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Abstract. Previous studies of application usage show that the perfor-

mance of collective communications are critical for high-performance

computing. Despite active research in the field, both general and fea-

sible solution to the optimization of collective communication problem

is still missing.

In this paper, we analyze and attempt to improve intra-cluster collective

communication in the context of the widely deployed MPI programming

paradigm by extending accepted models of point-to-point communica-

tion, such as Hockney, LogP/LogGP, and PLogP, to collective opera-

tions. We compare the predictions from models against the experimen-

tally gathered data and using these results, construct optimal decision

function for broadcast collective. We quantitatively compare the quality

of the model-based decision functions to the experimentally-optimal one.

Additionally, in this work, we also introduce a new form of an optimized

tree-based broadcast algorithm, splitted-binary.

Our results show that all of the models can provide useful insights into

various aspects of the different algorithms as well as their relative perfor-

mance. Still, based on our findings, we believe that the complete reliance

on models would not yield optimal results. In addition, our experimental

? This material is based upon work supported by the Department of Energy under
Contract No. DE-FG02-02ER25536.



results have identified the gap parameter as being the most critical for

accurate modeling of both the classical point-to-point-based pipeline and

our extensions to fan-out topologies.

1 Introduction

Previous studies of application usage show that the performance of collective
communications are critical to high-performance computing (HPC ). A profil-
ing study [1] showed that some applications spend more than eighty percent
of a transfer time in collective operations. Thus, it is essential for MPI imple-
mentations to provide high-performance collective operations. Collective oper-
ations (collectives) encompass a wide range of possible algorithms, topologies,
and methods. The optimal5 implementation of a collective for a given system
depends on many factors, including for example, physical topology of the sys-
tem, number of processes involved, message sizes, and the location of the root
node (where applicable). Furthermore, many algorithms allow explicit segmen-
tation of the message that is being transmitted, in which case the performance
of the algorithm also depends on the segment size in use. Some collective oper-
ations involve local computation (e.g. reduction operations), in which case the
local characteristics of each node need to be considered as they could affect our
decision on how to overlap communication with computation.

Simple, yet time consuming way to find even a semi-optimal implementation
of a collective operation is to run an extensive set of tests over a parameter space
for the collective on a dedicated system. However, running such detailed tests
even on relatively small clusters (32 - 64 nodes), can take a substantial amount
of time [2]6. If one were to analyze all of the MPI collectives in a similar manner,
the tuning process could take days. Still, many of current MPI implementations
use “extensive” testing to determine switching points between the algorithms.
The decision of which algorithm to use is semi-static and based on predetermined
parameters that do not model all possible target systems.

Alternatives to the static decisions include running a limited number of per-
formance and system evaluation tests. This information can be combined with
5 The “optimal implementation” is defined in the following way: given a set of available

algorithms for the collective, optimal implementation will use the best performing
algorithm for the particular combination of parameters (message size, communicator
size, root, etc.).

6 For example, profiling the linear scatter algorithm on 8 nodes took more than three
hours[2].



predictions from parallel communication models to make run-time decisions to
select near-optimal algorithms and segment sizes for given operation, communi-
cator, message size, and the rank of the root process.

There are many parallel communication models that predict performance of
any given collective operation based on standardized system parameters. Hock-
ney [3], LogP [4], LogGP [5], and PLogP [6] models are frequently used to analyze
parallel algorithm performance. Assessing the parameters for these models within
local area network is relatively straightforward and the methods to approximate
them have already been established and are well understood [7][6].

The major contribution of this paper is the direct comparison of Hockney,
LogP/LogGP, and PLogP based parallel communication models applied to opti-
mization of intra-cluster MPI collective operations. We quantitatively compare
the predictions of the models to experimentally gathered data and use models
to obtain optimal implementation of broadcast collective. We assess the per-
formance penalty of using model generated decision functions versus the ones
generated by exhaustive testing of the system. Additionally, we introduce a new
form of optimized tree-based broadcast algorithm called splitted-binary. Indi-
rectly, this work was used to implement and optimize the collective operation
subsystem of the FT-MPI [8] library.

