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Abstract

The PAPI project has defined and implemented a cross-
platform interface to the hardware counters available on
most modern microprocessors. The interface has gained
widespread use and acceptance from hardware vendors,
users, and tool developers. This paper reports on experi-
ences with the community-based open-source effort to de-
fine the PAPI specification and implement it on a variety
of platforms. Collaborations with tool developers who have
incorporated support for PAPI are described. Issues related
to interpretation and accuracy of hardware counter data
and to the overheads of collecting this data are discussed.
The paper concludes with implications for the design of the
next version of PAPI.

1. Introduction

The Performance API (PAPI) is a specification of a
cross-platform interface to hardware performance counters
on modern microprocessors [1]. These counters exist as a
small set of registers that countevents, which are occur-
rences of specific signals related to a processor’s function.
Monitoring these events has a variety of uses in applica-
tion performance analysis and tuning, benchmarking, and
debugging. The PAPI specification consists of both a stan-
dard set of events deemed most relevant for application per-
formance tuning, as well as both high-level and low-level
sets of routines for accessing the counters. The high level
interface simply provides the ability to start, stop, and read
the counters for a specified list of events, and is intended
for the acquisition of simple but accurate measurements by
application engineers. The fully programmable low-level

Figure 1. Layered architecture of the PAPI im-
plementation

interface provides additional features and options and is in-
tended for third-party tool developers or application devel-
opers with more sophisticated needs.

In addition to the specification, the PAPI project has de-
veloped a reference implementation of the library. This
implementation uses a layered approach, as illustrated in
Figure 1. The machine-dependent part of the implementa-
tion, called the substrate, is all that needs to be rewritten
to port PAPI to a new architecture. Platforms supported
by the reference implementation include SGI IRIX, IBM
AIX, HP/Compaq Tru64 UNIX, Linux/x86, LInux-IA64,
Cray T3E, Sun Solaris, and Windows. For each platform,
the reference implementation attempts to map as many of
the PAPI standard events as possible to native events on that
platform.

PAPI has been under development for four years and
has become widely adopted by application and performance
analysis tool developers. It is installed and in use for appli-
cation performance tuning at a number of high performance



computing sites throughout the world. The PAPI library is
used by a number of end-user performance analysis tools
to acquire hardware performance data. We believe the suc-
cess of PAPI has resulted from a community effort to de-
termine user requirements and from contributions not only
from the development team but from vendors and outside
developers participating in the open source project. The
widespread use of PAPI has raised issues concerning in-
terpretation of hardware counter data, as well as accuracy
and efficiency of the counter interfaces. The experiences
and lessons learned from the design, development, and use
of PAPI are discussed in the following sections. The con-
cluding section discusses plans for future work motivated
by these experiences.

2. Design and Implementation Experiences

PAPI is a Parallel Tools Consortium (PTools)
(http://www.ptools.org/) sponsored open-source project.
PTools has provided the venue for a community effort
to determine user requirements for PAPI and obtain user
feedback during the design and implementation. In addi-
tion, the vendor community has participated by providing
access to counter interfaces on their platforms The PTools
web site maintains user and developer mailing lists for
the project which have been actively used for reporting
bugs, announcing updates, and discussing design and
implementation issues. The development tree for the PAPI
source code is maintained in a web-accessible repository.
In addition to the PAPI library code, the repository includes
documentation and a suite of test cases. Official releases
of PAPI occur about twice a year, but pioneer users and
tool developers can always obtain the latest version of the
code from the development tree. Individuals outside the
PAPI development team have contributed ports to different
platforms, bug fixes, and test cases. We believe that the
community-based open-source approach to design and
development has allowed a low-budget academic project to
have far-reaching impact in the world of high performance
computing.

The separation of library functionality into the high-
level and low-level interfaces was motivated by the de-
sire to allow the user to choose between ease-of-use and
increased functionality and features. In addition to the
high-level start, stop, and read calls, thePAPI flops
call is an easy-to-use routine that provides timing data
and the floating point operation count for the code brack-
eted by calls to the routine. The low-level routines tar-
get the more detailed information and full range of op-
tions needed by tool developers and some users. The
low-level interface allows the user to manage events in
EventSetsand provides the functionality of user callbacks
on counter overflow and SVR4-compatible statistical pro-

filing, as well as access to all available native events and
counting modes. For example, thePAPI profil call
implements SVR4-compatible code profiling based on any
hardware counter metric. The code to be profiled need
only be bracketed by calls to thePAPI profil routine.
This routine can be used by end-user tools such as VProf
(http://aros.ca.sandia.gov/c̃ljanss/perf/vprof/) to collect pro-
filing data which can then be correlated with application
source code.

