The Computer Journal, 47(4), © The British Computer Society; all rights reserved

The Boole Lecture
Trends in High Performance
Computing

JACK DONGARRA

Department of Computer Science, Oak Ridge National Laboratory, University of Tennessee, Knocville,
TN 37996-3450, USA
Email:

The Annual Boole Lecture was established and is sponsored by the Boole Centre for Research in
Informatics, the Cork Constraint Computation Centre, the Department of Computer Science, and
the School of Mathematics, Applied Mathematics and Statistics at University College Cork.
The series is named in honour of George Boole, the first professor of Mathematics at UCC, whose
seminal work on logic in the late 1800s is central to modern digital computing. To mark this great
contribution, leaders in the fields of computing and mathematics are invited to talk to the general
public on directions in science, on past achievements and on visions for the future.

Received . . .; revised . ..

1. HISTORICAL PERSPECTIVE

In the last 50 years, the field of scientific computing has
undergone rapid change—we have experienced a remarkable
turnover of technologies, architectures, vendors and usage of
systems. Despite all these changes, the long-term evolution
of performance seems to be steady and continuous, following
Moore’s Law rather closely. In 1965 Gordon Moore, one
of the founders of Intel, conjectured that the number of
transistors per square inch on integrated circuits would
roughly double every year. It turns out that the frequency of
doubling is not 12 months, but roughly 18 months [1]. Moore
predicted that this trend would continue for the foreseeable
future. In Figure 1, we plot the peak performance over
the last five decades of computers that have been called
‘supercomputers’. A broad definition for a supercomputer
is that it is one of the fastest computers currently available.
They are systems that provide significantly greater sustained
performance than that available from mainstream computer
systems. The value of supercomputers derives from the
value of the problems they solve, not from the innovative
technology they showcase. By performance we mean the
rate of execution for floating point operations. Here we chart
Kflop/s (kilo-flop/s, thousands of floating point operations
per second), Mflop/s (mega-flop/s, millions of floating point
operations per second), Gflop/s (giga-flop/s, billions of
floating point operations per second), Tflop/s (tera-flop/s,
trillions of floating point operations per second) and Pflop/s
(peta-flop/s, 1000 trillions of floating point operations per
second). This chart shows clearly how well this Moore’s
Law has held over almost the complete lifespan of modern
computing—we see an increase in performance averaging
two orders of magnitude every decade.

In the second half of the 1970s, the introduction of
vector computer systems marked the beginning of modern
supercomputing. A vector computer or vector processor is a
machine designed to efficiently handle arithmetic operations
on elements of arrays, called vectors. These systems
offered a performance advantage of at least one order of
magnitude over conventional systems of that time. Raw
performance was the main, if not the only, selling point for
supercomputers of this variety. However, in the first half of
the 1980s the integration of vector systems into conventional

THE COMPUTER JOURNAL,

Vol. 47, No. 4, 2004

2 J. DONGARRA

1 PFlopis| B
Earth
P I
e ASTTVNITE
ASCI Rid// Y
1 TFlopis Eaciflc
™C CMWC/I’QV T3D
/ ‘
/v THME M2 |
Cray 2 |
1 GFlop/s _n?y X+ % 1
Cray 1 1
CDC 760 IBM 360/195 ‘
1 MFlop/s & |
‘ T 6600
| R 70008 }U |
IBM 7090
|
1 KFlop/s z=GNvac ‘
¢ EDSAC 1 |
‘ ; ; ; : ; i
1950 1960 1970 1980 1990 2000 2010

FIGURE 1. Moore’s Law and peak performance of various computers over time.

