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Abstract

The goal of this paper is to evaluate the memory subsystem performance of the AMD
Reference Design Kit (RDK), “Quartet”, a four-CPU system based on the AMD Opteron™
processor. We begin by discussing the unique features of the AMD Opteron processor's
memory subsystem and the system architecture of the RDK “Quartet”. Next, we introduce
four microbenchmarks used to characterize different aspects of memory subsystem
performance. STREAM and CacheBench measure sustained memory bandwidth for a variety
of compute operations. LMBench and GUPS evaluate the latency of independent and
dependent memory accesses to pseudo-random locations. Each of these four benchmarks is
run on three different systems, the four-processor AMD RDK “Quartet”, a four-processor
Intel® Itanium® 2 and a two-processor Intel Xeon™ processor. The results are presented in
terms of delivered per-CPU performance. Next, we introduce POP and MILC, two large
parallel simulations from the Department of Energy Scientific Discovery through Advanced
Computing (SciDAC) program. POP or Parallel Ocean Program is a grid-based ocean
circulation model from Los Alamos National Laboratory. MILC or MIMD Lattice Computation
is a four-dimensional quantum chromodynamics simulation from the University of Utah.
Both applications have undergone extensive performance analysis on a wide variety of
platforms and their behavior is reasonably well understood. Each application is compiled
with the latest release of the Portland Group compiler and runs on the AMD RDK “Quartet”
using a shared-memory implementation of MPI (mpich v1.2.5.2). Aggregate hardware
performance metrics are collected using a tool from PAPI, the Performance Application
Programming Interface. Using this data, we evaluate the applications' performance and
explore its relationship to that of the memory subsystem. We conclude with comments on
the AMD RDK system’s architecture and its performance on large scientific applications.

Introduction

The memory wall is nearly upon us. No longer do gains in processor clock speed
automatically translate to similar increases in application performance. This is primarily
due to the growing disparity in performance between the memory subsystem and the CPU.
Von Neumann[1] knew that this was a problem, however there were much larger issues
than performance to tackle at that time[3]. It wasn't until years later that ). W. Backus[2]
popularized the issue and coined the term, the Von Neumann bottleneck. Things have
gotten progressively worse. Processor clock rates increase by roughly 60% each year, while
memory access time drops only 7%, as shown in Figure 1[4]. Short of any revolutions like
the widespread adoption of a processor-in-memory architecture[5][6][7]1[8][46], memory
subsystem performance will continue to be the industry's biggest bottleneck. This is
especially a problem in the performance of large scientific simulations run on large clusters
and supercomputers, where applications frequently run at the limits of available physical
memory.

Here we will explore the memory subsystem performance of the AMD RDK “Quartet”,
a four-processor system built around the AMD Opteron processor. The AMD Opteron
processor is unique in that it is the first x86 compatible processor to feature a built-in
memory controller on each CPU. This design aims to directly address the Von Neumann
bottleneck by bringing the DRAM closer to the CPU. We start by introducing four well known
memory-centric micro-benchmarks: CacheBench, STREAM, LMBench and GUPS. Each of
these benchmarks has played an important role in the evaluation and procurement of next-



generation clusters by the technical computing community. At their most basic,
CacheBench[22] and STREAM[12] measure memory bandwidth, and LMBench[25] and
GUPS[26] measure memory latency. Here we present and analyze unofficial results for runs
of each of these benchmarks on the four-processor AMD RDK “Quartet” as well as on a four-
processor Intel Itanium 2 processor (Madison) and a two-processor Pentium® IV (Intel Xeon
processor). Following that, we evaluate the performance of the “Quartet” with two heavily
analyzed production applications taken from the Department of Energy's Scientific
Discovery Through Advanced Computing (SciDAC) effort. The first code is POP[28], an ocean
circulation model originally developed at Los Alamos National Laboratory. POP is used as
the ocean component in many of the world's leading coupled-climate models. The second
code is MILC[33], a four-dimensional lattice gauge theory simulation. These two codes are
run in a 'large benchmark' mode included with each distribution. Each simulation is run
under a PAPI[40] performance tool to gather data from the AMD Opteron processor's
onboard performance monitor. Using this data, we analyze the performance of the codes in
the context of memory subsystem performance and overall processor utilization. Finally, we
make some concluding remarks about the advantages of running memory intensive
scientific applications on the AMD-powered system.
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Figure 1. The growing gap in processor and memory speeds[4][41].
DRAM Technology

