 
erti�
ate 
an 
onne
t to the port.4. Remote exe
utable 
allba
ks to the 
lient. The remote exe
utable obtains the 
lient addressand the port from the argument list and 
onne
ts ba
k to the 
lient using Globus-I/O forsubsequent parameter transfer, et
. Subsequent remote exe
utable 
ommuni
ation with the
lient will use this port.4 Related WorkThe 
on
ept of Remote Pro
edure Call (RPC) has been widely used in distributed 
omputing anddistributed systems for many years [11℄. It provides an elegant and simple abstra
tion that allowsdistributed 
omponents to 
ommuni
ate with well-de�ned semanti
s. RPC implementations fa
e anumber of diÆ
ult issues, in
luding the de�nition of appropriate Appli
ation Programming Interfa
es(APIs), wire proto
ols, and Interfa
e Des
ription Languages (IDLs). Corresponding implementation
hoi
es lead to trade-o�s between 
exibility, portability, and performan
e.A number of previous works has fo
used on the development of high performan
e RPC me
h-anisms either for single pro
essors or for tightly-
oupled homogeneous parallel 
omputers su
h asshared-memory multipro
essors [12, 13, 14, 15℄. A 
ontribution of those works is to a
hieve highperforman
e by providing RPC me
hanisms that map dire
tly to low-level O/S and hardware fun
-tionalities (e.g. to move away from implementations that were built on top of existing message8



passing me
hanisms as in [16℄). By 
ontrast, our work on GridRPC targets heterogeneous andloosely-
oupled systems over wide-are networks, raising a di�erent set of 
on
erns and goals.A number of te
hnologies provide ways for appli
ations to be stru
tures as sets of distributedobje
ts, su
h as CORBA and Java RMI, where those obje
ts 
ommuni
ate via remote methodinvo
ations. Therefore, those systems support RPC programming. However, their goal is mu
hbroader, whi
h 
omes at the expense of software simpli
ity and light footprint, whi
h are both amongour goals. In previous work, we have 
ondu
ted quantitative and qualitative 
omparisons of CORBAte
hnology with our NetSolve and Ninf systems, in the 
ontext of RPC programming for s
ienti�

omputing [17℄. We found several 
ompelling reasons (namely IDL 
omplexity, IDL expressiveness,proto
ol performan
e, software footprints) not to re-use distributed obje
t te
hnology, but rather tofo
us on a simple, lightweight implementation of RPC fun
tionality that meets the needs of s
ienti�

omputing.A number of experimental systems are related to our work on NetSolve and Ninf, su
h as RCS [18℄and Pun
h [19℄. Those systems seek to provide ways for Grid users to easily send requests to remoteappli
ation servers from their desktop. Our work on GridRPC seeks to unify those e�orts. Thispaper takes the �rst step by proposing a re
ommendation for a standard GridRPC API. Anotherkey 
omponent of an RPC system is its IDL. NetSolve and Ninf both have two di�erent IDLs withdi�erent trade-o�s between 
omplexity and expressiveness. We are 
urrently working on an IDLde�nition for GridRPC. Unlike CORBA, we do not require that 
lient software be upgraded (re-
ompiled) with new RPC stubs when servers o�er new servi
es. This requires that the IDL stubs(or at list the se
tion that is used on the 
lient side for argument marshaling) be downloaded andexe
uted at runtime. NetSolve and Ninf provide this 
apability with simple runtime interpretationof the IDL language. Another approa
h is for IDL stubs to 
ontain 
ode that 
an be dynami
allylinked and exe
uted, as it is done in Jini. For reasons of 
ross-language portability, we believe thatthe GridRPC IDL should follow the Ninf/NetSolve model. We are 
urrently investigating XMLs
hemas for the GridRPC IDL.This work is also related to the XML-RPC [20℄ and SOAP [21℄ e�orts. Those systems useHTTP to pass XML fragments that des
ribe input parameters and retrieve output results duringRPC 
alls. In s
ienti�
 
omputing, parameters to RPC 
alls are often large arrays of numeri
al data(e.g. double pre
ision matri
es). The work in [22℄ made it 
lear that using XML en
oding has several
aveats for those types of data (e.g. la
k of 
oating-point pre
ision, 
ost of en
oding/de
oding). Asolution is to use a hybrid proto
ol that may use an XML skeleton to des
ribe data being sent, butthat would send binary data as \atta
hments". Based on the NetSolve and the Ninf proto
ols, weare 
urrently de�ning a GridRPC wire proto
ol.Finally, our work on GridRPC �ts in the framework of the Global Grid Forum Resear
h Groupon Programming Models [23, 24℄. That venue allows us to 
ommuni
ate our proposals and �ndingsto the Grid 
ommunity.5 Dis
ussion and Con
lusionsWe have presented a preliminary work in de�ning a model and API for a grid-aware RPC me
hanism.Besides enabling individual appli
ations to be distributed and allowing the di�erent parts to intera
t,remote pro
edure invo
ation is a fundamental 
apability that will enable many other 
apabilities tobe built. Su
h 
apabilities in
lude network-enabled servi
es that are persistent and dis
overable inthe environment, and 
omponent ar
hite
tures where pre-de�ned or appli
ation-spe
i�
 