The rest of this paper proceeds as follows. Section 2 discusses related work.
Section 3 provides background information on parallel communication models
of interest; Section 4 discusses the Optimized Collective Communication (OCC)
library and explains some of the algorithms it currently provides; Section 5
provides details about the collective algorithm modeling; Section 6 presents the
experimental evaluation of our study; and Section 7 is discussion and future
work.

2 Related work

Performance of MPI collective operations has been an active area of research in
recent years. An important aspect of collective algorithm optimizations is under-
standing the algorithm performance in terms of different parallel communication
models.

Grama et al. in [9] use Hockney model to perform cost analysis of different
collective algorithms on various network topologies (such as torus, hypercube,
etc). In [10], Thakur et al. discuss optimizations of their MPICH-2 MPI im-
plementation. They use Hockney model to assess the performance of collectives



and determine whether a particular algorithm would perform better for small or
large message sizes. Using this analysis coupled with extensive testing they de-
termine switching points between algorithms based on message size and whether
the number of involved processors is exact power of two or not. Similarly, Chan
et al. [11], use Hockney model to evaluate the performance of different collective
algorithms on c× r mesh topology. Hockney model was used by Rabenseifner et
al. in [12] to estimate performance of tree-based reduce algorithm optimized for
large messages.

Kielmann et al. [13] use PLogP model to find optimal algorithm and pa-
rameters for topology-aware collective operations incorporated in the MagPIe
library. The MagPIe library provides collective communication operations opti-
mized for wide area systems. Across high-latency, wide-area links MagPIe selects
segmented linear algorithms for collectives, while various tree-based algorithms
are used in low-latency environment. Barchet-Estefanel et al. [14] use PLogP
model to evaluate performance of broadcast and scatter operation on intra-
cluster communication.

Bell et al. [15] use extensions of LogP and LogGP models to evaluate per-
formance of small and large messages on contemporary super-computing net-
works. Similarly to PLogP, their extension of LogP/LogGP model accounts for
the end-to-end latency instead of the transport latency. Additionally, they eval-
uate the potential for overlapping communication and computation on their
systems. Bernaschi et al. [16] analyze the efficiency of reduce-scatter collective
using LogGP model.

Vadhiyar et al. [2] use a modified LogP model which takes into account the
number of pending requests that have been queued. Using this model coupled
with modified hill-descent heuristics, they reduce the total number of tests nec-
essary to tune the broadcast, scatter, gather, reduce, all-reduce, and all-gather
collective on their systems.

The work in this paper is closest to the work published by Barchet-Estefanel
et al. in [14]. Like them, we try to improve performance intra-cluster collective
communication operations using parallel communication models. Unlike them,
we consider wider range of collective operations, multiple communication models,
and quantify the performance penalties which would arise from using models in
place of extensive testing. Tables 1 through 4 point the reader to the relevant
work related to the algorithms in question.



3 Summary of related models and parameters

Our work is built upon mathematical models of parallel communication. For
better understanding of how we use these models we describe them in more de-
tail below. Since MPI collective operations consist of communication and com-
putation part of the algorithm, both network and computation aspects of the
collective need to be modeled for any meaningful analysis.

3.1 Modeling network performance

In modeling communication aspects of collective algorithms, we employ the mod-
els most-frequently used by the message-passing community:

Hockney model. Hockney model [3] assumes that the time to send a message of
size m between two nodes is α+βm, where α is the latency for each message, and
β is the transfer time per byte or reciprocal of network bandwidth. We altered
Hockney model such that α and β are functions of message size. Congestion
cannot be modeled using this model.

