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Abstract

The explicitly restarted Arnoldi method (ERAM) allows one to find a few eigenpairs of a large sparse matrix. The multiple
explicitly restarted Arnoldi method (MERAM) is a technique based upon a multiple projection of ERAM and accelerates its
convergence [N. Emamad, S. Petiton, G. Edjlali, Multiple explicitly restarted Arnoldi method for solving large eigenproblems,
SIAM J. Sci. Comput. SJISC 27 (1) (2005) 253-277]. MERAM allows one to update the restarting vector of an ERAM by taking
into account the interesting eigen-information obtained by its other ERAM processes. This method is particularly well suited
to the GRID-type environments. We present an adaptation of the asynchronous version of MERAM for the NetSolve global
computing system. We point out some advantages and limitations of this kind of system to implement the asynchronous hybrid
algorithms. We give some results of our experiments and show that we can obtain a good acceleration of the convergence compared
to ERAM. These results also show the potential of the MERAM-like hybrid methods for the GRID computing environments.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction combine several different numerical methods or several
differently parameterized copies of the same method
The hybrid methods were proposed to accelerate theto solve these problems efficien{,7,6,13,14] The
convergence and/or to improve the accuracy of the so- multiple explicitly restarted Arnoldi method proposed
lution of some linear algebra problems. These methods in [3] is a hybrid method which allows one to approxi-
mate a few eigenpairs of a large sparse non-Hermitian
matrix. This technique is based on the projection of the
problem on a set of subspaces and thus creates a whole
fax: +1 8.6 5974 8296. . range of differently parameterized ERAM processes.
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obtained by itself as well as by the other ERAM pro-

cesses. In this method, the communications betweennitude)A,, = (A(l”l), .

ERAM processes can be completely asynchronous.

In this paper we present the application of the asyn-

chronous version of MERAM to the NetSolve global

computing system. We show some advantages and lim-

itations of this kind of system to implement the asyn-

chronous hybrid algorithms. We also give an adapta-

tion of the algorithm for NetSolve and show that we

can obtain a good acceleration of the convergence with

respect to the explicitly restarted Arnoldi method.
Section2 describes the basic Arnoldi algorithm and
explicitly restarted Arnoldi method. Sectidghintro-
duces MERAM and some of its algorithms. We point
out the limitations of NetSolve-type systems to im-
plement the asynchronous algorithm of MERAM and
present an adaptation of this algorithm for NetSolve in
Section4. This algorithm is evaluated in Secti&by
a set of test matrices coming from various application
problems. The concluding remarks in Secti®mvill
contain our perspectives on the problem.

2. Explicitly restarted Arnoldi method

Let A be a large non-Hermitian matrix of dimen-
sionn x n. We consider the problem of finding a few
eigenpairsi, u) of A:

Au = »u with A € C andu € C". 1)

Let wy = v/|lv]|2 be an initial guessi; be an inte-
ger withm <« n. A Krylov subspace method allows
to project the problem (1) onto am-dimensional sub-
spaceK = span(w1, Awz, ..., A" 1wi). The well-
known Arnoldi process is a projection method which
generates an orthogonal basis, ..., w, of the
Krylov subspac& by using the Gram-Schmidt orthog-
onalization process. LeaR(input : A, m, v, output :
H,,, W,) be such an Arnoldi reduction. Tha x

m matrix H,, = (h; ;) and then x m matrix W, =
[wi, ..., w,] issued from thear algorithm and the
matrix A satisfy the equation:
AWm = WmHm + fme:z] (2)
where f,, = hp41,mWm+1 @ande,, is themth vector of
the canonical basis ™. Thes desired Ritz valués

1 A Ritz value/vector of a matrix is an approximated eigen-
value/eigenvector.
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(with largest/smallest real part or largest/smallest mag-
.., Ay and their associate Ritz

vectors U,, = (u‘lm),...,u§m)) can be computed as
follows?:

Basic Arnoldi Algorithm. BAA(input: A, s, m,v;
output : rg, Ay, Uy).

(1) Compute an AR(input : A, m, v; output ;. Hy,,
W) step.

(2) Compute the eigenpairs &f, and select the de-
sired ones: ™), y™)i=s.

