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Abstract

The explicitly restarted Arnoldi method (ERAM) allows one to find a few eigenpairs of a large sparse matrix. The multiple
explicitly restarted Arnoldi method (MERAM) is a technique based upon a multiple projection of ERAM and accelerates its
c oblems,
S y taking
i ell suited
t ve global
c us hybrid
a e compared
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onvergence [N. Emamad, S. Petiton, G. Edjlali, Multiple explicitly restarted Arnoldi method for solving large eigenpr
IAM J. Sci. Comput. SJSC 27 (1) (2005) 253-277]. MERAM allows one to update the restarting vector of an ERAM b

nto account the interesting eigen-information obtained by its other ERAM processes. This method is particularly w
o the GRID-type environments. We present an adaptation of the asynchronous version of MERAM for the NetSol
omputing system. We point out some advantages and limitations of this kind of system to implement the asynchrono
lgorithms. We give some results of our experiments and show that we can obtain a good acceleration of the convergenc

o ERAM. These results also show the potential of the MERAM-like hybrid methods for the GRID computing environm
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. Introduction

The hybrid methods were proposed to accelerate the
onvergence and/or to improve the accuracy of the so-
ution of some linear algebra problems. These methods
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combine several different numerical methods or se
differently parameterized copies of the same me
to solve these problems efficiently[2,7,6,13,14]. The
multiple explicitly restarted Arnoldi method propos
in [3] is a hybrid method which allows one to appro
mate a few eigenpairs of a large sparse non-Herm
matrix. This technique is based on the projection o
problem on a set of subspaces and thus creates a
range of differently parameterized ERAM proces
Each ERAM improves its subspace by taking into
count all interesting intermediary eigen-informat
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obtained by itself as well as by the other ERAM pro-
cesses. In this method, the communications between
ERAM processes can be completely asynchronous.

In this paper we present the application of the asyn-
chronous version of MERAM to the NetSolve global
computing system. We show some advantages and lim-
itations of this kind of system to implement the asyn-
chronous hybrid algorithms. We also give an adapta-
tion of the algorithm for NetSolve and show that we
can obtain a good acceleration of the convergence with
respect to the explicitly restarted Arnoldi method.

Section2 describes the basic Arnoldi algorithm and
explicitly restarted Arnoldi method. Section3 intro-
duces MERAM and some of its algorithms. We point
out the limitations of NetSolve-type systems to im-
plement the asynchronous algorithm of MERAM and
present an adaptation of this algorithm for NetSolve in
Section4. This algorithm is evaluated in Section5 by
a set of test matrices coming from various application
problems. The concluding remarks in Section6 will
contain our perspectives on the problem.

2. Explicitly restarted Arnoldi method

Let A be a large non-Hermitian matrix of dimen-
ew
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(with largest/smallest real part or largest/smallest mag-
nitude)Λm = (λ(m)

1 , . . . , λ
(m)
s ) and their associate Ritz

vectors Um = (u(m)
1 , . . . , u

(m)
s ) can be computed as

follows2:

Basic Arnoldi Algorithm. BAA(input : A, s, m, v;
output : rs, Λm, Um).

(1) Compute an AR(input : A, m, v; output : Hm,

Wm) step.
(2) Compute the eigenpairs ofHm and select thes de-

sired ones: (λ(m)
i , y

(m)
i )i=s

i=1.

(3) Compute thes associate Ritz vectorsu(m)
i =

Wmy
(m)
i (for i = 1, . . . , s).

(4) Compute rs = (ρ1, . . . , ρs)t with ρi = ‖(A −
λ

(m)
i I)u(m)

i ‖2.