One issue that was discussed extensively on the PAPI
mailing lists was the appropriate level at which to imple-
ment software multiplexing of hardware counters. Mul-
tiplexing allows more counters to be used simultaneously
than are physically supported by the hardware. With mul-
tiplexing, the physical counters are time-sliced, and the
counts are estimated from the measurements. There was
concern that naive use of multiplexing could lead to erro-
neous results that would not be detected by the user. Er-
roneous results can occur when the runtime is insufficient
to permit the estimated counter values to converge to their
expected values. This issue was resolved by requiring mul-
tiplexing to be explicitly enabled in the low-level interface,
rather than implementing it transparently in the high-level
interface. Although high-level and low-level calls can be
mixed, requiring the user to operate at the lower level to
enable multiplexing presupposes a level of expertise that
should include an understanding of the accuracy issues.
Several tool developers make use of multiplexing to collect
data for analysis by their tools but take care of ensuring that
runtimes are sufficiently long to yield accurate results.

Implementation of the PAPI substrates for different plat-
forms has attempted to use the most efficient native counter
interface available on a given platform, whether that be
register level operations (Cray T3E), customized system
calls implemented in a kernel patch (Linux/x86), or calls
to a vendor provided library (IBM pmtoolkit for AIX). In
our experience, the requirement for a kernel modification
has met resistance from system administrators, especially
for large systems at multi-user high performance comput-
ing sites, due to security and reliability concerns. Thus,
it is encouraging to see that the required kernel modifica-
tions are being incorporated into the standard release of
some operating systems, for example the incorporation of
pmtoolkit into AIX 5. In some cases, vendors have been
very cooperative in extending their current interface to bet-
ter support PAPI. For example, the aggregate counter inter-
face originally available for Alpha Tru64 UNIX included
only a handful of events and did not support per-process
or per-thread counts. To make all the ProfileMe [3] events
available through PAPI and to support per-process counts,
Hewlett-Packard engineers extended the Alpha’s DCPI in-
terface, resulting in the Dynamic Access to DCPI Data
(DADD) package now used by PAPI.



One of the most popular features of PAPI has proven to
be the portable timing routines. Using the lowest overhead
and most accurate timers available on a given platform to
implement the PAPI wallclock and virtual timers enables
users and tool developers to obtain accurate timings across
different platforms using the same interface.

Although the primary focus of the PAPI project has been
on development of the library and provision of a firm foun-
dation for end-user tool developers to be able to access hard-
ware counter data, the project has developed some simple
end-user tools that can be used to quickly and easily ob-
tain hardware performance data. However, the development
of comprehensive tool support for the full range of parallel
programming languages and models has been left to third-
party tool development projects which are described in the
next section. In this section, we describe two tools devel-
oped as part of the PAPI project.

The dynaprof tool uses dynamic instrumentation to
allow the user to either load an executable or attach to
a running executable and then dynamically insert instru-
mentation probes [10]. Dyanprof uses Dyninst API [2]
on Linux/IA-32, SGI IRIX, and Sun Solaris platforms, and
DPCL1 on IBM AIX. The user can list the internal structure
of the application in order to select instrumentation points.
Dynaprof inserts instrumentation in the form ofprobes.
Dynaprof provides a PAPI probe for collecting hardware
counter data and a wallclock probe for measuring elapsed
time, both on a per-thread basis. Users may optionally write
their own probes. A probe may use whatever output format
is appropriate, for example a real-time data feed to a visu-
alization tool or a static data file dumped to disk at the end
of the run. Future plans are to develop additional probes,
for example for VProf and TAU, and to improve support
for instrumentation and control of parallel message-passing
programs.

Real-time performance monitoring is supported by the
perfometertool that is distributed with PAPI. By connect-
ing the frontend graphical display, which is written in Java,
to the backend process (or processes) running an application
code that has been linked with the perfometer and PAPI li-
braries, the tool provides a runtime trace of a user-selected
PAPI metric, as shown in Figure 2 for floating point oper-
ations per second (FLOPS). The user may change the per-
formance event being measured by clicking on the Select
Metric button. The intent of perfometer is to provide a fast
coarse-grained easy way for a developer to find out where a
bottleneck exists in a program. In addition to real-time anal-
ysis, the perfometer backend code can save a trace file for
later off-line analysis. The Dynaprof tool described above
includes a perfometer probe that can automatically insert
calls to the perfometer setup and color selection routines so
that a running application can be attached to and monitored

1http://oss.software.ibm.com/developerworks/opensource/dpcl/

Figure 2. Real-time analysis using perfometer

in real-time without requiring any source code changes or
recompilation or even restarting the application.