(3) Compute thes associate Ritz vectora,(’”) =
Wuy™ (fori=1,....5).

(4) Compute ry = (p1, ..., ps)" with p;
K0 Dul™),.

(A —

If the accuracy of the computed Ritz elements is
not satisfactory the projection can be restarted onto a
new K. This new subspace can be defined with the
same subspace size and a new initial guess. The tech-
nique is called the explicitly restarted Arnoldi method.
Starting with an initial vectow, it computesBaA. If
the convergence does not occur, then the starting vec-
tor is updated (using appropriate methods on the com-
puted Ritz vectors) andBAA process is restarted un-
til the accuracy of the approximated solution is sat-
isfactory. This update is designed to force the vector
into the desired invariant subspace. This goal can be
reached by some polynomial restarting strategies pro-
posed in[6,8] and discussed in Sectidhl An algo-
rithm of the explicitly restarted Arnoldi method is the
following:

ERAM algorithm.
output : rg, Ay, Up).

ERAM(input : A, s, m, v, tol,

(1) start.Choose aparameterand an initial vector
V.

(2) Iterate. Compute aBAA(input: A, s, m, v,
output : rg, Ay, Uy) step.

(3) Restart. If g(rs) > rol then used,, andU,, to
update the starting vectorand go to 2.

2 We suppose that the eigenvalues and corresponding eigenvectors

of H,, are re-indexed so that the fissRitz pairs are the desired ones.
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tol is a tolerance value and the functigrdefines the (c) If (ir > ¢ and ¢ mod¢) # 0) then use the re-
stopping criterion of iterations. Some typical examples sults produced by the lastBAA processes to
are: g(rs) = rslloc @andg(rs) = 355 @p; Wherea; updatev*1.

are scalar values. (3) Restart. Use the results produced by thdéast

BAA processes to updaté and go to 2.

3. Multiple explicitly restarted Arnoldi method wherer is the vector of the residual norms at titie
iteration.
The multiple explicitly restarted Arnoldi method is With the hypothesis thai?lp) is “better” thami'mq)
a technigue based upon an ERAM with multiple pro- if pj.? < p?, an interesting updating strategy would be
jection. This method projects an eigenproblem on a g choose) as a functiorf of “the best” Ritz vectors:
set of subspaces and thus creates a whole range of
differently parameterized ERAM processes which co- v’ = f(UP®S, 3)

operate to efficiently compute a solution of this prob- .
P y comp P whereUest= (u9s! . . uP) andub®stis “the best’

lem. In MERAM the restarting vector of an ERAM . DS :
; - . .. jth Ritz vector. The definition of the functigitan be
is updated by taking into account the interesting eigen based on the techniques proposed by Sadéiand

information obtained by the other ones. In other words, will be discussed in SectioL 1.
he ERAM pr fa MERAM in with several . .
the processes ota beg th severa The problem of the above algorithm is that there

subspaces spanned by a set of initial vectors and a se'[Is no paralielism between rocesses. This is
of subspace sizes. If the convergence does not occur P P '

for any of them, then the new subspaces will be de- because of the existence of the synchronization points

fined with initial vectors updated by taking into account 2.(c) and 3 in the algorithm. In the following algo-

the intermediary solutions computed by all the ERAM gtzn;éraf\?: dse'(lj'r:;[tS]r’négizee2£nhcgggﬁuorgczzgtsaf-
processes. Each of these differently sized subspaces i% . : ) P ’
er its BAA step, sends its results to all other pro-

defined with a new initial vectov. To overcome the .
cesses. LeBend Eigen_Info represents the task

storage dependent shortcoming of ERAM, a constraint of sending results from an ERAM brocess to all
on the subspace size of each ERAM is imposed. More sending resufts , , P SS
other ERAM processegeceiv_Eigen_Info be

recisely, the size of a projection subspace has to be- .
P y brol P the task of receiving results from one or more ERAM

long to the discrete interval, = ins . The )
bougn dsmr andmp maydgle Ch[glsne‘;; i’grpjﬁction of Processes by the current ERAM process and finally,
min ax Rcv_Eigen_Info be a boolean variable that is true

the available computation and storage resources and. .
have to fulfill mymn < mmax < 1. Letmy < - - < g if the current ERAM process has received results from

be a set of subspace sizes with; € I, (L <i < ¢), tr;?s‘?ot:ec:fEMREA&'\L\F/’{%C;]S:?;OA .[rJ]araIIeI asynchronous
M =(m1,...,mo)andV® =[v1, ..., o] be the ma- V€™ : wing:

trix of £ starting vectors. An algorithm of this method

to compute (s < m1) desired Ritz elements dfisthe ~ ASynchronous MERAM algorithm.