LogP/LogGP models. LogP model [4] describes a network in terms of la-
tency, L, overhead, o, gap per message, g, and number of nodes involved in
communication, P . The time to send a message between two nodes according
to LogP model is L + 2o. LogP assumes that only constant-size, small messages
are communicated between the nodes. In this model, the network allows trans-
mission of at most bL/gc messages simultaneously. LogGP [5] is an extension of
the LogP model that additionally allows for large messages by introducing the
gap per byte parameter, G. LogGP model predicts the time to send a message
of size m between two nodes as L + 2o + (m − 1)G. In both LogP and LogGP
model, the sender is able to initiate a new message after time g.

PLogP model. PLogP model [6] is an extension of the LogP model. PLogP
model is defined in terms of end-to-end latency L, sender and receiver overheads,
os(m) and or(m) respectively, gap per message g(m), and number of nodes
involved in communication P . In this model sender and receiver overheads and
gap per message depend on the message size. Notion of latency and gap in the
PLogP model slightly differs from that of the LogP/LogGP model. Latency in
the PLogP model includes all contributing factors, such as copying data to and



from network interfaces, in addition to the message transfer time. Gap parameter
in the PLogP model is defined as the minimum time interval between consecutive
message transmissions or receptions, implying that at all times g(m) ≥ os(m)
and g(m) ≥ or(m). Time to send a message of size m between two nodes in the
PLogP model is L + g(m). If g(m) is a linear function of message size m and
L excludes the sender overhead, then the PLogP model is equivalent to LogGP
model which distinguishes between sender and receiver overheads.

3.2 Modeling computation

We assume that the time spent in computation on data in a message of size m

is γm, where γ is computation time per byte. This linear model ignores effects
caused by memory access patterns and cache behavior, but is able to provide a
lower limit on time spent in computation.

4 Optimized collective communication

We have developed a framework for functional method verification and per-
formance testing known as the Optimized Collective Communication library
(OCC ). OCC is an MPI collective library built on top of point-to-point opera-
tions. OCC consists of three modules: methods, verification, and performance-
testing modules. The methods module provides a simple interface for addition
of new collective algorithms. The verification module provides basic verifica-
tion tools for the existing methods. The performance module provides a set of
micro-benchmarks for the library. A method is defined by an algorithm and pa-
rameters it needs, such as virtual topology and segment size7. Currently, the
methods module contains various implementations of the following subset of
MPI collective operations: MPI Barrier, MPI Bcast, MPI Reduce, MPI Scatter,
and MPI Alltoall. These particular routines were chosen as representative of the
commonly used collective operations in MPI programs [1].

4.1 Virtual topologies

MPI collective operations can be classified as either one-to-many/many-to-one
(single producer or consumer) or many-to-many (every participant is both pro-
7 Even though the definition of method is precise, in this paper, we will sometimes

refer to method as algorithm: instead of referring to “generalized broadcast method
with binary topology and 32KB segments,” we may abbreviate long name to “binary
algorithm with 32KB segments”



ducer and consumer) operations. For example, broadcast, reduce, Scatter(v), and
Gather(v) follow the one-to-many communication pattern, while barrier, alltoall,
Allreduce, and Allgather(v) employ many-to-many communication patterns.

Generalized version of the one-to-many/many-to-one type of collectives can
be expressed as i) receive data from preceding node(s), ii) process data, if re-
quired, iii) send data to succeeding node(s). The data flow for this type of
algorithm is unidirectional. Virtual topologies can be used to determine the pre-
ceding and succeeding nodes in the algorithm.

Currently, the OCC library supports five different virtual topologies: flat-
tree(linear,) pipeline (single chain), binomial tree, binary tree, and k-chain tree.
Our experiments show that given a collective operation, message size, and num-
ber of processes, each of the topologies can be beneficial for some combination
of input parameters.

4.2 Available algorithms

This section describes the currently available algorithms in OCC for barrier,
broadcast, reduce and alltoall operations. Due to space constraints and since it
is outside the scope of this paper, we will not discuss the algorithms in great
details.