3. Interfacing to Third-party Tools

The widespread adoption of PAPI by third-party tool de-
velopers has demonstrated the value of implementing low-
level access to architecture-specific performance monitor-
ing hardware underneath a portable interface. Whereas tool
developers previously had to re-implement such access for
each platform, they can now program to a single interface,
allowing them to focus their efforts on high-level tool de-
sign.

Performance analysis tools typically fall into two cate-
gories – profiling and tracing – although some provide both
capabilities. Profiling characterizes the behavior of an ap-
plication in terms of aggregate performance metrics. Pro-
files are typically represented as a list of various metrics
(such as inclusive/exclusive wall-clock time) that are as-
sociated with program-level entities (such as routines, ba-
sic blocks, or statement in the program). Time is common
metric, but any monotonically increasing resource function
may be used, such as counts from hardware performance
counters. Correlations between profiles based on different
events, as well as event-based ratios, provide derived infor-
mation that 0 to quickly identify and diagnose performance
problems. While profiling is used to get aggregate sum-
maries of metrics in a compact form, it cannot highlight
the time varying aspects of the execution. To study the spa-
tial and temporal aspects of performance data, event tracing,
that is, the activity of capturing events or actions that take
place during program execution, is more appropriate. Event
usually results in a log of the events that characterize the



execution.

PAPI has been incorporated into a num-
ber of profiling tools, including HPCView
(http://www.cs.rice.edu/d̃system/hpcview/), Sv-
Pablo (http://www-pablo.cs.uiuc.edu/), TAU
(http://www.cs.uoregon.edu/research/paracomp/tau/)
and VProf (http:/aros.ca.sandia.gov/c̃ljanss/perf/vprof/).
In addition, PAPI is being incorporated into fu-
ture versions of the Vampir MPI analysis tool
(http://www.pallas.com/e/products/vampir/index.htm).
Collecting PAPI data for various events over intervals of
time and displaying this data alongside the Vampir timeline
view enables correlation of various event frequencies with
message passing behavior.

SvPablo is a graphical source code browser and perfor-
mance visualizer that has been developed as part of the Uni-
versity of Illinois’ Pablo project [4]. SvPablo supports auto-
matic instrumentation of HPF codes with Portland Group’s
HPF compiler and interactive instrumentation of C and For-
tran programs. During execution of an instrumented code,
the SvPablo library maintains statistics on the execution of
each instrumented event on each processor and maps these
statistics to constructs in the original source code. The
statistics include counts of hardware events obtained using
PAPI.

TAU provides a particularly good example of how PAPI
has been incorporated into a comprehensive performance
observation framework. TAU (Tuning and Analysis
Utilities) is a portable profiling and tracing toolkit for
parallel and threaded and/or message-passing programs
written in Fortran, C, C++, or Java, or a combination of
Fortran and C [11, 5]. Source code can be instrumented
by manually inserting calls to the TAU instrumentation
API, or by using the Program Database Toolkit (PDT)
(http://www.cs.uoregon.edu/research/paracomp/pdtoolkit/)
and/or the Opari OpenMP rewriting tool (http://www.fz-
juelich.de/zam/kojak/opari/) to insert instrumentation
automatically. The TAU project has used PDT to im-
plement a source-to-source instrumentor that supports
automatic instrumentation of C, C++, and Fortran 77/90
programs. The POMP interface for OpenMP provides a
performance API for instrumentation of OpenMP codes
that is portable across compilers and platforms [8]. The
Opari tool rewrites OpenMP directives in 0 equivalent, but
source-instrumented forms, inserting POMP performance
calls where appropriate. The TAU MPI wrapper library
uses the MPI profiling interface to generate profile and/or
trace data for MPI 0. TAU MPI tracing produces individual
node-context-thread event traces that can be merged and
converted to ALOG, SDDF, Paraver, or Vampir trace for-
mats. TAU can use DyninstAPI [2] to construct calls to the
TAU measurement library and then insert these calls into
the executable code. TAU can use PAPI to generate profiles

based on hardware counter data. If TAU is configured
without the multiple counters option, then the user selects
the metric on which to base the profiling at runtime by
setting an environment variable. If TAU is configured with
the multiple counters option, then up to 25 metrics may be
specified and a separate profile generated for each. These
profiles for the same run can then be compared to see
important correlations, such as for example the correlation
of time with operation counts and cache or TLB misses.
TAU includes both command-line and graphical tools for
displaying and analyzing profile data.