computing environments became more important. Only
those manufacturers who provided standard programming
environments, operating systems and key applications were
successful in getting the industrial customers, which became
essential for survival in the marketplace. Performance
was increased primarily by improved chip technologies
and by producing shared-memory multiprocessor systems,
sometimes referred to as symmetric multiprocessors or
SMPs. An SMP is a computer system that has two or more
processors connected in the same cabinet, managed by one
operating system, sharing the same memory and having equal
access to input/output devices. Application programs may
run on any or all processors in the system; assignment of
tasks is decided by the operating system. One advantage
of SMP systems is scalability; additional processors can be
added as needed up to some limiting factor determined by
the rate at which data can be sent to and from memory.
Fostered by several government programs, scalable
parallel computing using distributed memory became the
focus of interest at the end of the 1980s. A distributed-
memory computer system is one in which several inter-
connected computers share the computing tasks assigned
to the system. Overcoming the hardware scalability
limitations of shared memory was the main goal of these
new systems. The increase in performance of standard
microprocessors after the Reduced Instruction Set Computer
(RISC) revolution, together with the cost advantage of
large-scale parallelism, formed the basis of the ‘Attack of
the Killer Micros’. The transition from emitted coupled
logic (ECL) to complementary metal-oxide semiconductor
(CMOS) chip technology and the usage of ‘off the shelf’
commodity microprocessors instead of custom processors for
massively parallel processors (MPPs) was the consequence.
The strict definition of MPP is a machine with many inter-
connected processors, where ‘many’ is dependent on the state
of the art. Currently, the majority of high-end machines have
fewer than 256 processors, with the most on the order of
10,000 processors. A more practical definition of an MPP
is a machine whose architecture is capable of having many
processors—i.e. it is scalable. In particular, machines with

a distributed memory design (in comparison with shared
memory designs) are usually synonymous with MPPs since
they are not limited to a certain number of processors. In this
sense, ‘many’ is a number larger than the current largest
number of processors in a shared-memory machine.

2. STATE OF SYSTEMS TODAY

The acceptance of MPP systems not only for engineering
applications but also for new commercial applications,
especially for database applications, emphasized different
criteria for market success, such as the stability of the system,
continuity of the manufacturer and price/performance.
Success in commercial environments is now a new important
requirement for a successful supercomputer business. Due to
these factors and the consolidation in the number of vendors
in the market, hierarchical systems built with components
designed for the broader commercial market are currently
replacing homogeneous systems at the very high end of
performance. Clusters built with components off the shelf
are also gaining more and more attention. A cluster is a
commonly found computing environment and consists of
many PCs or workstations connected together by a local
area network. PCs and workstations, which have become
increasingly powerful over the years, can together be viewed
as a significant computing resource. This resource is
commonly known as clusters of PCs or workstations, and
can be generalized to a heterogeneous collection of machines
with arbitrary architecture.

At the beginning of the 1990s, while multiprocessor vector
systems reached their widest distribution, a new generation
of MPP systems came on the market, claiming to equal
or even surpass the performance of vector multiprocessors.
To provide a more reliable basis for statistics on high-
performance computers, the Top500 [2] list was begun.
This report lists the sites that have the 500 most powerful
installed computer systems. The best LINPACK benchmark
performance [3] achieved is used as a performance measure
to rank the computers. The TOP500 list has been updated
twice a year since June 1993. In the first Top500 list in June

THE COMPUTER JOURNAL,

Vol. 47, No. 4, 2004

TRENDS IN HIGH PERFORMANCE COMPUTING 3

500

| SIMD_ —
Vecto)

400 -

300 -

200 Scalar

100 -

0 e e B s e e B L s B e e B
1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

FIGURE 2. Processor design used as seen in the Top500.

1993, there were already 156 MPP and SIMD systems present
(31% of the total of 500 systems).

The year 1995 saw remarkable changes in the distribution
of the systems in the Top500 according to customer types
(academic sites, research labs, industrial/commercial users,
vendor installations and confidential sites). Until June 1995,
the trend in the Top500 data was a steady decrease in
industrial customers, matched by an increase in the number
of government-funded research sites. This trend reflects
the influence of governmental high performance computing
(HPC) programs that made it possible for research sites to buy
parallel systems, especially systems with distributed memory.
Industry was understandably reluctant to follow this path
since systems with distributed memory have often been far
from mature or stable. Hence, industrial customers stayed
with their older vector systems, which gradually dropped off
the Top500 list because of low performance (Figure 2).

Beginning in 1994, however, companies such as SGI,
Digital and Sun began selling SMP models in their
workstation families. From the very beginning, these
systems were popular with industrial customers because
of the maturity of the architecture and their superior
price/performance ratio. At the same time, IBM SP systems
began to appear at a reasonable number of industrial sites.
While the IBM SP was initially intended for numerically
intensive applications, in the second half of 1995 the system
began selling successfully to a larger commercial market,
with dedicated database systems representing a particularly
important component of sales.