Barrier. Barrier is a collective operation used to synchronize a group of nodes.
It guarantees that by the end of the operation, all processes involved in the bar-
rier have at least entered the barrier. We implemented four different algorithms
for the barrier collective: flat-tree/linear fan-in-fan-out, double ring, recursive
doubling, and Bruck [17] algorithm. In flat-tree/linear fan-in-fan-out algorithm
all nodes report to a preselected root; once every node has reported to the root,
the root sends a releasing message to all participants. In the double ring al-
gorithm, a zero-byte message is sent from a preselected root circularly to the
right. A node can leave barrier only after it receives the message for the sec-
ond time. Both linear and double ring algorithms require O(P ) communication
steps. Bruck algorithm requires dlog2P e communication steps. At step k, node
r receives a zero-byte message from and sends message to node (r − 2k) and
(r+2k) node (with wrap around) respectively. The recursive doubling algorithm
requires log2P steps if P is a power of 2, and blog2P c + 2 steps if not. At step
k, node r exchanges message with node (r XOR 2k). If the number of nodes P
is not a power 2, we need two extra steps to handle remaining nodes.



Broadcast. The broadcast operation transmits an identical message from the
root process to all processes of the group. At the end of the call, the contents
of the root’s communication buffer is copied to all other processes. We imple-
mented the following algorithms for this collective: flat-tree/linear, pipeline, bi-
nomial tree, binary tree, and splitted-binary tree. All of these algorithms support
message segmentation which potentially allows for overlap of concurrent com-
munications. In flat-tree/linear algorithm root node sends an individual message
to all participating nodes. In pipeline algorithm, messages are propagated from
the root left to right in a linear fashion. In binomial and binary tree algorithms,
messages traverse the tree starting at the root and going towards the leaf nodes
through intermediate nodes. In the splitted-binary tree algorithm8, the original
message is split into two parts, and the “left” half of the message is sent down the
left half of the binary tree, and the “right” half of the message is sent down the
right half of the tree. In the final phase of the algorithm, every node exchanges
message with their “pair” from the opposite side of the binary tree. In the case
when the tree has even number of nodes, the leaf without the pairwise partner,
receives the second half of the message from the root.

Reduce. The reduce operation combines elements provided in the input buffer
of each process within a group using the specified operation, and returns the
combined value in the output buffer of the root process. We have implemented
a generalized reduce operation that can use all available virtual topologies: flat-
tree/linear, pipeline, binomial tree, binary tree, and k-chain tree. At this time,
the OCC library works only with the predefined MPI operations. As in the case
of broadcast, our actual implementation overlaps multiple communications with
computation.

Alltoall. Alltoall is used to exchange data among all processes in a group. The
operation is equivalent to all processes executing the scatter operation on their
local buffer. We have implemented linear and pairwise exchange algorithms for
this collective. In the linear alltoall algorithm at step i, the ith node sends a
message to all other nodes. The (i + 1)th node is able to proceed and start
sending as soon as it receives the complete message from the ith node. We allow
for segmentation of messages being sent. In the pairwise exchange algorithm, at

8 To the best of our knowledge, no other group implemented or discussed this algorithm
so far.



step i, node with rank r sends a message to node (r + i) and receives a message
from the (r − i)th node, with wrap around. We do not segment messages in this
algorithm. At any given step in this algorithm, a single incoming and outgoing
communication exists at every node.

5 Modeling collective operations

For each of the implemented algorithms we have created a numeric reference
model based on a point-to-point communication models previously discussed
in Section 3. We assume a full-duplex network which allows us to exchange and
send-receive a message in the same amount of time as completing a single receive.

Tables 1, 2, 3, and 4 show formulas for barrier, broadcast, reduce, and alltoall
collectives respectively. If applicable, the displayed formulas account for message
segmentation. Message segmentation allows us to divide a message of size m

into a number of segments, ns, of segment size ms. In the Hockney and PLogP
models parameter values depend on the message size. The LogP formulas can
be obtained from LogGP by setting the gap per byte parameter, G to zero.
The specified tables also provide references to relevant and similar work done by
other groups.