following: .
(1) start. Choose a starting matrix‘ and a set of
. ) _ ' subspace size® = (my, ..., my).
MERAM algorithm. MERAM(input : A, s, M, V", (2) Iterate. Fori=1,...,¢doin parallel ERAM
tol; output : rg, Ay, Up) process):
e Computation process
(1) start. Choose a starting matrix‘ and a set of (@) Compute a BAA(input: A, s, mj, V'
subspace size¥ = (m1, ..., myg). Letit = 0. output : rg, Aw;, Up,) Step.
(2) Tterate.Fori=1,...,¢douitr =ir+1. (b) If g(ri) < tol stop all processes.
(@) Compute @AA(input : A, s, m;, v'; output : (c) Update the initial guess (iRcv_Eigen_
ri, Am;, Unm;) Step. Info) then use the hybrid restart strategy,

(b) If g(ri) < tol then stop all processes. otherwise use the simple restart strategy).
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e Communication process
(d) Send_Eigen_Info
(e) Receiv_Eigen_Info

The ¢ ERAM processes defined in step 2 of the above
algorithm are all independents and can be run in paral-
lel. Each of them is constituted by a computation part
and a communication part. The computation and the
communication can be overlapped inside of an ERAM
process. The updating of the initial vectdrcan be
done by taking into account the most recent results
of the ERAM processes. We recall that, in the above
MERAM algorithm, the¢ last results are necessarily
the results of thé ERAM processes.

The above algorithm is fault tolerant. A loss of an
ERAM process during MERAM execution does notin-
terfere with its termination. It has a great potential for
dynamic load balancing; the attribution of the ERAM
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ERAM(m, v') ERAM(m,,v2 ERAM(m,,v3)

(uonendwoo) swi|

i3 A,
communication

Fig. 1. Asynchronous MERAM witli = 3.

processes of MERAM to the available resources can be <m. One appropriate possibility to defipés a Cheby-

done as a function of their subspace sizes at run time.

The heterogeneity of computing supports can be then
an optimization factor for this methd@]. Because of

all these properties, this algorithm is well suited to the
GRID-type environments. In such environments, éhe
ERAM processes constituting a MERAM can be dedi-
cated t different servers. Suppose that ittERAM
process is dedicated to the ser$erThis server keeps
the execution control of thith ERAM process until the

convergence which occurs, in general, by the fastest

server. TheFig. 1 shows an execution scheme of the
asynchronous MERAM witlt = 3 on three servers.
We notice that the computation and communication
parts are overlapped.

3.1. Restarting strategies

Saad[7] proposed to restart an iteration of ERAM
with a vector preconditioning so that it has to be forced
into the desired invariant subspace. It concerns a poly-
nomial preconditioning applied to the starting vector
of ERAM. This preconditioning aims at computing the

shev polynomial determined from some knowledge on
the distribution of the eigenvalues 4f This restarting
strategy is very efficient to accelerate the convergence
of ERAM and is discussed in detail [i@,6]. Another
possibility to define the polynomiglis to compute the
restarting vector with a linear combinationsadesired
Ritz vectors:

o(k) = iaiu,(’"’(k) (5)
i=1

whereugm)(k) denotesth Ritz vector computed at the
iterationk. There are several ways to choose the scalar
valuesy; in (5). One choice can be; equal to the

ith residual norm. Some other choices carwpe- 1,
aj=iory; =s—i+1forl<i < s(sed8]formore
details). We propose to make use of the following linear
combination of the wanted eigenvectors:

v = Zlk(k)uk(m) (6)
k=1

restarting vector so that its components are nonzero in wheres coefficientd, (1) are defined by:
the desired invariant subspace and zero in the unwanted