If the accuracy of the computed Ritz elements is
not satisfactory the projection can be restarted onto a
new K. This new subspace can be defined with the
same subspace size and a new initial guess. The tech-
nique is called the explicitly restarted Arnoldi method.
Starting with an initial vectorv, it computesBAA. If
the convergence does not occur, then the starting vec-
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sionn × n. We consider the problem of finding a f
eigenpairs (λ, u) of A:

Au = λu with λ ∈ C andu ∈ Cn. (1)

Let w1 = v/‖v‖2 be an initial guess,m be an inte
ger with m � n. A Krylov subspace method allow
to project the problem (1) onto anm-dimensional sub
spaceK = span(w1, Aw1, . . . , A

m−1w1). The well-
known Arnoldi process is a projection method wh
generates an orthogonal basisw1, . . . , wm of the
Krylov subspaceKby using the Gram-Schmidt ortho
onalization process. LetAR(input : A, m, v; output :
Hm, Wm) be such an Arnoldi reduction. Them ×
m matrix Hm = (hi,j) and then × m matrix Wm =
[w1, . . . , wm] issued from theAR algorithm and th
matrix A satisfy the equation:

AWm = WmHm + fmeH
m (2)

wherefm = hm+1,mwm+1 andem is themth vector o
the canonical basis ofCm. Thes desired Ritz values1

1 A Ritz value/vector of a matrix is an approximated eig
value/eigenvector.
tor is updated (using appropriate methods on the c
puted Ritz vectors) and aBAA process is restarted u
til the accuracy of the approximated solution is
isfactory. This update is designed to force the ve
into the desired invariant subspace. This goal ca
reached by some polynomial restarting strategies
posed in[6,8] and discussed in Section3.1. An algo-
rithm of the explicitly restarted Arnoldi method is t
following:

ERAM algorithm. ERAM(input : A, s, m, v, tol;
output : rs, Λm, Um).

(1) Start. Choose a parameterm and an initial vecto
v.

(2) Iterate. Compute aBAA(input : A, s, m, v;
output : rs, Λm, Um) step.

(3) Restart. If g(rs) > tol then useΛm andUm to
update the starting vectorv and go to 2.

2 We suppose that the eigenvalues and corresponding eigenv
of Hm are re-indexed so that the firsts Ritz pairs are the desired on
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tol is a tolerance value and the functiong defines the
stopping criterion of iterations. Some typical examples
are:g(rs) = ‖rs‖∞ andg(rs) = ∑s

j=1 αjρj whereαj

are scalar values.

3. Multiple explicitly restarted Arnoldi method

The multiple explicitly restarted Arnoldi method is
a technique based upon an ERAM with multiple pro-
jection. This method projects an eigenproblem on a
set of subspaces and thus creates a whole range of
differently parameterized ERAM processes which co-
operate to efficiently compute a solution of this prob-
lem. In MERAM the restarting vector of an ERAM
is updated by taking into account the interesting eigen-
information obtained by the other ones. In other words,
the ERAM processes of a MERAM begin with several
subspaces spanned by a set of initial vectors and a set
of subspace sizes. If the convergence does not occur
for any of them, then the new subspaces will be de-
fined with initial vectors updated by taking into account
the intermediary solutions computed by all the ERAM
processes. Each of these differently sized subspaces is
defined with a new initial vectorv. To overcome the
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(c) If (it ≥ � and (it mod�) �= 0) then use the re-
sults produced by the� lastBAA processes to
updatevi+1.

(3) Restart. Use the results produced by the� last
BAA processes to updatev1 and go to 2.

whereri
s is the vector of the residual norms at theith

iteration.
With the hypothesis thatu

(mp)
j is “better” thanu

(mq)
j

if ρ
p
j ≤ ρ

q
j , an interesting updating strategy would be

to choosevi as a functionf of “the best” Ritz vectors:

vi = f (Ubest), (3)

whereUbest= (ubest
1 , . . . , ubest

s ) andubest
j is “the best”

jth Ritz vector. The definition of the functionf can be
based on the techniques proposed by Saad in[6] and
will be discussed in Section3.1.

