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CZ-182 07 Prague 8, Czech Republic (miro@cs.cas.cz).
4 Heinrich-Heine-Universität, Mathematisches Institut, Universitätsstrasse 1, D-40225 Düsseldorf, Ger-
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Summary This paper provides two results on the numerical behavior of the classical

Gram-Schmidt algorithm. The first result states that, provided the normal equations

associated with the initial vectors are numerically nonsingular, the loss of orthogonality

of the vectors computed by the classical Gram-Schmidt algorithm depends quadratically

on the condition number. The second result states that, provided the initial set of vec-

tors has numerical full rank, two iterations of the classical Gram-Schmidt algorithm are

enough for ensuring the orthogonality of the computed vectors to be close to the unit

roundoff level.

1 Introduction

Let A = (a1, . . . , an) be a real m×n matrix (m ≥ n) with full column rank (rank(A) = n).

In many applications it is important to compute an orthogonal basis Q = (q1, . . . , qn)

of span(A) such that A = QR, where R is upper triangular matrix of order n. For this

purpose, many orthogonalization algorithms and techniques have been proposed and are

widely used, including those based on Householder transformations and Givens rotations

(see e.g. [3,6,7,15]). In this paper we focus on the Gram-Schmidt (GS) orthogonaliza-
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tion process [14] which numerical properties are certainly less understood than the two

previously mentioned techniques.

The Gram-Schmidt process has two basic computational variants: the classical Gram-

Schmidt (CGS) algorithm and the modified Gram-Schmidt (MGS) algorithm (see e.g. [3,

15]). From a numerical point of view, both of these techniques may produce a set of

vectors which is far from orthogonal and sometimes the orthogonality can be completely

lost [2,12]. A generally agreed opinion is that the MGS algorithm has much better numer-

ical properties than the CGS algorithm [12,16]. Björck [2] has proved that, for a matrix

A with numerical full rank, the loss of orthogonality in MGS occurs in a predictable way

and it can be bounded by a term proportional to the condition number κ(A) and to

the unit roundoff u. Many textbooks (see e.g. [3,7,15]) give examples where the orthog-

onality of the vectors computed by CGS is lost completely, but the connection to the

(ill-)conditioning of the problem has not been analyzed yet. As far as we could check,

there was only one attempt to give a bound for the CGS algorithm by Kie lbasiński and

Schwetlick (but unfortunately only in the Polish version of the 2nd edition of the book

[10], p. 299). In the first part of the paper, we give Theorem 1 that provides a new bound

for the loss of orthogonality in the CGS process. More precisely, Theorem 1 states that,

provided that the matrix AT A is numerically nonsingular, the loss orthogonality of the

vectors Q̄ = (q̄1, . . . , q̄n) computed by the CGS algorithm (measured by the norm of the

matrix I − Q̄T Q̄) can be bounded by a term proportional to the square of the condition

number κ2(A) times the unit roundoff. This result is based on the fact that the upper

triangular factor R̄ computed by CGS is the exact Cholesky factor of a matrix relatively

close to the matrix AT A, i.e. there exists a perturbation matrix E of relative small norm

such that AT A + E = R̄T R̄.

On the other hand, in some other applications, it may be important to produce vectors

Q so that their orthogonality is kept close to the machine precision. The orthogonality of

the vectors computed by Gram-Schmidt process can then be improved by reorthogonal-

ization: the orthogonalization step is iterated twice or several times. Section 3 is devoted

to the analysis of this algorithm and basically consists in the proof of Theorem 2. This

theorem states that, assuming numerical full rank of the matrix A, two iterations are

enough to provide that the level of orthogonality of the computed vectors is close to the

unit roundoff level. A rounding error analysis for this algorithm has already been given

by Abdelmalek [1] who considered exactly two iteration steps. To prove that the scheme

produces a set of vectors sufficiently orthogonal, Abdelmalek needed to assume that the

diagonal elements of the computed upper triangular factor are large enough. The main

contribution of this paper with respect to the work of Abdelmalek is to provide Lemma 2

and formula (3.33) which explain how these diagonal elements are controlled by the con-

dition number of the matrix A. With the results presented in this paper, we are able to

state that the results of Abdelmalek are indeed true for any set of initial vectors with

numerical full rank. A second rounding error analysis for the iterated classical Gram-