While DRAM technology appears stagnant in the context of Moore's Law, it is
important to recognize that there has been some progress made in recent years. This is
particularly true in the area of memory bandwidth, the speed at which block data can be
accessed. Peak memory bandwidth is usually computed by multiplying the speed of the
memory bus by the width of the memory bus. With the development of double data rate
static DRAM (DDR SDRAM) and Rambus DRAM (RDRAM), peak bandwidths have doubled
while delivered bandwidth has not[9][10][11][12][34]. This is because the fundamental
problem remains; that memory lies too far from the CPU. System architects have long
attempted to hide this problem with additions like multiple levels of non-blocking cache,
sophisticated hardware prefetching and out-of-order execution[35][36][381[39]1[45].
However, these methods have only been moderately successful, largely due to the wide
spectrum of applications being run on today's commodity processors and the additional
work that the compiler must do to exploit these resources. Is this performance gap caused
by the lack of memory bandwidth or too much memory latency? As a general rule, unit-
stride compute kernels suffer most from bandwidth constraints, while kernels with non-unit
stride suffer from latency concerns[12][13][14][37]. Furthermore, applications that exhibit
some degree of spatial and temporal locality perform better than those that do not because



good locality matches the usage model for which the caches were designed[8]. For
example, the dense matrix multiplication routine (GEMM) found in most systems' linear
algebra libraries frequently runs at 80 to 90 percent of the peak speed of the processor
after exhaustive optimization[14]. The dominating factor for GEMM is memory bandwidth;
moving blocks of contiguous data to/from various levels of cache. Algorithms that do not
lend themselves to prefetching, blocking, tiling or other intelligent cache-line re-use
strategies continue to perform poorly[13]. Consider the sparse case where the matrices are
in compressed row storage (CRS) format. Performance is dominated by dependent indirect
array references with little or no locality. Thus, the code and data structures require major
restructuring to obtain even mediocre performance in the 20 to 30 percent of peak range
[13].

It is for reasons like these that chip architects have begun to explore ways to move
the memory closer to the CPU. In traditional design, the memory is connected to the
processor via a memory controller. This controller sits on the CPU's data bus, commonly
referred to as the front side bus. This bus runs at a fraction of the processor clock speed.
The memory controller is also attached to the memory bus, which runs at low speed. At the
time of this writing, systems with an 800 MHz front side bus have been announced for
processors in the 3+ GHz range. The latest cycle time for DDR SDRAM[15] is 200 MHz
(commonly called DDR400), a factor of four slower than the controller and a factor of fifteen
slower than the processor. It is important to note that the front side bus is additionally
responsible for handling all I/O traffic. All I/O transactions contend with memory accesses
for bus bandwidth. On multiprocessor machines, the problem of contention is aggravated by
multiple CPU's contending for access to the memory controller. As the controller is a shared
resource, it must be negotiated for before it can be used. This arbitration process drives up
the access time. Every additional CPU proportionally increases the load on the controller
and the memory bus. Designs that do not provide adequate bandwidth are very susceptible
to poor scaling of applications. Because the memory subsystem is so much slower than the
CPU, additional CPUs working on a problem can easily starve each other of available
memory bandwidth. Even with the industry’s latest memory controllers, the aggregate
bandwidth available to all processors can be consumed by a single CPU[16][17][18]. SMP
systems of this design lack true scalability. While this might not be an issue for transaction
processing and other server related tasks, it is at the fulcrum of the performance of
scientific applications. The only solution to this problem is to provide all available DRAM
bandwidth on a dedicated channel by giving each processor a memory controller of its own.
Since the controller is no longer a shared resource, it can be directly incorporated into the
CPU's die and run at full processor speed.