The problem of the above algorithm is that there
is no parallelism between theBAA processes. This is
because of the existence of the synchronization points
2.(c) and 3 in the algorithm. In the following algo-
rithm, proposed in[3], these synchronization points
are removed. That means each ERAM process, af-
ter its BAA step, sends its results to all other pro-
cesses. LetSend Eigen Info represents the task

all
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y).
torage dependent shortcoming of ERAM, a const
n the subspace size of each ERAM is imposed. M
recisely, the size of a projection subspace has t

ong to the discrete intervalIm = [mmin, mmax]. The
oundsmmin andmmax may be chosen in function

he available computation and storage resources
ave to fulfill mmin ≤ mmax � n. Let m1 ≤ · · · ≤ m�

e a set of� subspace sizes withmi ∈ Im (1 ≤ i ≤ �),
= (m1, . . . , m�) andV� = [v1, . . . , v�] be the ma

rix of � starting vectors. An algorithm of this meth
o computes (s ≤ m1) desired Ritz elements ofA is the
ollowing:

ERAM algorithm. MERAM(input : A, s, M, V�,

ol; output : rs, Λm, Um)

1) Start. Choose a starting matrixV� and a set o
subspace sizesM = (m1, . . . , m�). Let it = 0.

2) Iterate. For i = 1, . . . , � do: it = it + 1.
(a) Compute aBAA(input : A, s, mi, v

i; output :
ri
s, Λmi, Umi ) step.

(b) If g(ri
s) ≤ tol then stop all processes.
of sending results from an ERAM process to
other ERAM processes,Receiv Eigen Info be
the task of receiving results from one or more ER
processes by the current ERAM process and fin
Rcv Eigen Info be a boolean variable that is tr
if the current ERAM process has received results f
the other ERAM processes. A parallel asynchron
version of MERAM is the following:

Asynchronous MERAM algorithm.

(1) Start. Choose a starting matrixV� and a set o
subspace sizesM = (m1, . . . , m�).

(2) Iterate. For i = 1, . . . , � do in parallel (ERAM
process):
• Computation process

(a) Compute a BAA(input : A, s, mi, v
i;

output : rs, Λmi, Umi ) step.
(b) If g(ri

s) ≤ tol stop all processes.
(c) Update the initial guess (if (Rcv Eigen

Info) then use the hybrid restart strate
otherwise use the simple restart strateg
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• Communication process
(d) Send Eigen Info
(e) Receiv Eigen Info

The� ERAM processes defined in step 2 of the above
algorithm are all independents and can be run in paral-
lel. Each of them is constituted by a computation part
and a communication part. The computation and the
communication can be overlapped inside of an ERAM
process. The updating of the initial vectorvi can be
done by taking into account the most recent results
of the ERAM processes. We recall that, in the above
MERAM algorithm, the� last results are necessarily
the results of the� ERAM processes.

The above algorithm is fault tolerant. A loss of an
ERAM process during MERAM execution does not in-
terfere with its termination. It has a great potential for
dynamic load balancing; the attribution of the ERAM
processes of MERAM to the available resources can be
done as a function of their subspace sizes at run time.
The heterogeneity of computing supports can be then
an optimization factor for this method[3]. Because of
all these properties, this algorithm is well suited to the
GRID-type environments. In such environments, the�

ERAM processes constituting a MERAM can be dedi-
cated to� different servers. Suppose that theith ERAM
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e
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Fig. 1. Asynchronous MERAM with� = 3.

<m. One appropriate possibility to definep is a Cheby-
shev polynomial determined from some knowledge on
the distribution of the eigenvalues ofA. This restarting
strategy is very efficient to accelerate the convergence
of ERAM and is discussed in detail in[7,6]. Another
possibility to define the polynomialp is to compute the
restarting vector with a linear combination ofs desired
Ritz vectors:

v(k) =
s∑

i=1

αiu
(m)
i (k) (5)

whereu
(m)
i (k) denotesith Ritz vector computed at the

iterationk. There are several ways to choose the scalar
valuesαi in (5). One choice can beαi equal to the
ith residual norm. Some other choices can beαi = 1,
αi = i orαi = s − i + 1 for 1 ≤ i ≤ s (see[8] for more
details). We propose to make use of the following linear
combination of thes wanted eigenvectors:

v =
s∑

k=1

lk(λ)uk
(m) (6)

wheres coefficientslk(λ) are defined by:

s∏ ( (m) )
process is dedicated to the serverSi. This server keep
the execution control of theith ERAM process until th
convergence which occurs, in general, by the fa
server. TheFig. 1 shows an execution scheme of
asynchronous MERAM with� = 3 on three server
We notice that the computation and communica
parts are overlapped.