It is instructive to compare the growth rates of the
performance of machines at fixed positions in the Top500
list with those predicted by Moore’s Law. To make this
comparison, we separate the influence of the increasing
processor performance and of the increasing number of
processors per system on the total accumulated performance.
(To get meaningful numbers we exclude SIMD systems from
this analysis as they tend to have extremely high processor
numbers and extremely low processor performance.) In
Figure 3 we plot the relative growth of the total number of
processors and of the average processor performance, defined
as the ratio of total accumulated performance to the number of
processors. We find that these two factors contribute almost
equally to the annual total performance growth—a factor of
1.82. On average, the number of processors grows by a factor

1 Pflopls_

100 Tflople]

10 Tflopls]

A - Y
N=1
Ea
ot 1BV ASCI White
ntel A SCI Red LLNL
Sandia [o™

Fujitsu
NWT NAL

10 Gflopls =500
: Gﬂo,,,s_ﬁﬂgu

100 Mflopls—————————————————————————————————————
1993 1984 1995 1996 1997 1998 1999 2000 2001 2002 2003

404 GFis

FIGURE 3. Performance growth at fixed Top500 rankings.

of 1.30 each year and the processor performance by a factor
of 1.40 per year, compared with the factor of 1.58 predicted
by Moore’s Law.

3. PROGRAMMING MODELS

Standard parallel architectures support a variety of decom-
position strategies, such as decomposition by task (task
parallelism) and decomposition by data (data parallelism).
Data parallelism is the most common strategy for scien-
tific programs on parallel machines. In data parallelism, the
application is decomposed by subdividing the data space over
which it operates and assigning different processors to the
work associated with different data sub-spaces. Typically
this strategy involves some data sharing at the boundaries,
and the programmer is responsible for ensuring that this data
sharing is handled correctly—i.e. data computed by one pro-
cessor and used by another are correctly synchronized.

Once a specific decomposition strategy is chosen, it
must be implemented. Here, the programmer must choose
the programming model to use. The two most common
models are:

e the shared-memory model, in which it is assumed that
all data structures are allocated in a common space that
is accessible from every processor and

e the message-passing model, in which each processor (or
process) is assumed to have its own private data space
and data must be explicitly moved between spaces as
needed.

In the message-passing model, data are distributed across
the processor memories; if a processor needs to use data
that are not stored locally, the processor that owns that data
must explicitly ‘send’ the data to the processor that needs
it. The latter must execute an explicit ‘receive’ operation,
which is synchronized with the send, before it can use the
communicated data.

To achieve high performance on parallel machines, the
programmer must be concerned with scalability and load
balance. Generally, an application is thought to be scalable if
larger parallel configurations can solve proportionally larger
problems in the same running time as smaller problems
on smaller configurations. Load balance typically means
that the processors have roughly the same amount of work,
so that no one processor holds up the entire solution.

THE COMPUTER JOURNAL,

Vol. 47, No. 4, 2004

4 J. DONGARRA

10 Pflopls

1 Pfloply /

100 Tflopis:
10 Tflopisy =
1 Tflopis.

100 Gflopls. ==
10 Gflopls.
1 Gflopis:

100 Mflopls|
1983 1985 1987 1988 2001 2003 2005 2007 2009

FIGURE 4. Extrapolation of Top500 results.

To balance the computational load on a machine with
processors of equal power, the programmer must divide the
work and communications evenly. This can be challenging
in applications applied to problems that are unknown in size
until run time.

4. FUTURE TRENDS

Based on the current Top500 data (which cover the last
13 years) and the assumption that the current rate of
performance improvement will continue for some time to
come, we can extrapolate the observed performance and
compare these values with the goals of government programs
such as the Department of Energy’s (DOE) Accelerated
Strategic Computing Initiative (ASCI), High Performance
Computing and Communications and the PetaOps initiative.
In Figure 4, we extrapolate the observed performance using
linear regression on a logarithmic scale. This means that
we fit exponential growth to all levels of performance in the
Top500. This simple curve fit of the data shows surprisingly
consistent results. Based on the extrapolation from these fits,
we can expect to see the first 100 Tflop/s system by 2005.
By 2005, no system smaller then 1 Tflop/s should be able to
make the Top500 ranking.