The AMD Opteron processor is the first general-purpose, high-performance
commodity processor with an on-board memory controller. This idea is not revolutionary in
itself. Previously, on-board memory controllers were found in specialized graphic
coprocessors like those from Sony and NVidia or in expensive CPU's like HP's Alpha EV7/8,
Sun's UltraSPARC Il and IBM's Power 4. This feature combined with 8-way glueless SMP
capabilities make the AMD Opteron processor an ideal building block for technical compute
servers. Memory bandwidth scales linearly with each additional processor as each has its
own dedicated pathway to memory. Since the memory controller is not shared, there is no
arbitration process. This represents a significant decrease in latency of accesses. Perhaps
the most important difference about the on-board memory controller is that the AMD
Opteron processor does not share bandwidth between DRAM and any I/O devices on the
system. The channel between memory and the CPU is entirely dedicated to memory traffic.
I/0 is performed by a completely separate on-chip controller that operates over a
standardized, high bandwidth, point-to-point fabric called HyperTransport™ technology.

The AMD Opteron processor has additional features that further improve the
performance of the memory subsystem. A complete discussion[19][20][21] of these is



beyond the scope of this paper, but we include the most important features here. First, the
AMD Opteron processor is an aggressive, out-of-order, superscalar design, meaning that
multiple instructions complete as soon as their dependencies are satisfied. The processor
has a built-in hardware prefetching algorithm. Subsequent misses to consecutive cache
lines cause the memory controller to bring in as many as four cache lines ahead to the level
2 cache. The processor has deep load/store queues. These queues allow the processor to
issue memory operations without having to wait until they complete. The AMD Opteron
processor has an eight-entry queue for data references to the level 1 cache and a unified
32-entry queue to level two. The processor supports data forwarding, also known as critical
word first. In normal applications, a miss is rarely triggered by the first word in a cache line.
Since the basic transfer unit is a cache line, processors without data forwarding have to
wait until the entire line is transferred before computation can resume. On the AMD Opteron
processor, the word that missed the cache is delivered first, thus satisfying the dependency
so that the load or store instruction completes. The remainder of the cache line is then
transferred asynchronously as the computation continues.

The AMD Reference Platform, “Quartet”

Each processor in the AMD Quartet reference system is an AMD Opteron processor
model 848 (2.2GHz) with 8GB of DDR333 SDRAM. Peak per processor memory bandwidth is
5.3 GB/sec’. As each processor has its own memory controller, peak aggregate memory
bandwidth is 21.2 GB/sec. Each processor is connected to two adjacent neighbors by way of
a HyperTransport technology link running at 3.2 GB/sec in each direction (providing up to
19.2 GB/sec peak bandwidth per processor). Two other systems are used in our
comparisons, a Dell Precision Workstation 530 and an Intel Tiger 4. Characteristics of the
systems tested are summarized in Table 1.

Microbenchmarks

Over the years, numerous microbenchmarks have been developed to analyze the
performance of the memory subsystem. Here we present results from four popular
microbenchmarks: CacheBench, Stream, LMbench and GUPS. The numbers reported are the
average of four runs on each of the three systems. Each system is fully subscribed; every
processor is busy running a copy of the same serial benchmark. It is important to note that the
results here are both unofficial and un-tuned. Commercial versions of the benchmarks have
been exhaustively tuned to generate the best possible numbers. Here, no tuning is done
beyond enabling aggressive optimization in the compiler.

1 These figures are in units of 10° not 2%.



Intel Xeon Intel Itanium 2 AMD Opteron

processor “Madison” processor
Clockrate (# CPU's) 2.4GHz (2) 1.3GHz (4) 2.2GHz (4)
Motherboard Dell Precision 530 Intel Tiger 4 AMD Quartet

Level 1 Cache
Level 2 Cache
Level 3 Cache

16KB/16KB/4-way S.A. 16KB/16KB/4-way S.A. 128KB/2-way S.A.
512KB/8-way S.A. 96KB/6-way S.A. 1MB/16-way S.A.
= 3MB/12-way S.A. -

Line Size 64B/64B 64B/64B/128B 64B/64B
Page Size 4KB 16KB 4KB
RAM PC800 RDRAM DDR266 DDR333
RAM BW 3.2GB!/sec (shared)  4.2GB'/sec (shared) 5.3GB'/sec (per CPU)
Total Mem. 2GB 32GB 32GB
(01 Redhat 7.3 SUSE 8.1 SUSE 9.1
Kernel 2.4.18-18.7 2.4.21.144 2.4.21-193
Compiler GNU gcc 2.96 Intel ecc 7.1 PGI 5.1 Beta 2
Flags -O3 -mpentiumpro -03 -ip -g -tp k8-64 -fastsse
Table 1. Benchmark System Characteristics
CacheBench