3.1. Restarting strategies

Saad[7] proposed to restart an iteration of ERA
with a vector preconditioning so that it has to be for
into the desired invariant subspace. It concerns a
nomial preconditioning applied to the starting ve
of ERAM. This preconditioning aims at computing
restarting vector so that its components are nonze
the desired invariant subspace and zero in the unw
invariant subspace:

v(k) = p(A)v (4)

wherev(k) is kth restarting vector of ERAM andp is
a polynomial in the space of polynomials of deg
lk(λ) =
j=1; j �=k

λ − λj

λk
(m) − λj

(m) , with λ

= λmin + λ̄ − (λmin/n)

2
, λ̄ =

∑s
k=1 λk

(m)

s
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andλmin is the eigenvalue with the smallest residual
norm. In the experiments of the next section, we made
use of this strategy (i.e., Eq.(6)) to update the initial
vector of the ERAM as well as the ones of the ERAM
processes of MERAM. For MERAM this equation be-
comes

vi =
s∑

k=1

l
(best)
k (λ)u(best)

k (7)

whereu
(best)
k is “the best”kth eigenvector computed

by the ERAM processes of MERAM andl(best)
k is its

associate coefficient.

4. Asynchronous MERAM on a global
computing system

4.1. NetSolve global computing system

The NetSolve system is a grid middleware
based on the concepts ofRemote Procedure
Call (RPC) that allows users to access both hard-
ware and software computational resources distributed
across a network. NetSolve provides an environment
that monitors and manages computational resources
a e en-
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Fig. 2. Asynchronous MERAM on three communicating servers
(with � = 3).

TRAN, MATLAB, and Mathematica as languages of
implementation for client programs. To solve a problem
using NetSolve, a problem description file (PDF) corre-
sponding to the problem has to be defined[15,10–12].

4.2. Asynchronous MERAM on NetSolve system

The servers of the NetSolve system cannot commu-
nicate directly to each other. Consequently, contrarily
to the MERAM running schemes presented inFigs. 1
and 2, a server cannot keep the control of an ERAM
process until the convergence.Fig. 2 shows the asyn-
chronous MERAM algorithm on three servers which
communicate directly. Each server runs the steps 2.(a),
2.(b) and 2.(c) of an ERAM and communicates with
the other servers by running the steps 2.(d) and 2.(e) of
the algorithm. WhileFig. 3 shows the asynchronous
MERAM algorithm on three servers of a system such
as NetSolve where they cannot communicate directly.

Indeed, to adapt the asynchronous MERAM algo-
rithm to NetSolve system a control process centralizing
the information and corresponding to a client compo-
nent of NetSolve has to be defined. This process has to
request to the computation servers of the system to run
the step 2.(a) of the ERAM processes of MERAM in
RPC mode. The running of the step 2.(a) of an ERAM

tion
with
nce
tep,
) of
nd allocates the services they provide to NetSolv
bled client programs. NetSolve uses a load-balan
trategy to improve the use of the computationa
ources available[5]. Three chief components of Ne
olve are clients, agents and servers. The seman
NetSolve client request are:

1) Client contacts the agent for a list of capa
servers.

2) Client contacts server and sends input parame
3) Server runs appropriate service.
4) Server returns output parameters or error stat

client.

There are many advantages to using a system
etSolve which can provide access to otherwise
vailable software/hardware. In cases where the
are is in hand, it can make the power of supercom
rs accessible from low-end machines like laptop c
uters. Furthermore, NetSolve adds heuristics tha

empt to find the most expeditious route to a proble
olution set. NetSolve currently supports C, FO
occurs asynchronously with respect to the execu
of the same step of the other ERAMs as well as
the execution of the rest of the client algorithm. O
the control process receives the results of a BAA s
it tests the convergence by running the step 2.(b
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Fig. 3. Asynchronous MERAM on three non-communicating
servers (with� = 3).

the algorithm. If the convergence is not reached then
it updates the initial guess with the available eigen-
information on this control/client server. An adapta-
tion of the asynchronous multiple explicitly restarted
Arnoldi method for NetSolve is the following:

ready results is a boolean variable which is
true if the outputs of the current BAA algorithm are
ready. In other words, if the server computing theith

e
e
d

.