Schmidt algorithm has been done by Daniel, Gragg, Kaufman and Stewart [4]. Under
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certain assumptions they proved that either the algorithm converges (theoretically in an

infinite number of steps but in practice rapidly) to a sufficient level of orthogonality or

the termination criterion they use may continually fail to be satisfied. The contribution

of this paper with respect to the paper of Daniel et al. [4] is the same as for the paper

of Abdelmalek [1]. We clearly define what happens for numerically nonsingular matrices.

The iterated Gram-Schmidt algorithm was further thoroughly analyzed by Hoffmann [8].

His paper provided some nice tools for an elegant proof by induction. The proof of The-

orem 2 uses Hoffmann’s analysis (in contrast to [1,4]), the main motivation here is to

have a proof as self-contained, modern and short as possible.

In this paper we analyze the CGS algorithm and its version with reorthogonalization,

where each orthogonalization step is performed exactly twice (it is frequently denoted as

the CGS2 algorithm). The matrix with orthonormal columns Q = (q1, . . . , qn) in both

algorithms is constructed successively column-by-column so that for each j = 1, . . . , n we

have span(q1, . . . , qj) = span(a1, . . . , aj). For description we use the following notation.

We will not distinguish between these two mathematically equivalent algorithms and we

will use the same notation for the ’plain’ CGS algorithm and for the CGS2 algorithm.

The actual meaning of some quantity will be clear from the context of the section. The

CGS algorithm starts with q1 = a1/‖a1‖ and, for j = 2, . . . , n, it successively generates

vj = [I − Qj−1Q
T
j−1]aj , (1.1)

where qj = vj/‖vj‖. The corresponding column rj in the upper triangular factor R =

(r1, . . . , rn) is then given as rj = (QT
j−1aj, ‖vj‖)T . In the CGS2 algorithm, we start with

q1 = a1/‖a1‖ and, for j = 2, . . . , n, we successively compute the vectors

vj = [I − Qj−1Q
T
j−1]aj , (1.2)

wj = [I − Qj−1Q
T
j−1]vj . (1.3)

The vector qj is the result of the normalization of wj and it is given as qj = wj/‖wj‖. The

elements of the triangular factor are given by (rj, 0)T +sj = (QT
j−1aj, 0)T +(QT

j−1vj , ‖wj‖)T .

Throughout the paper, ‖X‖ denotes the 2-norm, σmin(X) is the minimal singular value

and κ(X) is the condition number of the matrix X; ‖x‖ denotes the Euclidean norm of

a vector x. For distinction, we denote quantities computed in finite precision arithmetic

using an upper-bar. We assume the standard model for floating-point computations, and

use the notation fl(·) for the computed result of some expression (see e.g. [7]). The

unit roundoff is denoted by u. The terms ck = ck(m,n), k = 1, 2, . . . are low-degree

polynomials in the problem dimensions m and n, they are independent of the condition

number κ(A) and the unit roundoff u, but they do depend on some of the details of the

computer arithmetic.

2 Loss of orthogonality in the classical Gram-Schmidt algorithm

This section is devoted to the analysis of the CGS algorithm. Theorem 1 states that

the bound on the loss of orthogonality of the vectors computed by CGS depends on the
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square of the condition number κ(A). The key point of the proof is the Lemma 1 stating

that the R-factor computed by CGS is a backward stable Cholesky factor for the matrix

AT A. We note that the factor obtained from the Cholesky factorization of AT A is another

backward stable Cholesky factor, in practice different by a factor of uκ(A) (while they

are equal in exact arithmetic).