The model of the flat-tree barrier algorithm performance in Table 1 requires
additional explanation. The conservative model of flat-tree barrier algorithm
would include time to receive (P-1) messages sent in parallel to the same node,
and the time to send (P-1) messages from the root. In the first phase, the root
process posts (P-1) non-blocking receives followed by a single waitall call. Our
experiments show that on our systems, all MPI implementations we examined
were able to deliver (P-1) zero-byte messages sent in parallel to the root in close
to the time to deliver a single message. Thus we model the total duration of this
algorithm as the time it takes to receive a single zero-byte message plus the time
to send (P-1) zero-byte messages.

6 Results and analysis

6.1 Experiment setup

The measurements were obtained on two dedicated9 clusters provided by the
SInRG project at the University of Tennessee at Knoxville. The first cluster,
9 The micro-benchmark was the only user process executing on either cluster during

the measurement.



Barrier Model Duration

Flat-Tree Hockney T = (P − 1) × α

Flat-Tree LogP/LogGP
Tmin = (P − 2) × g + 2 × (L + 2 × o)
Tmax = (P − 2) × (g + o) + 2 × (L + 2 × o)

Flat-Tree PLogP
Tmin = P × g + 2 × L
Tmax = P × (g + or) + 2 × (L − or)

Double Ring Hockney T = 2 × P × α
Double Ring LogP/LogGP T = 2 × P × (L + o + g)
Double Ring PLogP T = 2 × P × (L + g)

Recursive Doubling Hockney
T = log2(P ) × α, if P is exact power of 2
T = (log2(P ) + 2) × α, otherwise

Recursive Doubling LogP/LogGP
T = log2(P ) × (L + o + g), if P is exact power of 2
T = (blog2(P )c + 2) × (L + o + g), otherwise

Recursive Doubling PLogP
T = log2(P ) × (L + g), if P is exact power of 2
T = (blog2(P )c + 2) × (L + g), otherwise

Bruck Hockney T = dlog2(P )e × α
Bruck LogP/LogGP T = dlog2(P )e × (L + o + g)
Bruck PLogP T = dlog2(P )e × (L + g)

Table 1. Analysis of different barrier algorithms.

Boba, consists of 32 Dell Precision 530s nodes, each with Dual Pentium IV Xeon
2.4 GHz processors, 512 KB Cache, 2 GB memory, connected via Gigabit Ether-
net. The second cluster, Frodo, consist of 32 nodes, each containing dual Opteron
processor, 2 GB memory, connected via 100 Mbps Ethernet and Myrinet. In the
results presented in this paper, we did not utilize the Myrinet interconnect on
the Frodo cluster.

Model parameters. We measured the model parameters using various MPI
implementations. Most of the collected data was obtained using FT-MPI [8],
MPICH-1.2.6, and MPICH-2.0.97 [19]. Parameter values measured using MPICH-
1 had higher latency and gap values with lower bandwidth than both FT-MPI
and MPICH-2. FT-MPI and MPICH-2 had similar values for these parameters
on both systems.

Hockney model parameters were measured directly using point-to-point tests.
To measure PLogP model parameters we used the logp mpi software suite pro-
vided by Kielmann et al. [6]. Measured parameter values were obtained by aver-
aging the values obtained between different communication points in the same
system. For this model we also experimented with directly fitting model param-
eters to the experimental data, and applying those parameter values to model
other collective operations. Parameter fitting was done under the assumption
that the sender and receiver overheads do not depend on the network behav-
ior, and as such we used values measured by the log mpi library. In this pa-



Broadcast Model Duration Related work

Linear Hockney T = ns · (P − 1) · (α(ms) + ms · β(ms)) [10], [11]
Linear LogP/LogGP T = L + 2 · o − g + ns × (P − 1) × ((ms − 1)G + g)
Linear PLogP T = L + ns · (P − 1) · g(ms) [18], [14]

Pipeline Hockney T = (P + ns − 2) × (α(ms) + ms · β(ms))