4. Data Interpretation, Accuracy, and Effi-
ciency Issues

The PAPI specification defines a set of standard events,
and the PAPI implementation attempts to make as many of
these standard events as possible available across platforms.
However, even when the same event is available, it may
have different semantics on different platforms, depending
on the architecture and how the counters are implemented
in the hardware. Thus, event counts should be interpreted
in the context of the platform on which they were obtained.
Understanding this context often requires the user to refer
to detailed architecture manuals which may be difficult to
obtain or may contain little or no information on the hard-
ware counters. Sometimes additional information may be
found in architecture-specific header files. For questions
that cannot be resolved from the documentation, test pro-
grams may need to be written to determined exactly what
events are being counted. These test programs can take the
form of micro-benchmarks for which the expected counts
are known. Even then, interactions with optimizing com-
pilers can produce unexpected results. In the lower-level
interface, PAPI does not attempt any normalization or cali-
bration of counter data but simply reports the counts given
by the hardware. In most cases where discrepancies have
been reported between expected and measured results, the
problem was found to be a misunderstanding of what events
were actually being counted. For example, on the IBM
POWER3 platform, a discrepancy in the number of floating
point instructions was resolved when it was discovered that
extra rounding instructions were being introduced to con-
vert between double and single precision and were being in-
cluded as floating point instructions. At the higher-level in-
terface, however, PAPI sometimes attempts to normalize the
data. For example, the PAPIflops call attempts to return the
expected number of floating point operations, which some-
times entails multiplying the measured counts by a factor of
two to count floating-point multiply-add instructions as two
floating point operations and/or subtracting counts for mis-
cellaneous types of floating point instructions not normally
including in floating point operations. In general, however,



PAPI leaves the task of interpretation of counter data to the
user or to higher-level tools.

As in any physical system, the act of measuring perturbs
the phenomenon being measured. The counter interfaces
necessarily introduce overhead in the form of extra instruc-
tions, including system calls, and the interfaces cause cache
pollution that can change the cache and memory behavior of
the monitored application. The cost of processing counter
overflow interrupts can be a significant source of overhead
in sampling-based profiling. A lack of hardware support for
precisely identifying an event’s address may result in incor-
rect attribution of events to instruction addresses on modern
super-scalar, out-of-order processors, thereby making pro-
filing data inaccurate. The PAPI project is concerned with
all these possible sources of errors and is addressing them.
PAPI is being redesigned to keep its runtime overhead and
memory footprint as small as possible. Hardware support
for interrupt handling and profiling is being used if possi-
ble.

Using PAPI on large-scale application codes has raised
issues of scalability of PAPI instrumentation. PAPI initially
focused on obtaining aggregate counts of hardware events,
sometimes referred to as “exact counts”, although research
has shown that errors may exist [6]. However, the overhead
of library calls to read the hardware counters can be exces-
sive if the routines are called frequently – for example, on
entry and exit of a small subroutine or basic block within
a tight loop. Unacceptable overhead has caused some tool
developers to reduce the number of calls through statistical
sampling techniques [7]. On most platforms, the current
PAPI code implements statistical profiling over aggregate
counting by generating an interrupt on counter overflow of
a threshold and sampling the program counter. On out-of-
order processors, the program counter may yield an address
that is several instructions or even basic blocks removed
from the true address of the instruction that caused the over-
flow event. The PAPI project is investigating hardware sup-
port for sampling, so that tool developers can be relieved
of this burden and maximum accuracy can be achieved with
minimal overhead [9]. With hardware sampling, an in-flight
instruction is selected at random and information about its
state is recorded – for example, the type of instruction, its
address, whether it has incurred a cache or TLB miss, var-
ious pipeline and/or memory latencies incurred. The sam-
pling results provide a histogram of the profiling data which
correlates event frequencies with program locations. In ad-
dition, aggregate event counts can be estimated from sam-
pling data with lower overhead than direct counting. For ex-
ample, the PAPI substrate for the HP/Compaq Alpha Tru64
UNIX platform is built on top of a programming interface
to DCPI called DADD (Dynamic Access to DCPI Data).
DCPI has very low overhead and identifies the exact address
of an instruction, thus resulting in accurate text addresses