invariant subspace:
(k) = p(A)v 4

whereuv(k) is kth restarting vector of ERAM ang is
a polynomial in the space of polynomials of degree

s A —ajm .
L()) = H (}M> , With &
j=1; j#k J
_ Amin + A — (Amin/n) = Z}Yczl )‘k(m)
= 2 ’ - s
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and Amin is the eigenvalue with the smallest residual @) @)
norm. In the experiments of the next section, we made
use of this strategy (i.e., E¢6)) to update the initial ()
vector of the ERAM as well as the ones of the ERAM (c) (c)
processes of MERAM. For MERAM this equation be- (d)/ (e)
comes

s

i (best; (best)
o =3 1% (7) @/ (e) @/ (e)
k=1 (a)

(best)
k

whereu is “the best”kth eigenvector computed (b)

by the ERAM processes of MERAM ariff®is its ©
associate coefficient.

Fig. 2. Asynchronous MERAM on three communicating servers
(with £ = 3).
4. Asynchronous MERAM on a global

computing system
TRAN, MATLAB, and Mathematica as languages of
4.1. NetSolve global computing system implementation for client programs. To solve a problem
using NetSolve, a problem description file (PDF) corre-
The NetSolve system is a grid middleware sponding to the problem has to be defifig8,10-12]
based on the concepts afemote Procedure
Call (RPC) that allows users to access both hard- 4.2. Asynchronous MERAM on NetSolve system
ware and software computational resources distributed
across a network. NetSolve provides an environment  The servers of the NetSolve system cannot commu-
that monitors and manages computational resourcesnicate directly to each other. Consequently, contrarily
and allocates the services they provide to NetSolve en-to the MERAM running schemes presented-igs. 1
abled client programs. NetSolve uses a load-balancingand 2 a server cannot keep the control of an ERAM
strategy to improve the use of the computational re- process until the convergendég. 2 shows the asyn-
sources availabls]. Three chief components of Net- chronous MERAM algorithm on three servers which
Solve are clients, agents and servers. The semantics otommunicate directly. Each server runs the steps 2.(a),
a NetSolve client request are: 2.(b) and 2.(c) of an ERAM and communicates with
the other servers by running the steps 2.(d) and 2.(e) of
(1) Client contacts the agent for a list of capable the algorithm. WhileFig. 3 shows the asynchronous
servers. MERAM algorithm on three servers of a system such
(2) Client contacts server and sends input parameters.as NetSolve where they cannot communicate directly.
(3) Server runs appropriate service. Indeed, to adapt the asynchronous MERAM algo-
(4) Server returns output parameters or error status torithm to NetSolve system a control process centralizing
client. the information and corresponding to a client compo-
nent of NetSolve has to be defined. This process has to
There are many advantages to using a system like request to the computation servers of the system to run
NetSolve which can provide access to otherwise un- the step 2.(a) of the ERAM processes of MERAM in
available software/hardware. In cases where the soft- RPC mode. The running of the step 2.(a) of an ERAM
ware is in hand, it can make the power of supercomput- occurs asynchronously with respect to the execution
ers accessible from low-end machines like laptop com- of the same step of the other ERAMs as well as with
puters. Furthermore, NetSolve adds heuristics that at- the execution of the rest of the client algorithm. Once
tempt to find the most expeditious route to a problem’s the control process receives the results of a BAA step,
solution set. NetSolve currently supports C, FOR- it tests the convergence by running the step 2.(b) of
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(a)
(e) (b) v__/
© o

Fig. 4. MERAM-NS on NetSolve (Ex. of three ERAMSs processes

Fig. 3. Asynchronous MERAM on three non-communicating and 21 serversy; is thekth server of the NetSolve system and
servers (witht = 3). is thejth restart of theth ERAM process of MERAM.