Our analysis is based on standard results from the rounding error analysis of an

elementary orthogonalization step (see, e.g., Björck [2,3]). These are first consecutively

recalled in relations (2.4), (2.5), (2.6) and (2.7) (To be fully correct, throughout the

whole paper we assume that mu � 1). The vector v̄j computed in (1.1) satisfies

v̄j = aj −
j−1
∑

k=1

q̄kr̄k,j + δvj , ‖δvj‖ ≤ c0u‖aj‖, (2.4)

where c0(m,n) = O(mn). The vector q̄j results from the normalization of the vector v̄j

and it is given as

q̄j = v̄j/‖v̄j‖ + δqj , ‖δqj‖ ≤ (m + 4)u, ‖q̄j‖2 ≤ 1 + (m + 4)u. (2.5)

The standard rounding error analysis for computing the orthogonalization coefficients

r̄i,j, i = 1, . . . , j − 1, and the diagonal element r̄j,j leads to the following error bounds:

r̄i,j = q̄T
i aj + δri,j , |δri,j | ≤ mu‖q̄i‖ ‖aj‖, (2.6)

r̄j,j = ‖v̄j‖ + δrj,j, |δrj,j | ≤ mu‖v̄j‖. (2.7)

Summarizing (2.4) together with (2.6) and (2.7) for steps j = 1, . . . , n into matrix no-

tation (for details we also refer to Daniel et al [4]), the basis vectors Q̄ and the upper

triangular factor R̄ computed by the CGS algorithm satisfy the recurrence relation

A + δA = Q̄R̄, ‖δA‖ ≤ c1u‖A‖, (2.8)

where c1(m,n) = O(mn3/2). The key point in the analysis of the CGS algorithm consists

in understanding the numerical properties of the computed upper triangular factor R̄.

In the next lemma, we prove that it is an exact Cholesky factor of AT A perturbed

by a matrix of relative small norm. An interpretation of this lemma is that the CGS

algorithm on the matrix A is a backward stable algorithm for the computation of the

Cholesky decomposition of the matrix AT A.

Lemma 1 The upper triangular factor R̄ computed by the CGS algorithm is such that

R̄T R̄ = AT A + E, ‖E‖ ≤ c2u‖A‖2, (2.9)

where c2(m,n) = O(mn2).

Proof We begin with the formula (2.6) for the orthogonalization coefficient r̄i,j in the

form

r̄i,j = q̄T
i aj + δri,j = (v̄i/‖v̄i‖ + δqi)

T aj + δri,j . (2.10)
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Multiplying both sides of (2.10) by ‖v̄i‖ and substituting r̄i,i on the left-hand side using

(2.7), we get the relation

r̄i,j(r̄i,i − δri,i) = v̄T
i aj + ((δqi)

T aj + δri,j)‖v̄i‖.

Substituting for the computed vector v̄i from (2.4) and using the identities (2.6) for r̄k,i,

we obtain, after some manipulations, the identity

r̄i,ir̄i,j = (ai −
i−1
∑

k=1

q̄kr̄k,i + δvi)
T aj +

(

(δqi)
T aj + δri,j

)

‖v̄i‖ + r̄i,jδri,i (2.11)

= aT
i aj −

i−1
∑

k=1

r̄k,i(r̄k,j − δrk,j) + (δvi)
T aj + ((δqi)

T aj + δri,j)‖v̄i‖ + r̄i,jδri,i.

Thus we can immediately write

i
∑

k=1

r̄k,ir̄k,j = aT
i aj +

i−1
∑

k=1

r̄k,iδrk,j + (δvi)
T aj + ((δqi)

T aj + δri,j)‖v̄i‖ + r̄i,jδri,i,

which gives rise to the expression for the (i, j)-element in the matrix equation R̄T R̄ =

AT A + E. The bound for the norm of the matrix E can be obtained using the bounds on

δrk,i and δri,i from (2.7), the bound on δvi from (2.4), the bound on δqi from (2.5) and

considering that

|r̄k,i| ≤ ‖q̄k‖ ‖ai‖ + |δrk,i| ≤ [1 + 2(m + 4)u] ‖ai‖,

‖v̄i‖ ≤ ‖ai‖ +
i−1
∑

k=1

|r̄k,i| ‖q̄k‖ + ‖δvi‖ ≤ [n + 2c0u] ‖ai‖. (2.12)

Note that a much smaller bound on ‖v̄i‖ than the one given by (2.12) can be derived,

but this one is small enough to get a bound in O(mn)u‖ai‖ ‖aj‖ for all the entries of E.