Pipeline LogP/LogGP T =
(P − 1) × (L + 2 · o + (ms − 1)G)+
(ns − 1) × (g + (ms − 1)G)

Pipeline PLogP T = (P − 1) × (L + g(ms)) + (ns − 1) × g(ms) [14]

Binomial Hockney T = dlog2(P )e × ns × (α(ms) + ms · β(ms)) [10], [11]

Binomial LogP/LogGP T = dlog2(P )e ×
(

L + 2 · o + (ms − 1)G+
(ns − 1) × (g + (ms − 1)G)

)
[4], [5]

Binomial PLogP T = dlog2(P )e × (L + ns × g(ms)) [18], [14]

Binary Hockney T = (dlog2(P + 1)e + ns − 2) × (2 × α(ms) + ms · β(ms))

Binary LogP/LogGP T =
(dlog2(P + 1)e − 1) × (L + 2 × (o + (ms − 1)G + g))+
2 × ((ms − 1)G + g)

[4], [5]

Binary PLogP T =
(dlog2(P + 1)e − 1) · (L + 2 · g(ms))+
(ns − 1) × max{2 · g(ms), or(ms) + g(ms) + os(ms)} [18], [14]

Splitted-binary Hockney T =
(dlog2(P + 1)e + dns

2 e − 2) × (2 × α(ms) + ms · β(ms))+
α( m

2 ) + m
2 · β( m

2 )

Splitted-binary LogP/LogGP T =
(dlog2(P + 1)e − 1) × (L + g + 2 · (o + (ms − 1)G))+
2 × (dns

2 e − 1) × (g + (ms − 1)G)+
L + 2 · o + ( m

2 − 1)G

Splitted-binary PLogP T =
(dlog2(P + 1)e − 1) × (L + 2 · g(ms))+
( ns

2 − 1) · max{2 · g(ms), or(ms) + g(ms) + os(ms)}

Table 2. Analysis of different broadcast algorithms.

per, we obtained fitted PLogP parameters by analyzing the performance of the
non-segmented pipelined broadcast and flat-tree barrier algorithm over various
communicator and message sizes. We chose to fit model parameters to these al-
gorithms as the communication pattern of non-segmented pipelined broadcast’s
data algorithm (linear sending and receiving message) is the closest match to
the point-to-point tests used to measure model parameters in the logp mpi and
similar libraries. At the same time, flat-tree barrier formulas in Table 1 provide
the most direct way of computing the gap per message parameter for zero-byte
messages for PLogP and LogP/LogGP models. Results obtained using these val-
ues matched more closely the overall experimental data, thus all PLogP model
results in this paper were obtained using fitted parameters. Values of LogP and
LogGP were obtained from the fitted PLogP values as explained by Kielmann
et al. in [6].

Figure 1 shows parameter values for Hockney and PLogP models on both
clusters. Table 5 summarizes the parameter values for LogP/LogGP model.

Performance tests. Our performance measuring methodology follows the rec-
ommendations given by Gropp et al. in [20] to ensure the reproducibility of the
measured results. We minimize the effects of pipelining by forcing a “report-to-



Reduce Model Duration Related work

Flat Tree Hockney T = ns × (P − 1) × (α(ms) + β(ms)ms + γms) [10], [11]

Flat Tree LogP/LogGP T =
o + (ms − 1)G + L+
ns × max{g, (P − 1) × (o + (ms − 1)G + γms)}

Flat Tree PLogP T = L + (P − 1) × ns × max{g(ms), or(ms) + γms} [18]

Pipeline Hockney T = (P + ns − 2) × (α(ms) + β(ms)ms + γms)

Pipeline LogP/LogGP T =
(P − 1) × (L + 2 × o + (ms − 1)G + γms)+
(ns − 1) × max{g, 2 × o + (ms − 1)G + γms}

Pipeline PLogP T =
(P − 1) × (L + max{g(ms), or(ms) + γms})+
(ns − 1) × (max{g(ms), or(ms) + γms} + os(ms))