Looking even further in the future, we speculate that,
based on the current doubling of performance every year to
14 months, the first Plop/s system should be available around
2009. Due to the rapid changes in the technologies used
in HPC systems, there is currently no reasonable projection
possible for the architecture of the Pflop systems at the
end of the decade. Even as the HPC market has changed
substantially since the introduction of the Cray 1 three
decades ago, there is no end in sight for these rapid cycles of
architectural redefinition.

There are two general conclusions we can draw from these
figures. First, parallel computing is here to stay. It is the
primary mechanism by which computer performance can
keep up with the predictions of Moore’s law in the face
of the increasing influence of performance bottlenecks in
conventional processors. Second, the architecture of high-
performance computing will continue to evolve at arapid rate.
Thus, it will be increasingly important to find ways to support
scalable parallel programming without sacrificing portability.
This challenge must be met by the development of software

systems and algorithms that promote portability while easing
the burden of program design and implementation.

5. TRANSFORMING EFFECT ON SCIENCE
AND ENGINEERING

Supercomputers have transformed a number of science and
engineering disciplines, including cosmology, environmental
modeling, condensed matter physics, protein folding,
quantum chromodynamics, device and semiconductor
simulation, seismology and turbulence. As an example,
consider cosmology—the study of the universe, its evolution
and structure—where one of the most striking paradigm shifts
has occurred. A number of new, tremendously detailed
observations deep into the universe are available from such
instruments as the Hubble Space Telescope and the Digital
Sky Survey [4]. However, until recently, it has been
difficult, except in relatively simple circumstances, to tease
from mathematical theories of the early universe enough
information to allow comparison with observations.

However, supercomputers have changed all of that. Now,
cosmologists can simulate the principal physical processes
at work in the early universe over space-time volumes
sufficiently large to determine the large-scale structures
predicted by the models. With such tools, some theories can
be discarded as being incompatible with the observations.
Supercomputing has allowed comparison of theory with
observation and thus has transformed the practice of
cosmology.

Another example is the DOE’s ASCI, which applies
advanced capabilities in scientific and engineering computing
to one of the most complex challenges in the nuclear
era—maintaining the performance, safety and reliability of
the nation’s nuclear weapons without physical testing. A
critical component of the agency’s Stockpile Stewardship
Program (SSP), ASCI research develops computational and
simulation technologies to help scientists understand aging
weapons, predict when components will have to be replaced
and evaluate the implications of changes in materials and
fabrication processes for the design life of aging weapons
systems. The ASCI program was established in 1996 in
response to the administration’s commitment to pursuing
a comprehensive ban on nuclear weapons testing. ASCI
researchers are developing high-end computing capabilities
far above the current level of performance and advanced
simulation applications that can reduce the current reliance
on empirical judgments by achieving higher resolution,
higher fidelity, three-dimensional physics and full-system
modeling capabilities for assessing the state of nuclear
weapons.

Parallelism is a primary method for accelerating the total
power of a supercomputer. That is, in addition to continuing
to develop the performance of a technology, multiple copies
are deployed that provide some of the advantages of an
improvement in raw performance but not all.

Employing parallelism to solve large-scale problems
is not without its price. The complexity of building
parallel supercomputers with thousands of processors to

THE COMPUTER JOURNAL,

Vol. 47, No. 4, 2004

TRENDS IN HIGH PERFORMANCE COMPUTING 5

solve real-world problems requires a hierarchical approach—
associating memory closely with central processing units
(CPUs). Consequently, the central problem faced by
parallel applications is managing a complex memory
hierarchy, ranging from local registers to far-distant processor
memories. It is the communication of data and the
coordination of processes within this hierarchy that represent
the principal hurdles to effective, correct and widespread
acceptance of parallel computing. Thus today’s parallel
computing environment has architectural complexity layered
upon a multiplicity of processors. Scalability, the ability of
hardware and software to maintain reasonable efficiency as
the number of processors is increased, is the key metric.

The future will be more complex yet. Distinct computer
systems will be networked together into the most powerful
systems on the planet. The pieces of this composite whole
will be distinct in hardware (e.g. CPUs), software (e.g.
operating system) and operational policy (e.g. security). This
future is most apparent when we consider geographically
distributed computing on the Computational Grid [5]. There
is great emerging interest in using the global information
infrastructure as a computing platform. By drawing on the
power of high-performance computing resources, geogra-
phically distributed, it will be possible to solve problems that
cannot currently be attacked by any single computing system,
parallel or otherwise.