Fig. 4. MERAM-NS on NetSolve (Ex. of three ERAMs processes
and 21 servers).Sk is thekth server of the NetSolve system andEi

j

is thejth restart of theith ERAM process of MERAM.

Instead, we notice that in each computation request in
RPC mode, the client program has to send all inputs
to the computation server which accepts this task. That
means, in the MERAM-NS algorithm, for each restart
(i.e., iteration) of every ERAM process, the client pro-
gram has to send then-order matrixA, and ann-size

initial vector to a computation server. This engenders an
intense communication between the client and compu-

d by
tice
2.(a)
to
on
BAA in RPC mode is ready to send its outputs. W
notice that in this implementation the step 2.(d) of th
asynchronous MERAM algorithm is not necessary an
the step 2.(e) is replaced by 3.(e

′
) which consists to

receiveall eigen-information on the control process
tation servers. But this communication is overlappe
the running of the rest of the algorithm. We can no
that when a computational server finishes the step
or 3.(a), it has to returns + 2 n-size output vectors
the client process.Fig. 4 presents the implementati
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Fig. 5. MERAM(5,7,10) vs. ERAM(10) withaf23560.mtx matrix. MERAM converges in 74 restarts, ERAM does not converge after 240
restarts.

Fig. 6. MERAM(5,7,10) vs. ERAM(10) withmhd4800b.mtx matrix. MERAM converges in six restarts, ERAM converges in 41 restarts.
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Fig. 7. MERAM(10,15,20) vs. ERAM(20) withmhd4800b.mtx matrix. MERAM converges in four restarts, ERAM converges in 19 restarts.

Fig. 8. MERAM(5,10,30) vs. ERAM(30) withgre 1107.mtx matrix. MERAM converges in 32 restarts, ERAM converges in 46 restarts.
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Fig. 9. MERAM(5,7,10) vs. ERAM(10) withwest2021.mtx matrix. MERAM converges in 14 restarts, ERAM converges in 18 restarts.

of the MERAM-NS algorithm on a NetSolve system
with 21 servers3 and� = 3.

In the asynchronous MERAM algorithm, at the end
of an iteration each ERAM sendss + 2n-size vectors to
� − 1 other processes. That means, each ERAM has to
communicate (� − 1) × (s + 2) × n data to other pro-
cesses. The reception ofs + 2 n-size vectors by a pro-
cess is not determinism and not quantifiable.

5. Numerical experiments

The experiments presented in this section have been
done on a NetSolve system whose computation servers
have been located in France (at the University of Ver-
sailles and the Institute of Technology of Vélizy sites)
and in the USA and interconnected by the internet.
We implemented ERAM and MERAM (i.e., MERAM-
NS) algorithms using C and MATLAB for some real

3 This is an image of the system at a given instant. Indeed, since
the servers are volatile, the number of the servers in NetSolve system
can change at any moment.

matrices on the NetSolve system. The client applica-
tions are written in MATLAB while the programs hav-
ing to run in RPC mode (i.e., ERAM processes) are
written in C. The stopping criterion isg(ri

s) = ‖ri
s‖∞

whereri
s = (ρi

1, . . . , ρ
i
s) andρi

j is normalized byρi
j =

ρi
j/‖A‖F for all j ∈ [1, . . . , s] andi ∈ [1, . . . , �]. The

tolerance valuetol is 10−8 in the Figs. 5, 6, 8 and
10−14 in the Fig. 7. For all figures the initial vec-
tor is v = zn = (1, . . . , 1)/

√
n and the initial matrix

is V� = [v1 = zn, . . . , v
� = zn]. We search a number

s = 2 or 5 of the eigenvalues with the largest mag-
nitude. The used matrices are taken from the matrix
market[1] and presented in theTable 1. The number
of nonzero elements of a matrix is denoted byNNZ.
In our experiments, we run MERAM-NS with� = 3

Table 1
The matrix market used matrices

Matrix Matrix size NNZ

af23560.mtx 23560 484256
mhd4800b.mtx 4800 16160
gre 1107.mtx 1107 5664
west2021.mtx 2021 7353
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Table 2
ERAM results on NetSolve