Binomial Hockney T = ns × dlog2(P )e × (α(ms) + β(ms)ms + γms) [10], [11]

Binomial LogP/LogGP T = dlog2Pe ×
(

o + L + ns × ((ms − 1)G + max{g, o + γms})
)

[4], [5]

Binomial PLogP T = dlog2Pe × (L + ns × max{g(ms), or(ms) + γms + os(ms)})
Binary Hockney T = 2 · (dlog2(P + 1)e + ns − 2) × (α(ms) + β(ms)ms + γmS) [10], [11]

Binary LogP/LogGP T =
(dlog2(P + 1)e − 1) × ((L + 3 × o + (ms − 1)G + 2γms)+
(ns − 1) × ((ms − 1)G + max{g, 3o + 2 × γms}))

[4], [5]

Binary PLogP T =
(dlog2(P + 1)e − 1) × (L + 2 × max{g(ms), or(ms) + γms})+
(ns − 1) × (os(ms) + 2 × max{g(ms), or(ms) + γms})

Table 3. Analysis of different reduce algorithms.

Alltoall Model Duration Related work

Linear Hockney T =
P × (α(ms) + β(ms)ms)+
(P − 1) × (ns × P + 1 − P

2 ) × α(ms)
[10]

Linear LogP/LogGP T =
P × (L + 2 × o)+
(P − 1) × (ns × P + 1 − P

2 ) × (g + (ms − 1)G)
[4]

Linear PLogP T = P × L + (P − 1) × (ns × P + 1 − P
2 ) × g(ms)

Pairwise exchange Hockney T = (P − 1) × (α(m) + β(m)m) [10]
Pairwise exchange LogP/LogGP T = (P − 1) × (L + o + (m − 1) × G + g)
Pairwise exchange PLogP T = (P − 1) × (L + g(m))

Table 4. Analysis of different alltoall algorithms.

root” step after each collective operation. Each of the collected data points is a
minimum value of 10-20 measurements in which the maximum value is excluded,
and the standard deviation was less than 5% of the remaining points.

6.2 Performance of different collective algorithms

We executed performance tests on various algorithms for barrier, broadcast,
reduce, and alltoall collective operations using FT-MPI, MPICH-1, and MPICH-
2. We then analyzed the algorithm performance and the optimal implementation
of various collective operations using parallel communication models, Hockney,
LogP/LogGP, and PLogP. When predicting performance of collective operations
that exchanged actual data (message size > 0) we did not consider pure LogP
predictions, but used LogGP instead (See Section 3.1).

In our experiments, we found that the model of worst case performance of
an algorithm is often too pessimistic, as in the case of the flat-tree/linear fan-



(a) Hockney, Boba (b) PLogP, Boba

(c) Hockney, Frodo (d) PLogP, Frodo

Fig. 1. Hockney and PLogP parameter values on the Boba and Frodo clusters.
The Boba cluster utilized GigE interconnect, while the Frodo we utilized 100
Mbps Ethernet. On PLogP parameter graphs (b) and (d), (m) denotes measured
values while (f) denotes fitted values of gap and latency.

in-fan-out barrier algorithm. Our experience with the MPI implementations was
that the algorithms performance was generally closer to the best case scenario.
Thus, where applicable we chose to model algorithm performance using the best
case scenario.

Barrier performance. Figure 2 illustrates measured and predicted perfor-
mance of Bruck, recursive doubling, and linear fan-in-fan-out barrier algorithms
on Boba cluster.