The norm of the error matrix E can then be bounded by c2u‖A‖2 for a properly chosen

c2.

Corollary 1 Under assumption on numerical nonsingularity of the matrix AT A, i.e.

assuming c2uκ2(A) < 1, the upper triangular factor R̄ computed by the CGS algorithm

is nonsingular and we have

‖R̄−1‖ ≤ 1

σmin(A) [1 − c2uκ2(A)]1/2
. (2.13)

The analogy of this corollary in exact arithmetic is that if A is nonsingular, then R is

nonsingular and ‖R−1‖ = 1/σmin(A). We are now ready to prove the main result of this

section.

Theorem 1 Assuming c2uκ2(A) < 1, the loss of orthogonality of the vectors Q̄ computed

by the CGS algorithm is bounded by

‖I − Q̄T Q̄‖ ≤ c3uκ2(A)

1 − c2uκ2(A)
, (2.14)

where c3(m,n) = O(mn2).
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` = 10−4, κ(A) = 2.0000 × 104 ` = 10−7, κ(A) = 2.0000 × 107

j ‖I − Q̄T
j Q̄j‖ ‖I − Q̄T

j Q̄j‖

2 2.7747e-13 1.6266e-09

3 2.2646e-09 1.3280e-02

4 2.9616e-09 1.6491e-02

Table 1. The loss of orthogonality in CGS measured by ‖I−Q̄T
j Q̄j‖ with respect to the orthogonalization

step j (Experiments performed with MATLAB, where u = 2.2204e − 16).

Proof It follows from (2.8) that (A+ δA)T (A+ δA) = R̄T Q̄T Q̄R̄. Substituting AT A from

(2.9), we have

R̄T (I − Q̄T Q̄)R̄ = −(δA)T A − AT (δA) − (δA)T (δA) + E.

Assuming c2uκ2(A) < 1, we can pre-multiply this identity from the left (resp. from the

right) by R̄−T (resp. by R̄−1). The loss of orthogonality I − Q̄T Q̄ can then be bounded

as

‖I − Q̄T Q̄‖ ≤
(

2‖δA‖ ‖A‖ + ‖δA‖2 + ‖E‖
)

‖R̄−1‖2.

Using the bounds on ‖δA‖, ‖E‖ and ‖R̄−1‖ in Equations (2.8), (2.9) and (2.13), we obtain

the statement of the theorem.

We have proved that for CGS the loss of orthogonality can be bounded in terms of

the square of the condition number κ(A). This is true for every matrix A such that AT A

is numerically nonsingular, i.e. c2uκ2(A) < 1. In contrast, Björck [2] proved that the loss

of orthogonality in MGS depends only linearly on κ(A). For this, he has assumed the

numerical full rank of the matrix A, i.e. cuκ(A) < 1.

Let us illustrate how tight the bound (2.14) is. We consider the famous Läuchli matrix

of order n+1×n (for details see [2] or [9]) with nonzero elements defined as A1,j = 1 and

Aj+1,j = ` � 1 (j = 1, . . . , n). This matrix has the following properties: σmin(A) = `,

‖A‖ = (n + `2)1/2 ≈ ‖aj‖ = (1 + `2)1/2, j = 1, . . . , n and κ(A) = `−1(n + `2)1/2 ≈
n1/2`−1. It is particularly interesting to study the Gram-Schmidt algorithm with this

matrix since, at every step j ≥ 2, we have rj,j = ‖vj‖ ≈ σmin(A). This significantly

affects the numerical behavior of the CGS algorithm in finite precision arithmetic. In

Table 1, we report the loss of orthogonality between the vectors computed by CGS

(measured by ‖I − Q̄T
j Q̄j‖) for ` = 10−4 and ` = 10−7. It is clear from Table 1 that the

loss of orthogonality depends quadratically on the condition number of A (except for the

step j = 2, where CGS coincides with MGS), and thus the bound (2.14) is justified.