Matrix m s v Iteration Residual norms Figures

af23560.mtx 10 2 zn 240 No converge Fig. 5
mhd4800b.mtx 10 2 zn 41 8.127003e−10 Fig. 6
mhd4800b.mtx 20 5 zn 19 4.089292e−15 Fig. 7
gre 1107.mtx 30 2 zn 46 3.389087e−09 Fig. 8
west2021.mtx 10 2 zn 18 1.742610e−09 Fig. 9

Table 3
MERAM results on NetSolve

Matrix m1, m2, m3 s v1, v2, v3 Iteration Residual norms Figures

af23560.mtx 5, 7, 10 2 zn, zn, zn 74 9.329017e−10 Fig. 5
mhd4800b.mtx 5, 7, 10 2 zn, zn, zn 6 4.016027e−09 Fig. 6
mhd4800b.mtx 10, 15, 20 5 zn, zn, zn 4 2.999647e−15 Fig. 7
gre 1107.mtx 5, 10, 30 2 zn, zn, zn 32 6.753314e−09 Fig. 8
west2021.mtx 5, 7, 10 2 zn, zn, zn 14 6.267924e−09 Fig. 9

Table 4
Comparison of ERAM(m) and ERAM(m1, . . . , m�) on NetSolve

Matrix Figures � ERAM MERAM

m Iteration m1, . . . , m� Iteration

af23560.mtx Fig. 5 3 10 * 5, 7, 10 74
mhd4800b.mtx Fig. 6 3 20 19 10, 15, 20 4
mhd4800b.mtx Fig. 7 3 10 41 5, 7, 10 6
gre 1107.mtx Fig. 8 3 30 46 5, 10, 30 32
west2021.mtx Fig. 9 3 10 18 5, 7, 10 14

ERAM processes where the steps 2 and 3.(a) are com-
puted in RPC nonblocking mode. The efficiency of our
algorithms on NetSolve are measured in terms of the
numberit of the restarts. The number of iterations of
MERAM in all of the figures is the number of iterations
of the ERAM process which reaches convergence. It is
generally the ERAM process with the largest subspace
size.

5.1. MERAM-NS versus ERAM

In the following figures, we denote by MERAM
(m1, . . . , ml) a MERAM with subspaces sizes
m1, . . . , ml and by ERAM(m) an ERAM with subspace
sizem. TheTables 2 and 3present the results obtained
with ERAM and MERAM algorithms on NetSolve and
Table 4presents a comparison between the results ob-

tained by ERAM and MERAM in terms of the number
of restarts. We show graphically inFigs. 5–9the resid-
ual norm as a function of iteration number to reach
convergence using ERAM and MERAM on NetSolve.
The results of our experiments presented in theTables
2–4and in theFigs. 5–9indicate that our MERAM-NS
algorithm has better performance than ERAM. We no-
tice from these tables that in terms of the number of the
restarts MERAM is considerably more efficient than
ERAM.

6. Conclusion

The standard restarted Arnoldi algorithm and its
variants may not be efficient for computing a few se-
lected eigenpairs of large sparse non-Hermitian ma-
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trices. In order to improve the overall performance of
the Arnoldi type algorithm, we propose an adaptation
of the multiple explicitly restarted Arnoldi method for
NetSolve system. We have seen that this method accel-
erates the convergence of explicitly restarted Arnoldi
method. The numerical experiments have demon-
strated that this variant of MERAM is often much more
efficient than ERAM. In addition, this concept may be
used in some Krylov subspace type methods for the
solution of large sparse non symmetric eigenproblems,
such as the multiple implicitly restarted method based
on IRAM [4,9].

We have shown that the MERAM-type asyn-
chronous algorithms are very well adapted to the global
computing systems such as NetSolve. Meanwhile, one
of the major problems remains the transfer of the
matrix from the client server towards the computa-
tion servers. For example, the order of magnitude of
the transferred data between client and computation
servers isO((it1 + · · · + it�) × NNZ) for MERAM-
NS algorithm. Moreover, the classical evaluation of
performance is no longer valid in this kind of system.
For example, the execution response time cannot be a
good measure of performance for MERAM nor for a
comparison between MERAM and ERAM. This is for
the following reasons:

load,
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