CacheBench is designed to measure the peak usable memory bandwidth of all levels
of the memory hierarchy. It is part of the LLCBench package[22][23] along with BLASBench
and MPIBench. The goal of the LLCBench package is to parameterize important low-level
performance characteristics of an architecture and its various subsystems. CacheBench
works by initializing a large contiguous vector of doubles and then performing various
operations on successively larger portions of that vector. It generates two sets of data for
the three basic operations on memory: read, write and read-modify-write, the latter of which
is implemented as an increment operation. The first set of data is for the native
implementation of a doubly nested loop. The second set of data is for a tuned version where
the inner loop has been unrolled eight times. The goal of the tuned version is to see how the
compiler handles code that has already been optimized. In addition to these six operations,
CacheBench also reports the performance of the memcpy() and memset() subroutines
found in the C library. The memcpy() operation has long been known to be the limiting
factor in I/O performance[42][43]. As a result, these routines are heavily optimized to take
advantage of the processor's instruction set and microarchitecture. Thus these numbers can
be used to place an upper bound on maximum memory bandwidth. Here we report
measured bandwidth for the tuned and untuned versions of the read/modify/write loop as
well as memcpy().



CacheBench Results

In Figure 2 we present the results from the un-tuned version of the Read-Modify-Write
microbenchmark. Note that all levels of cache are visible on all the machines except for the
Intel Itanium 2 processor (“Madison”). All accesses to double precision data bypass the level
1 cache on the Intel Itanium processor architecture. At vector lengths that fall outside of
cache, the AMD Opteron processor is more than twice as fast as the Intel Itanium 2
“Madison” processor and nearly four times faster than the Intel Xeon processor. Note that
the performance does not decrease when running out in main memory, as one might expect
considering the increasing number of TLB misses. This is because all three processors have
hardware prefetching. Since the benchmark operates with unit stride, the prefetching
engine triggers TLB misses on cache lines well ahead of the current position. Thus by the
time the processor issues a load instruction, the address of that load has already been
computed and placed in the TLB.

Average Read-Modify-Write Bandwidth
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Figure 2. Per CPU Read-Modify-Write bandwidth from CacheBench

In Figure 3, the results for the hand-tuned version of the code are shown. We find
that the AMD Opteron processor system again beats the other systems delivering more than
twice the bandwidth of the Intel Xeon based system and over four times that of the Itanium
2 based system. It is interesting to note the differences between the previous two graphs.
On the 1A64 system, the performance of the un-tuned code is much higher than the tuned
version for the same level of compiler optimization. Here the Intel compiler is not able to
effectively optimize simple and portable optimized code. Loop unrolling is an established
and effective optimization for RISC processors yet the Intel compiler fails dramatically. This
is a serious problem as many production applications have already undergone similar
rudimentary performance tuning.

In Figure 4, we first note that the level 1 cache plateau is now visible on the Intel
I[tanium 2 processor. This is because memcpy() does not use the floating point hardware to
transfer data, thus the level 1 cache is used. Note thes ubstantial difference in the
performance of memcpy() when running out of cache. The AMD Opteron processor-based
system delivers more than twice the bandwidth of the Intel ltanium 2 and the Intel Xeon



processor-based systems. The excellent performance of memcpy() means a significant
performance advantage in all operations that transfer data through the kernel. This directly
translates to better filesystem and networking performance, especially on platforms with 1/0
subsystems capable of delivering gigabytes per second of bandwidth like RAID arrays and
10G Ethernet. As Linux has not yet been optimized to provide true zero-copy operation,
memcpy() will continue to be the dominating factor in kernel 1/0O.

Average Tuned Read-Modify-Write Bandwidth
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Figure 3. Per CPU Tuned Read-Modify-Write bandwidth from CacheBench

Average memcpy() Bandwidth
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Figure 4. Per CPU memcpy() bandwidth from CacheBench



Stream

Stream is a popular benchmark designed to measure sustainable memory
bandwidth for vector compute kernels[12]. It measures the bandwidth of the following
operations:

Assighment Ali]=BIi]
Scale A[i] = constant * B[i]
Add Ali] = BI[i] + CIil
AXPY A[i] = B[i]+ scale * C[i]

Like CacheBench, this benchmark moves through memory with unit stride and thus
benefits from any hardware prefetching done by the processor. Stream has demonstrated
significant increases in performance as faster front side buses and double data rate
memory technology have become prevalent. In Figure 5 we show the average results for the
original unmodified sources for the C version of Stream with heavy compiler optimization
enabled. Each of the above operations was repeated ten times on an array of 10,000,000
double precision humbers. Total memory required was approximately 230MB.