Computational physics applications have been the primary
drivers in the development of parallel computing over the
last 20 years. This set of problems has a number of features
in common, despite the substantial specific differences in
problem domain.

(i) Applications were often defined by a set of partial
differential equations (PDEs) on some domain in
space and time.

(i) Multiphysics often took the form of distinct physical
domains, with different processes dominant in each.

(iii) The life cycle of many applications was essentially
contained within the computer room, building or
campus.

These characteristics focused attention on discretizations of
PDE:s, the corresponding notion of resolution = accuracy
and solution of the linear and non-linear equations generated
by these discretizations. Data parallelism and domain
decomposition provided an effective programming model
and a ready source of parallelism. Multiphysics, for the most
part, was also amenable to domain decomposition and could
be accomplished by understanding and trading information
about the fluxes between the physical domains. Finally,
attention was focused on the parallel computer, its speed and
its accuracy, and relatively little attention was paid to I/O
beyond the confines of the computer room.

The Holy Grail for software is portable performance. That
is, software should be re-usable across different platforms
and provide significant performance, say, relative to peak
speed, for the end user. Often, these two goals seem to be

in opposition to each other. Languages (e.g. Fortran, C) and
libraries (e.g. Message Passing Interface (MPI) [6], Linear
Algebra Libraries, i.e. LAPACK [7]) allow the programmer
to access or expose parallelism in a variety of standard
ways. By employing standards-based, optimized libraries,
the programmer can sometimes achieve both portability and
high performance. Tools (e.g. svPablo [8], Performance
Application Programmers Interface (PAPI) [9]) allow the
programmer to determine the correctness and performance of
their code and, if falling short in some ways, suggest various
remedies.

ACKNOWLEDGEMENTS

This research was supported in part by the Applied
Mathematical Sciences Research Program of the Office of
Mathematical, Information and Computational Sciences, US
Department of Energy under contract DE-AC05-000R22725
with UT-Battelle, LLC.

REFERENCES

[1] Moore, G. E. (1965) Cramming more components onto
integrated circuits. Electronics Mag., 38(8), 114-117.

[2] Top500 Report. http://www.topS00.org

[3] Dongarra, J. J. (2003) Performance of Various Computers
Using Standard Linear Equations Software, (Linpack
Benchmark Report). Computer Science Technical Report
CS-89-85, University of Tennessee. http://www.netlib.org/
benchmark/performance.pdf.

[4] York, D. G. et al. (2000) The Sloan Digital Sky Survey:
technical summary. Astronom. J., 120, 1579-1587.

[5] Foster, 1. and Kesselman, C. (eds) (1998) Computational
Grids: Blueprint for a New Computing Infrastructure. Morgan
Kaufman Publishers.

[6] Snir, M., Otto, S., Huss-Lederman, S., Walker, D. and
Dongarra, J. (1996) MPI: The Complete Reference. MIT Press,
Boston.

[7]1 Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J.,
Dongarra, J., Du Croz, J., Greenbaum, A., Hammaring, S.,
McKenney, A. and Sorensen, D. (1999) LAPACK Users’ Guide
(3rd edn). SIAM Publication, Philadelphia.

[8] DeRose, L. and Reed, D. A. (1999) SvPablo: a multi-
language architecture-independent performance analysis sys-
tem. In Proc. Int. Conf. on Parallel Processing (ICPP’99),
Fukushima, Japan.

[9] Browne, S., Dongarra, J., Garner, N., Ho, G. and Mucci, P.
(2000) A portable programming interface for performance
evaluation on modern processors. Int. J. High Perform.
Comput. Appl., 14(3), 89-204.

[10] Brooks, E. (1989) The attack of the killer micros. In
Teraflop Computing Panel, Supercomputing 89, Reno,
Nevada.

[11] Dongarra,J., London, K., Moore, S., Mucci, P. and Terpstra, D.
(2001) Using PAPI for hardware performance monitoring
on Linux systems. In Proc. Conf. on Linux Clusters: The
HPC Revolution, June 25-27, 23 p. National center for
Supercomputing Applications (NCSA), University of Illinois,
Urbana, EL.

THE COMPUTER JOURNAL,

Vol. 47, No. 4, 2004