3 Loss of orthogonality in the Gram-Schmidt algorithm with

reorthogonalization

In this section we analyze the CGS2 algorithm, where the orthogonalization of the current

vector aj against the previously computed set is performed exactly twice. In contrast to
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the CGS algorithm, we use a standard assumption on the numerical full rank of the initial

set of vectors in the form c4uκ(A) < 1 and prove that two steps are enough for preserving

the orthogonality of computed vectors close to the machine precision level. Indeed, the

main result of this section is formulated in the following theorem.

Theorem 2 Assuming c4uκ(A) < 1, the loss of orthogonality of the vectors Q̄ computed

by the CGS2 algorithm can be bounded as

‖I − Q̄T Q̄‖ ≤ c5u. (3.15)

where c4 = O(m2n3) and c5 = O(mn3/2).

The proof of Theorem 2 is done using induction. We assume that, at step j − 1, we

have

‖Q̄T
i−1q̄i‖ ≤ c6u, i = 1, . . . , j − 1, (3.16)

where c6(m,n) = O(mn) (note that this is trivially true at step 1). The goal is to prove

that the statement (3.16) is also true at step j; that is to say we want to prove that

‖Q̄T
j−1q̄j‖ ≤ c6u. Of particular importance for us is the result proved by Hoffmann [8, p.

343-4]. He proved that if ‖Q̄T
i−1q̄i‖ ≤ c6u for i = 1, . . . , j then

‖I − Q̄T
j Q̄j‖ ≤ max

i=1,...,j

{

‖q̄i‖2 − 1 + ‖Q̄T
i−1q̄i‖

√

2j
}

≤ c5u, (3.17)

where c5(m,n) = (1 + (m + 4)u)
√

2n1/2c6(m,n) + m + 4 = O(mn3/2). This will finally

give the statement (3.15). Note that (3.17) also implies that ‖Q̄j−1‖ ≤ [1 + c5u]1/2.

Similarly to (2.4), we first recall the results for the elementary projections (1.2)

and (1.3)

v̄j = aj −
j−1
∑

k=1

q̄kr̄k,j + δvj , ‖δvj‖ ≤ c0u‖aj‖, (3.18)

w̄j = v̄j −
j−1
∑

k=1

q̄ks̄k,j + δwj , ‖δwj‖ ≤ c0u‖v̄j‖, (3.19)

where c0(m,n) = O(mn). The orthogonalization coefficients r̄k,j and s̄k,j, k = 1, . . . , j−1

and the diagonal elements s̄j,j (note that the normalization of the vector is performed

only after the second iteration) satisfy

r̄k,j = q̄T
k aj + δrk,j, s̄k,j = q̄T

k v̄j + δsk,j, s̄j,j = ‖w̄j‖ + δsj,j, (3.20)

|δrk,j| ≤ mu‖q̄k‖ ‖aj‖, |δsk,j| ≤ mu‖q̄k‖ ‖v̄j‖, |δsj,j| ≤ mu‖w̄j‖. (3.21)

The vector q̄j comes from the normalization of the vector w̄j. Analogously to (2.5), we

have

q̄j = w̄j/‖w̄j‖ + δqj , ‖δqj‖ ≤ (m + 4)u, ‖q̄j‖2 ≤ 1 + (m + 4)u. (3.22)

The relations (3.18) and (3.19) can be added to give

aj + δvj + δwj =
j−1
∑

k=1

(r̄k,j + s̄k,j)q̄k + w̄j . (3.23)
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Taking also into account the errors (3.21) and (3.22), the recurrence (3.23) for j = 1, . . . , n

can be rewritten into the matrix relation

A + δV + δW = Q̄(R̄ + S̄), (3.24)

where δV = (δv1, . . . , δvn) and δW = (δw1, . . . , δwn). For simplicity, we will assume a

bound for the perturbation matrices δV and δW in the same form as the one for the

perturbation matrix δA in (2.8). Actually, the possible differences can be hidden into

definition of the constant c1.