Stream Results

The AMD Opteron processor-based system again outperforms the other systems by a
factor of between two and three, depending on the operation. Relative performance of each
of the four operators appears to be about the same for the three systems. The exception is
on the Itanium 2-based system where the Triad case is slightly faster than the Add case.
This is due to the fused multiply-add instruction in the Intel ltanium processor architecture.
This instruction executes in the same amount of time as an add instruction and thus makes
better use of the available memory bandwidth.
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Figure 5. Per CPU bandwidth from Stream (C version)



for all sizes of p {
p = head;
while (p->p_next) {
p = p->next;

P}

Figure 6. Linked list traversal at the core of the memory read latency benchmark

LMbench and lat_mem_rd: Memory Read Latency

LMbench is a fairly comprehensive low-level benchmark suite that evaluates
everything about a system, from processor to operating system to library performance[24]
[25]. Here we use only one executable from the package; the memory read latency
benchmark or lat_mem_rd. This benchmark is very similar to that of the ScienceMark
benchmark popular with the Windows community. At the core of the benchmark is the
performance of a linked list traversal, as shown in the pseudo-code in Figure 6. Notice the
inner loop; the processor must wait for the value to be returned from the memory
subsystem before the computation can continue. In practice, the code is highly unrolled to
increase utilization of the pipeline, but the steps of execution are the same. The outer loop
progressively increases the size of the data set, from 512 Bytes to 100 MB. As it does so, the
various latencies of cache can be easily seen in the data. The only interesting input
parameter to the benchmark is the stride between successive accesses. Since we wish to
measure the latency of the memory subsystem and not the cache, we choose a value that
will not trigger the prefetching hardware found on the processors. Here we set the stride to
be two full cache lines plus 8 bytes. As all the systems have a 64 byte line size for the level
1 cache, the stride used was two cache lines plus two words or 136 bytes.

Memory Read Latency: 136 Byte Stride
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2 Lower is better.



Memory Read Latency Results

In Figure 7 all three cache levels are visible for each of the platforms. As expected,
the lowest latency is found for accesses to the level 1 cache of the processor with the
highest clock rate; the 2.4GHz Intel Xeon processor. However, here we are interested in the
performance of applications that exhaust the cache resources. So as we examine the curve
out past the boundary of the caches, we notice that the average latency of the AMD Opteron
processor-based system is one third that of the Itanium 2-based system and half that of the
Intel Xeon-based system. The Intel Xeon processor's performance is undoubtedly a result of
the higher clock rate of the RDRAM subsystem. Note the relationships of the peak numbers
quoted in Table 1 versus that in this graph. Neither the peak bandwidth, processor clock
rate, nor the clock rate of the memory subsystem predicts the performance seen here.
Memory latency is inherently very difficult to quantify due to the complexity of the hardware
and processes involved in accessing it. In this case, it is the AMD Opteron processor's on-
chip memory controller that is responsible for the observed reduction in memory latency.

GUPS: Giga-Updates Per Second

GUPS, or Giga-Updates Per Second, was popularized as a paper and pencil
benchmark used by the National Security Agency[4][26]. At its core, GUPS measures the
time to perform a fixed number of updates to random locations in main memory. There are
two versions of this benchmark: one that pre-computes the indices to be updated and one
that computes them on the fly. For this paper, we have chosen the former because we found
it to be more representative of the original workload[26]. Thus this benchmark contains two
large tables, one containing the original data and the other containing the indices of the
entries to be updated. The time to compute these indices is not included in the performance
measurement. In the runs used for this paper, the main table has 16 million 64-bit entries
for a total of 128MB. The index table has 64 million 32-bit entries as we update the entire
table four times.

for (i =0; i <iters; i++) {
i ndex = indices[i];
data = field[index];
data = data + iters;
field[index] = data; }