Instead, we notice that in each computation request in
RPC mode, the client program has to send all inputs
to the computation server which accepts this task. That
means, in the MERAM-NS algorithm, for each restart
(i.e., iteration) of every ERAM process, the client pro-
gram has to send theorder matrixA, and am-size

the algorithm. If the convergence is not reached then
it updates the initial guess with the available eigen-
information on this control/client server. An adapta-

tion of the asynchronous multiple explicitly restarted

Arnoldi method for NetSolve is the following:

MERAM-NS (input : A, s, M,V tol; output : r4, A, Upn)

(1) Start. Choose a starting matrix V¢ and a set of subspace sizes M
(ma, ..., mg).
Let it; = 0 (for i = 1,7).
(2) Fori=1,...,¢do:
(a) Compute a BAA(input : A, s, m;, v oulpul : 14, Ay, Up,) step in
RPC mode.
(3) Iterate. Fori=1,...,0do:
o If (ready_results) then #t; — it; | 1
(') Receive results.
(b) If g(r) < tol stop all processes.
(¢) Update the initial guess in function of the available eigen-
information.
(a) Compute a BAA(input : A, s, my,v'; outpul : v¢, Ay, Uyy,) step in
RPC mode.
e [ind if
(4) End. it = max(ily, ..., ;)

ready_results is a boolean variable which is
true if the outputs of the current BAA algorithm are initial vector to acomputation server. This engenders an
ready. In other words, if the server computing fttie intense communication between the client and compu-
BAA in RPC mode is ready to send its outputs. We tation servers. Butthis communication is overlapped by
notice that in this implementation the step 2.(d) of the the running of the rest of the algorithm. We can notice
asynchronous MERAM algorithm is not necessary and that when a computational server finishes the step 2.(a)
the step 2.(e) is replaced by 3)(evhich consists to  or 3.(a), it has to return+ 2 n-size output vectors to
receiveall eigen-information on the control process. the client processtig. 4 presents the implementation
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ARNOLDI METHOD
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Fig. 5. MERAM(5,7,10) vs. ERAM(10) with:f23560mtx matrix. MERAM converges in 74 restarts, ERAM does not converge after 240
restarts.
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Fig. 6. MERAM(5,7,10) vs. ERAM(10) with2d4800.mzx matrix. MERAM converges in six restarts, ERAM converges in 41 restarts.
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ARNOLDI METHOD
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2 4 6 8 10 12 14 16 18 20
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Fig. 7. MERAM(10,15,20) vs. ERAM(20) witmhd4800.mzx matrix. MERAM converges in four restarts, ERAM converges in 19 restarts.
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Fig. 8. MERAM(5,10,30) vs. ERAM(30) witlgre_-1107.mzx matrix. MERAM converges in 32 restarts, ERAM converges in 46 restarts.



N. Emad et al. / Future Generation Computer Systems 22 (2006) 279-290

ARNOLDI M

1072

287

ETHOD

107°

_. _. _.
g 9 =
[=2] o B~

residual norm/normf

_.
5]
4

1078

107°

—#—- ERAM-MAX
—— MERAM

8

10

iteration

Fig. 9. MERAM(5,7,10) vs. ERAM(10) witlwest2021mzx matrix. MERAM converges in 14 restarts, ERAM converges in 18 restarts.

of the MERAM-NS algorithm on a NetSolve system
with 21 serverdand¢ = 3.

In the asynchronous MERAM algorithm, at the end
of aniteration each ERAM sends- 2n-size vectorsto
¢ — 1 other processes. That means, each ERAM has to
communicatef{ — 1) x (s + 2) x n data to other pro-
cesses. The reception of 2 n-size vectors by a pro-
cess is not determinism and not quantifiable.

5. Numerical experiments

The experiments presented in this section have been

done on a NetSolve system whose computation servers

have been located in France (at the University of Ver-
sailles and the Institute of Technology oéNzy sites)
and in the USA and interconnected by the internet.
We implemented ERAM and MERAM (i.e., MERAM-
NS) algorithms using C and MATLAB for some real

3 This is an image of the system at a given instant. Indeed, since
the servers are volatile, the number of the servers in NetSolve system
can change at any moment.

matrices on the NetSolve system. The client applica-
tions are written in MATLAB while the programs hav-
ing to run in RPC mode (i.e., ERAM processes) are
written in C. The stopping criterion ig(r) = |7 |lo
whererl = (o}, ..., pi) andp’; is normalized by’ =
pi/llAlFforallje[l,...,slandi € [1,...,€]. The
tolerance valueol is 1078 in the Figs. 5 6, 8 and
1014 in the Fig. 7. For all figures the initial vec-
torisv=z,=(1,...,1)/s/n and the initial matrix

is V¢ =[v! =z,,...,v" = z,]. We search a number

s = 2 or 5 of the eigenvalues with the largest mag-
nitude. The used matrices are taken from the matrix
market[1] and presented in th&able 1 The number

of nonzero elements of a matrix is denoted /By Z.