In order to prove that ‖Q̄T
j−1q̄j‖ ≤ c6u, we proceed in two steps. In the first step,

we analyze the orthogonality of the vector v̄j with respect to the column space of the

matrix Q̄j−1. We give a bound for
‖Q̄T

j−1
v̄j‖

‖v̄j‖
. In the second part of the proof, a bound

for the quotient
‖Q̄T

j−1
w̄j‖

‖w̄j‖
is given. The factors

‖aj‖
‖v̄j‖

and
‖v̄j‖
‖w̄j‖

play a significant role in

the proof. Assuming that A has numerical full rank, we prove a lower bound for the

factor
‖aj‖
‖v̄j‖

proportional to the minimum singular value of A. Using this bound, we prove

that the factor
‖v̄j‖
‖w̄j‖

is necessarily close to 1. This last statement is the main reason why

two iterations of the CGS process are enough for preserving the orthogonality of the

computed vectors close to the level of the unit roundoff.

Let us start now with the analysis of the first step. Multiplication of the expression

(3.18) from the left by Q̄T
j−1 leads to the identity

Q̄T
j−1v̄j = (I − Q̄T

j−1Q̄j−1)Q̄T
j−1aj + Q̄T

j−1(−
j−1
∑

k=1

q̄kδrk,j + δvj).

Taking the norm of this expression, dividing by the norm of v̄j and using (3.20) and

(3.21), the quotient ‖Q̄T
j−1v̄j‖/‖v̄j‖ can be bounded as

‖Q̄T
j−1v̄j‖
‖v̄j‖

≤ [c5 + mn(1 + (m + 4)u) + c0] (1 + c5u)1/2u
‖aj‖
‖v̄j‖

. (3.25)

The inequality (3.25) is easy to interpret. It is well known and described in many papers

(e.g. [5,8,13]) that the loss of orthogonality after the first orthogonalization step (1.2)

is proportional to the quantity
‖aj‖
‖v̄j‖

. The next lemma provides us some control on this

quantity.

Lemma 2 Assuming c7uκ(A) < 1, the norms of the vectors v̄j computed by the first

iteration of the CGS2 algorithm satisfy the inequalities

‖aj‖
‖v̄j‖

≤ κ(A) [1 − c7uκ(A)]−1 , (3.26)

where c7(m,n) = O(mn3/2).

Proof We consider the matrix recurrence (3.24) for the first j−1 orthogonalization steps

Aj−1 + δVj−1 + δWj−1 = Q̄j−1(R̄j−1 + S̄j−1). (3.27)
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Summarizing (3.27) with (3.18), we can rewrite these two relations into the matrix rela-

tion

Aj + [δVj−1 + δWj−1, δvj − v̄j] = Q̄j−1

[

R̄j−1 + S̄j−1, r̄j
]

, (3.28)

where [R̄j−1 +S̄j−1, r̄j ] is a (j−1)×j matrix. Let us define ∆j = [δVj−1 +δWj−1, δvj − v̄j ]

and remark that the matrix Q̄j−1[R̄j−1 + S̄j−1, r̄j ] is of rank (j−1). Therefore the matrix

Aj + ∆j has rank j − 1 whereas we have assumed that the matrix Aj has full rank

j. This means that the distance from Aj to the set of matrices of rank j − 1 is less

than the norm of ∆j. The distance to singularity for a square matrix can be related to

its minimal singular value. Theorems on relative distance to singularity can be found in

many books (e.g. [7, p. 123] or [6, p. 73]). Although the textbooks usually assume the case

of square matrix, the statement is valid also for rectangular matrices. Indeed, in our case

the minimal singular value of Aj can be then bounded by the norm of the perturbation

matrix ∆j that is to say σmin(Aj) ≤ ‖∆j‖ and so we can write

σmin(A) ≤ σmin(Aj) ≤ ‖∆j‖ ≤
√

‖δVj−1‖2 + ‖δWj−1‖2 + ‖δvj‖2 + ‖v̄j‖2. (3.29)