Figure 8. Loop at the core of the GUPS Benchmark
GUPS Results

In Figure 9, we observe that the AMD Opteron processor-based system is 20 percent
faster than the Itanium 2-based system and 10 percent faster than the Intel Xeon-based
system. This benchmark is bound by the ability of the memory subsystem to provide
reasonable performance of a dependent transaction. As with the memory latency
benchmark, no amount of memory bandwidth will improve the performance of this
benchmark because the costs are dominated by memory bus arbitration and DRAM access
time. Here the AMD Opteron processor's performance is again due to the dedicated path
each CPU has to main memory.
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Figure 9. Per CPU Giga-Updates Per Second
POP 1.4.3: Parallel Ocean Program

The Parallel Ocean Program is an explicit finite-difference model developed at Los
Alamos National Laboratory to perform high-resolution ocean circulation studies. POP is
written entirely in Fortran 90 and makes extensive use of modules, array syntax, and where
constructs. The model uses two-dimensional domain decomposition; communications
(global reductions and broadcasts and nearest neighbor) are isolated within a few machine
dependent procedures. Solves for the three-dimensional baroclinic pass require nearest
neighbor communication. Solves for the two-dimensional barotropic pass use a conjugate
gradient solver. The solver requires that global reductions, broadcasts and nearest neighbor
communications be performed at the end of every iteration.

As a community code, POP has been extensively analyzed and optimized over the
years. Jones and Levesque[27][28] demonstrated that the performance of POP could be
tripled (to over 100 MFLOPS/s) on the Origin 2000 with some hand optimization. These
changes included tuning for unit-stride, cache padding and loop fusion and fission. Many
loops were split in order to avoid the costly masking operations prevalent throughout the
compute loops. However, these optimizations never made it into POP 1.4, although the
lessons learned provided the motivation for POP 2.0. Here we use version 1.4.3 of the code
as it exists in the SciDAC application repository. Recent experiments of POP on the IBM
Power 3 platform demonstrated low cache miss rates but high stall times, indicating poor
scheduling of the compute loops[44]. Figure 10 illustrates some statistics collected from
POPrun using the same x1 data set as the Power 3 experiments. We ran the code for 20
timesteps on all four processors of the AMD RDK “Quartet” using MPICH 1.2.5.2 and the
shared memory device ch_shmem. Measurements from the AMD Opteron processor's
hardware counters were taken using the papiex tool from the PAPI CVS tree[40] .



POP Results

% Mem Ops. 34.1 % L1 Hitrate 95.45
% Load Ins. 67.8 % L2 Hitrate 98.65
% Store Ins. 32.2 % FPU Idle Cyc 26.75
% Branch Ins. 93 IPC 0.6
% Packed SSE(2) 39.34 FLOPS/Mem Op. 0.8
% Peak 8.51 % Cyc. Dispatch Stalled 54.08
MFLOPS/S 374.0 % Cyc. Dispatch Stalled Mem. 15.25
% Stalls are Mem. Stalls 28.69

Figure 10. Per CPU Performance Data of POP 1.4.3 on the AMD RDK “Quartet”

Here we find that the application does very well. The application gets nearly 10
percent of peak and delivers slightly more than a third of a gigaflop per second per CPU.
The computational intensity of this application is not great: the POP is doing 0.8 floating
point operations for every memory operation. As a result, opportunities for cache line re-use
are limited although hit rates in both caches are quite good. The large percentage of cycles
in which the dispatch stage is stalled is consistent with measurements taken on other
platforms. Most importantly, note that dispatch was stalled due to a full load-store buffer for
only 15 percent of all cycles. This low percentage is a direct result of having a dedicated,
high-speed and lower latency path to main memory. It should be noted that a pre-release of
the Portland Group v5.2 compiler was also tried on POP. The result was an approximate 40
percent decrease in runtime corresponding to a 40 percent decrease in the number of
floating point instructions. The MFLOPS per second did not change significantly between the
two versions.