omponentsmust intera
t through well-known ports or interfa
es. The inherent nature of invoking a remotepro
edure a
ross a network 
onne
tion (rather than on a sta
k) means that only 
oarse grain 
allswill be appropriate and that 
omputation/
ommuni
ation ratios will be a driving fa
tor. This re
e
tsthe fundamental fa
t that grid environments present a heterogeneous 
ommuni
ation hierar
hy a
rossma
hines and networks.In all software systems, there is a fundamental 
hoi
e between performan
e and 
exibility. The
hoi
e was made here to preserve performan
e rather than adopt a very 
exible but heavyweight9



proto
ol based on XML do
ument transfer. This does not pre
lude the use of XML internally butit also does not require its use by exposing it through the API. While this may 
urrently limit theease of adaptation for GridRPC 
odes, GridRPC is now very bandwidth eÆ
ient whi
h 
an be a keyissue for large-s
ale, high-performan
e appli
ations. We note that as XML evolves, it may eventuallyallow binary �elds of arbitrary length, at whi
h point, its use may be
ome more attra
tive.While the model and API presented here is a �rst-step towards a general GridRPC 
apability,there are 
ertainly a number of outstanding issues regarding wide-spread deployment and use. The�rst is simply dis
overy. Currently a remote pro
edure is dis
overed by expli
itly asking a well-knownserver for a well-known fun
tion through a name string lookup. Establishing this fun
tion-to-servermapping is all that the user 
ares about and, hen
e, the GridRPC model does not de�ne howdis
overy is done. For a wide variety of appli
ations, domains, and institutions, a straight-forwarddis
overy me
hanism su
h as the NetSolve Agent will be 
ompletely suÆ
ient. Other appli
ations,however, may need to look for appropriate servers over a wider, open-ended grid environment. Inthis 
ase, dis
overy via the Globus MDS may be more suitable. Appli
ations may also want torequest fun
tions or servi
es by type rather than name. In this 
ase, fun
tion signature meta-datas
hemas will have to be de�ned to fa
ilitate su
h dis
overy. Hen
e, while the GridRPC API shouldnot de�ne how dis
overy is done, there may be a need for an appli
ation to express general dis
overy
onstraints.S
heduling is also another issue. Currently individual RPCs are pro
essed independently. Thea
tual s
heduling of the remote invo
ation is unilaterally determined by the daemon honoring theRPC request. Clients, however, may have s
heduling 
onstraints to meet their pro
essing require-ments. If a remote 
all entails submitting a bat
h job, the 
lient may at least want to know whatthe queue length is, or have some notion of the expe
ted time of 
ompletion. Clients may also needto 
o-s
hedule multiple RPCs. A 
lient may not want to s
hedule two (or more) RPCs unless they
an be s
heduled at the same time, or at least within some 
onstraint. While 
o-s
heduling is a fun-damental 
apability, the de
reased probability of being able to su

essfully 
o-s
hedule (espe
iallyon diÆ
ult-to-a
quire resour
es) will limit its use to those 
ases that absolutely require it.At this early stage of development and use, appli
ations will only use GridRPC in shallow 
alltrees, e.g., making one 
all to a servi
e provided at one remote lo
ation. As su
h a 
apabilitybe
omes more stable and available, however, it is 
on
eivable that appli
ations will be built witharbitrary 
all depths. While fault-toleran
e and se
urity are important for shallow 
ases, 
all treesof arbitrary depth will require some notion of transitive or 
omposible fault-toleran
e and se
urity.Currently fault-toleran
e is a

omplished by 
he
kpoints, rollba
ks and retries. In any larger,distributed environment, an event servi
e may be useful to manage 
an
ellations and reje
tions alonga 
all tree and other su
h aspe
ts.Se
urity will require a transitive delegation of trust as des
ribed in [25℄ and [26℄. We note that
an
ellation of a se
ure RPC 
ould require the revo
ation of delegated trust. This is 
urrently not
onsidered in these do
uments. Signing and 
he
king 
erti�
ates on an RPC represents an overheadthat must be balan
ed against the amount of work represented by the RPC. Se
urity overheads
ould be managed by establishing se
ure, trusted domains. RPCs within a domain 
ould dispensewith 
erti�
ates; RPCs that 
ross domains would have to use them. Trusted domains 
ould be usedto limit per-RPC se
urity overheads in favor the one-time 
ost of establishing the domain.While these larger issues may be on the horizon, they should not be allowed to overshadow theimportan
e of the development and use of a pra
ti
al GridRPC 
apability. Su
h a 
apability willprodu
e a body of experien
e that will sort out the priorities for future work.Referen
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A.5 Asyn
hronous GridRPC Wait Fun
tionsint grp
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