We are now going to use the bounds on the norms of the matrices δVj−1, δWj−1, the bound

(3.18) on the vector δvj and an argumentation similar to (2.12). Assuming c7uκ(A) < 1

(with a properly chosen polynomial c7(m,n) = O(mn3/2) with the same degree as the

one of c1(m,n)), a lower bound for the norm of the vector ūj can be given in the form

‖v̄j‖ ≥ σmin(A)(1 − c7uκ(A)). (3.30)

The bound (3.30) shows that, under the assumption that A has numerical full rank

(i.e. assuming c7uκ(A) < 1), the norm ‖v̄j‖ is essentially bounded by the minimal sin-

gular value of A. We note that the result (3.30) corresponds well to the bound in exact

arithmetic ‖vj‖ ≥ σmin(A). Consequently, the quotient ‖Q̄T
j−1v̄j‖/‖v̄j‖, which describes

the orthogonality between the vector v̄j computed by the first iteration step and the

column vectors of Q̄j−1, can be, combining (3.25) and (3.26), bounded by

‖Q̄T
j−1v̄j‖
‖v̄j‖

≤ [c5 + mn(1 + (m + 4)u) + c0] (1 + c5u)1/2uκ(A)

1 − c7uκ(A)
= c8uκ(A). (3.31)

We are now ready to start the second step to prove that ‖Q̄T
j−1q̄j‖ ≤ c6u. We proceed

similarly as in the first part. Using the derived bound (3.31), we study the orthogonality

of the vector w̄j computed by the second iteration step with respect to the column vectors

Q̄j−1 and finally give a bound for the quotient ‖Q̄T
j−1q̄j‖. Let us concentrate first on

‖v̄j‖
‖w̄j‖

.

Using the relation for the local error in the second iteration step (3.19), it can be bounded

as follows

‖w̄j‖
‖v̄j‖

≥ ‖v̄j‖
‖v̄j‖

− ‖Q̄j−1‖
‖Q̄T

j−1v̄j‖
‖v̄j‖

− ‖∑j−1

k=1
q̄kδsk,j‖ + ‖δvj‖
‖v̄j‖

≥ 1 −
[

c8κ(A)(1 + c5u)1/2 + mn(1 + (m + 4)u) + c0

]

u.

Thus, under the assumption that

c9uκ(A) =
[

c8κ(A)(1 + c5u)1/2 + mn(1 + (m + 4)u) + c0

]

u < 1, (3.32)
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we obtain the final bound for the factor
‖v̄j‖
‖w̄j‖

as follows

‖v̄j‖
‖w̄j‖

≤ [1 − c9uκ(A)]−1. (3.33)

The upper bound (3.33) shows that if we slightly strengthen the assumption (3.32), the

factor
‖v̄j‖
‖w̄j‖

becomes very close to 1, which essentially means that ‖w̄j‖ is not signifi-

cantly smaller than ‖v̄j‖. We note that, in exact arithmetic, we have wj = vj implying

‖vj‖/‖wj‖ = 1. Finally, we also note that the main contribution of this section with re-

spect to the results of Abdelmalek is Equation (3.33). In his analysis, Abdelmaleck needs

that (j − 2)2‖Q̄T
j−1v̄j‖/‖w̄j‖ ≤ 1, a statement that he expects to hold in most practical

cases. Indeed, this criterion can be rewritten as (j − 2)2‖Q̄T
j−1v̄j‖/‖v̄j‖ ‖v̄j‖

‖w̄j‖
≤ 1 and it

can been seen from (3.31) and (3.33) that Abdelmaleck’s assumption is met under a clear

assumption on the numerical rank of A.