for profiling data [3]. Test runs of the PAPIcalibrate
utility on this substrate have shown that event counts con-
verge to the expected value, given a long enough run time
to obtain sufficient samples, while incurring only one to two
percent overhead, as compared to up to 30 percent on other
substrates that use direct counting. A similar capability ex-
ists on the Itanium and Itanium2 platforms, where Event
Address Registers (EARs) accurately identify the instruc-
tion and data addresses for some events. Future versions of
PAPI will make use of such hardware assisted profiling and
will provide an option for estimating aggregate counts from
sampling data.

5. Conclusions and Future Work

The PAPI project has been successful in specifying and
implementing a portable interface to hardware performance
counters that has become widely accepted and used by ap-
plication and tool developers. Experiences with version 1
and 2 of PAPI have highlighted some problems that remain
to be solved, however, such as reducing the overheads and
improving the flexibility of the interface. To address these
problems, PAPI is undergoing a major re-design which will
result in version 3. Some of the little used features of the
previous versions, such as overlapping EventSets, are be-
ing eliminated in version 3 to reduce memory usage and
runtime overhead and simplify the code. PAPI version 3
will also include more extensive support for hardware-based
sampling and profiling, as well as an option for estimating
counts from samples where this is supported by the hard-
ware.

In addition to the timing and counter access routines al-
ready available, PAPI version 3 will also provide routines
for obtaining memory utilization information which have
been requested by users. The plan is to implement the fol-
lowing memory utilization extensions:

• memory available on a node

• total memory available/used

• (high-water-mark) memory used by process/thread

• disk swapping by process

• process/memory locality

• location of memory used by an object (e.g., array or
structure)

PAPI manages events in user-defined sets called
EventSets. EventSets are managed explicitly by the user
in the low-level interface and by tool interfaces. One of the
more difficult tasks in implementing a PAPI substrate for a
particular platform has been to map an EventSet to the avail-
able physical counters in an optimal manner. Some native



events are available on only some of the physical counters,
and there are sometimes constraints on what events may be
counted simultaneously, even if they can be mapped to dif-
ferent counters. Some platforms manage native events in
groups and require counters to be allocated in a group in-
stead of for individual events. In general, the counter allo-
cation problem may be cast in terms of the bipartite graph
matching problem, where the graph consists of two sets of
vertices – one set representing the events to be mapped, and
the other the representing the physical counters available
on the machine – with an edge between an event vertex
and a counter vertex if that event can be counted on that
counter. A matching consists of a set of edges, no two of
which are adjacent to the same vertex. The counter allo-
cation problem attempts to find such a matching which in-
cludes an edge adjacent to each event vertex. Variations
are to obtain a maximum cardinality mapping if not all
the events can be mapped, or a maximum weight match-
ing if some events have higher priority than others. We
have designed an optimal matching algorithm which has
been included in version 2.3 of PAPI. For PAPI version 3,
we are attempting to separate the counter allocation into
hardware-independent and hardware-dependent portions –
the hardware-independent portion solving the graph match-
ing problem and the hardware-dependent problem translat-
ing the counter scheme on a particular platform into the
graph matching problem. This separation will hopefully
make implementing optimal counter allocation on a new
platform easier.

Development of thedynaprofandperfometertools will
continue with improved support for analysis of parallel
message-passing programs. In addition, apapirun utility
that will allow users to execute a program and easily col-
lect basic timing and hardware counter data is under de-
velopment. We expect to continue our collaborations with
third-party tool developers in their use of PAPI to acquire
accurate performance data with a minimum of overhead. In
addition, we plan to collaborate with performance modeling
projects such as that described in [12] in using PAPI to col-
lect data for parameterizing predictive performance mod-
els. It is hoped that through additional collaborative efforts,
PAPI will become one of a number of modular components
for advanced tool design and program analysis on high per-
formance computing systems.

The PAPI specification and software, as well as docu-
mentation and additional supporting information, are avail-
able from the PAPI web site at http://icl.cs.utk.edu/papi/.
See the Parallel Tools Consortium (PTools) web site at
http://www.ptools.org/ to join the PAPI mailing lists and for
general information about PTools.
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