In our experiments, we run MERAM-NS with= 3

Table 1

The matrix market used matrices

Matrix Matrix size NNZ
af2356Qmix 23560 484256
mhd4800b.mtx 4800 16160
gre 1107mix 1107 5664
west2021mix 2021 7353
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Table 2
ERAM results on NetSolve
Matrix m s v Iteration Residual norms Figures
af2356Qmtx 10 2 Zn 240 No converge Fig. 5
mhd4800b.mtx 10 2 Zn 41 8.127003e 10 Fig. 6
mhd480Mh.mtx 20 5 Zn 19 4.089292e 15 Fig. 7
gre 1107 mix 30 2 Zn 46 3.389087e09 Fig. 8
west2021mtx 10 2 Zn 18 1.742610e09 Fig. 9
Table 3
MERAM results on NetSolve
Matrix mi, mo, ma s vl 02,08 Iteration Residual norms Figures
af2356Qmtx 5,7,10 2 Zns Zns Zn 74 9.329017e 10 Fig. 5
mhd4800.mtx 5,7,10 2 Zns Zns Zn 6 4.016027e-09 Fig. 6
mhd4800b.mtx 10, 15, 20 5 Zns Zny Zn 4 2.999647e15 Fig. 7
gre_1107.mtx 5,10, 30 2 Zns Zns Zn 32 6.753314e09 Fig. 8
west2021mtx 5,7,10 2 Zns Zny Zn 14 6.267924e09 Fig. 9
Table 4
Comparison of ERAMg) and ERAM(n1, . . ., m;) on NetSolve
Matrix Figures 14 ERAM MERAM

m Iteration mi, ..., mg Iteration
af23560.mtx Fig. 5 3 10 * 5,7,10 74
mhd4800b.mtx Fig. 6 3 20 19 10, 15, 20 4
mhd4800b.mtx Fig. 7 3 10 41 57,10 6
gre.1107.mtx Fig. 8 3 30 46 5,10, 30 32
west2021.mtx Fig. 9 3 10 18 57,10 14

ERAM processes where the steps 2 and 3.(a) are com-tained by ERAM and MERAM in terms of the number
puted in RPC nonblocking mode. The efficiency of our of restarts. We show graphically kigs. 5—%he resid-
algorithms on NetSolve are measured in terms of the ual norm as a function of iteration number to reach
numberit of the restarts. The number of iterations of convergence using ERAM and MERAM on NetSolve.
MERAM in all of the figures is the number of iterations  The results of our experiments presented inTakbles

of the ERAM process which reaches convergence. Itis 2—4and in theFigs. 5-9ndicate that our MERAM-NS
generally the ERAM process with the largest subspace algorithm has better performance than ERAM. We no-

size. tice from these tables that in terms of the number of the
restarts MERAM is considerably more efficient than
5.1. MERAM-NS versus ERAM ERAM.

In the following figures, we denote by MERAM

(m1,...,m;) a MERAM with subspaces sizes 6. Conclusion
my, ..., myand by ERAM{z) an ERAM with subspace
sizem. TheTables 2 and present the results obtained The standard restarted Arnoldi algorithm and its

with ERAM and MERAM algorithms on NetSolve and  variants may not be efficient for computing a few se-
Table 4presents a comparison between the results ob- lected eigenpairs of large sparse non-Hermitian ma-
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trices. In order to improve the overall performance of Acknowledgement

the Arnoldi type algorithm, we propose an adaptation

of the multiple explicitly restarted Arnoldi method for The two first authors were supported in part by
NetSolve system. We have seen that this method accel-French ACI-GRID ANCG project.

erates the convergence of explicitly restarted Arnoldi
method. The numerical experiments have demon-
strated that this variant of MERAM is often much more
efficient than ERAM. In addition, this concept may be
used in some Krylov subspace type methods for the
solution of large sparse non symmetric eigenproblems,
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