From (3.19), it follows that

Q̄T
j−1w̄j = (I − Q̄T

j−1Q̄j−1)Q̄T
j−1v̄j + Q̄T

j−1(−
j−1
∑

k=1

q̄kδsk,j + δwj).

Taking the norm of this expression and using (3.21) and (3.31) leads to

‖Q̄T
j−1w̄j‖
‖w̄j‖

≤ [c5c8uκ(A) + mn(1 + (m + 4)u) + c0] u(1 + (m + 4)u)1/2 ‖v̄j‖
‖w̄j‖

. (3.34)

Consequently, using (3.25), (3.34) and (3.33), and remarking that ‖Q̄T
j−1q̄j‖ ≤ ‖Q̄T

j−1w̄j‖/‖w̄j‖+

‖Q̄T
j−1δqj‖, we can write

‖Q̄T
j−1q̄j‖ ≤ [c5c8uκ(A) + mn(1 + (m + 4)u) + c0] [1 − c9uκ(A)]−1 [1 + (m + 4)u]1/2u

+ (m + 4)u[1 + c5u]1/2. (3.35)

Now, let us assume that [1 − c9uκ(A)]−1 ≤ 2 , mn3/2u � 1 and c5c8uκ(A) ≤ 1. Then

1 + (m + 4)u ≤ 2, 1 + c5u ≤ 2 and we have

‖Q̄T
j−1q̄j‖ ≤ 2

√
2 [1 + 2mn + c0] u +

√
2(m + 4)u = c6u, (3.36)

where c6(m,n) = O(mn). We can summarize all the assumptions made so far in a single

one

c4uκ(A) < 1, (3.37)

where c4(m,n) = O(m2n3).

We are now able to conclude the proof by induction. If the induction assumption (3.16)

is true at the step j − 1, under assumption (3.37), the statement is true at the step j.

Consequently we have at the step j the bound (3.17). For the last step j = n, it follows

that

‖I − Q̄T Q̄‖ ≤ c5u. (3.38)

Finally we illustrate our theoretical results. We consider once again the Läuchli matrix

with ` = 10−4 and ` = 10−7. In Table 2, we compare the loss of orthogonality computed
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` = 10−4, κ(A) = 2.0000 × 104 ` = 10−7, κ(A) = 2.0000 × 107

j CGS CGS2 CGS CGS2

2 2.7747e-13 2.2204e-16 1.6266e-09 4.4409e-16

3 2.2646e-09 2.2888e-16 1.3280e-02 4.5719e-16

4 2.9616e-09 2.5713e-16 1.6491e-02 4.6350e-16

Table 2. The loss of orthogonality in the CGS and CGS2 algorithms (measured by corresponding ‖I −

Q̄T
j Q̄j‖) with respect to the orthogonalization step j (Experiments performed with MATLAB, where

u = 2.2204e − 16).

by the plain CGS algorithm and the CGS2 algorithm. It is clear from Table 2 that two

iteration steps are enough for preserving the orthogonality of the computed vectors close

to the machine level, which is in agreement with the theoretical results developed in this

section.

4 Conclusions and remarks

In this paper, we give a bound for the loss of orthogonality of the CGS algorithm. We

proved that the loss of orthogonality of CGS can be bounded by a term proportional to

the square of the condition number κ(A) and to the unit roundoff u. This assumes that

AT A is numerically nonsingular. Indeed, the loss of orthogonality occurs in a predictable

way and our bound is tight. This is very similar to MGS up to the difference that the loss

of orthogonality in MGS depends (only) linearly on κ(A) and the assumption depends

on the numerical full rank (only) of the matrix A. This result fills the theoretical gap in

understanding the CGS process and agrees well with all examples used in textbooks. In

addition, we have proved that the orthogonality of the vectors computed by the CGS2

algorithm is close to the machine precision level. Indeed, exactly two iteration-steps are

already enough when full orthogonality is requested and when the algorithm is applied

to (numerically) independent initial set of column vectors. This result extends the ones

of Abdelmalek [1], Daniel et al [4], Kahan and Parlett [11] and Hoffmann [8].
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