MILC 6: MIMD Lattice Collaboration

MILC performs four dimensional lattice gauge theory simulations intended for the
understanding of the behavior and properties of nuclear matter. The forces that binds
nuclear matter together is so strong that their exploration cannot be performed using
traditional calculation approaches. The theory of strongly interacting particles is known as
Quantum Chromodynamics or QCD. QCD calculations are based on lattice gauge theory
where time and space are represented as a four dimensional lattice. Answers are derived
from this lattice by evaluating a multidimensional integral over this lattice. Due to the size
of the lattice (the 4-D lattice commonly has 32 points on a side), the only way of solving the
integral in a reasonable amount of time is with a Monte Carlo method and the conjugate
gradient technique. MILC is widely used by the nuclear physics community; the San Diego
Supercomputing Center reports that MILC consumes well over a million CPU hours a year.
For our purposes, we run the su3_rmd benchmark that uses the conjugate gradient method
on the Kogut-Susskind quarks. Gottlieb et. al. report [29][30][31][32] that the calculations
for these quarks require significantly more memory bandwidth and thus this data set is
chosen for the work here. Experiments indicate that performance is largely limited by
memory bandwidth, cache and TLB capacity for production lattice sizes. For our runs on
MILC, we use the 14 mode case (nx,ny,nz) and nt is 56. We run the code again using MPICH
1.2.5.2 with the ch_shmem shared memory device. It should be noted that a more recent
version of MILC (6.2) exists that has been heavily hand-optimized for the x86 architecture.
This version was not used in our experiments, instead we use the stock MILC 6 release from
the SciDAC repository.



MILC 6 Results

% Mem Ops. 52.4 % L1 Hitrate 96.94
% Load Ins. 98.8 % L2 Hitrate 97.27
% Store Ins. 1.2 % FPU Idle Cyc 7.35
% Branch Ins. 3.0IPC 0.52
% Packed SSE(2) 80.4 FLOPS/Mem Op. 1.2
% Peak 16.4 % Cyc. Dispatch Stalled 78.52
MFLOPS/S 723.00 % Cyc. Dispatch Stalled Mem. 17.80

% Stalls are Mem. Stalls 22.00

Figure 11. Per CPU Performance Data of MILC 6 on the AMD RDK “Quartet”

Figure 11 illustrates the performance characteristics of MILC 6 running on the AMD
RDK “Quartet” system. It delivers over two-thirds of a gigaflop per second per CPU. The
computational intensity is slightly higher than POP with 1.2 floating point operations per
memory reference. Notice the figures for the percentages of load/store instructions. This
measurement is actually taken from the level 1 miss counter, so the percentages are only
indicative of those loads/stores that miss the level 1 cache. More than likely, the percentage
of stores is higher, but those stores are hitting in level 1 and not being recorded. Here, like
POP, the percentage of cycles where the dispatch unit is stalled waiting on memory is a
relatively low 17%. This code performs nearly five times faster than POP, yet the dispatch
stage stalls much more often. This is due to the fact that the processor is much more highly
utilized, and as such, the dispatch unit stalls feeding the processor new instructions.

Conclusion

From our experiments, we can see that the AMD Opteron processor delivers as
anticipated. By incorporating an on-board memory controller, the AMD Opteron processor
delivers increased memory bandwidth and lower memory latency. In CacheBench and
STREAM, the AMD Opteron processor-based system (“Quartet”) delivers significantly more
bandwidth than either the 2-way Intel Xeon-based system or the 4-way Itanium 2-based
system when running out of cache. For data sizes in cache, the AMD Opteron processor
performs very well, proportional to its clock rate. Regarding memory latency, the AMD RDK
“Quartet” also shines, delivering measured latencies up to 50 percent lower than the other
two platforms on the memory latency benchmark. This advantage is confirmed by the AMD
system's performance on GUPS, where it performs nearly 20 percent faster than the
competition [Ten percent relative to Xeon.] In examining real application performance, both
POP 1.4 and MILC 6 deliver very good performance as a percentage of peak. This is in
contrast to previous measurements [27][29] on other platforms where the percentage of
peak obtained was in the single digits. Stall time measurements indicate a relatively low
percentage of cycles being lost on waiting for memory, a critical metric when examining
applications with large data sets. The AMD Opteron processor's memory subsystem is built
to directly address the needs of such applications. This subsystem, combined with a full 64-
bit address space, relatively low power consumption, and a high clock rate make the AMD
Opteron processor and systems like the AMD RDK “Quartet”, based on the AMD Opteron
processor an ideal choice for a high-end, multiprocessor, technical compute server.
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