Experimental data for both Bruck and recursive doubling algorithms, while
exhibiting trends, is not uniform. The reasons for this could be both our measure-
ment procedure and the lock-step communication pattern of these algorithms.
The “report-to-root” step in the performance measurement procedure takes time
comparable to the time taken by Bruck and recursive doubling barrier algo-
rithms. Thus, the reported measurement is affected more significantly by the
variations in this step then it would be for longer running collectives. Moreover,



LogP/LogGP Boba cluster Frodo cluster

Latency L 30.40 [µsec] 61.22 [µsec]

Overhead o 8.15 [µsec] 8.2 [µsec]

Gap g 8.683 [µsec] 23.8 [µsec]:

Gap-per-byte G 0.015 [µsec
byte

] 0.084 [µsec
byte

]

Table 5. LogP/LogGP model parameters on both clusters.

as these algorithms communicate with different processes in lock-step manner,
delay on a single process would affect whole operation. At the same time, the
flat-tree/linear fan-in-fan-out barrier which takes slightly longer to complete and
has a more regular communication pattern does not exhibit this problem.

The measured data for the flat-tree barrier algorithm displays some unex-
pected behavior. Based on the PLogP and LogP/LogGP models of performance
showed in Table 1, the duration of this algorithm grows linearly with communi-
cator size and the slope of the line is equal to the zero-byte gap. However, the
experimental data implies that the slope decreases around 16 nodes. The results
displayed in Figure 2 were obtained using MPICH2, but the behavior was consis-
tent with results obtained using FT-MPI on the Frodo system (See discussion on
optimal broadcast decision function). This implies that the underlying system
(MPI library, TCP/IP, or hardware) were able to further optimize communica-
tion when sending and receiving zero-byte messages to multiple nodes. Since the
Hockney model assumes that the minimum time between sending two messages
is equal to the latency, the prediction for this model for flat-tree barrier is largely
overestimated.

However, even accounting for all known discrepancies, the models captured
relative performance of these barrier algorithms sufficiently correctly.

Reduce performance. Figure 3 displays measured and predicted performance
of non-segmented and segmented versions of binomial and pipeline reduce algo-
rithms for two communicator sizes on the Boba cluster. Results indicate that
for small message sizes, non-segmented binomial algorithm outperforms pipeline
algorithm, while for large message sizes, the segmented pipeline algorithm would
have best performance.

Experimental data for non-segmented binomial and pipeline reduce algo-
rithms exhibits non-linear increase in duration for the message sizes in the range
from 1KB to 10KB. The similar increase can be observed for large message sizes



(a) Bruck (b) Recursive Doubling (c) Flat-tree

Fig. 2. Performance of barrier algorithms: Experimentally measured values are
indicated by circles. (MPICH-2, Boba cluster, GigE).

(> 100KB) on non-segmented binomial algorithm. All three models were able to
capture relative performance of non-segmented algorithms in question. However,
LogP/LogGP failed to capture non-linear increase in duration for the interme-
diate sized messages. PLogP was the only model which captured non-linear in-
crease in duration of non-segmented binomial algorithm for large message sizes.
We can explain these shortcomings by considering the model parameters. The
LogP/LogGP model assumes linear dependence between the time to send/receive
a message and message size. However, the results in Figure 3 show that in gen-
eral, this is certainly not the case. The Hockney model is able to capture the
first non-linear behavior because its parameters are function of message size.
However, once the message size exceeds 100KB, the transfer rate, β parameter,
reaches its asymptotic value and effectively becomes an constant, thus prevent-
ing the Hockney model to capture the non-linear behavior in that message size
range. The gap and parameters of PLogP model are a function of message size,
so some of the nonlinear effects can be accounted for. We believe that non-linear
changes in values of sender and receiver overheads (Figure 1) enabled PLogP to
capture performance of these methods.

In the experiments in Figure 3, segmentation using 1KB segments improved
performance of both pipeline and binomial reduce algorithms. While segmen-
tation incurs overhead for managing multiple messages, it also enables higher
bandwidth utilization due to increased number of concurrent messages; provides
opportunity to overlap multiple communications and computation; and limits
the size of internal buffers required by the algorithm. The models of pipeline
reduce in Table 3 dictate that as the number of segments, ns, increases (to-
tal message size increases), the algorithm should achieve asymptotically optimal
performance. In the asymptotic case, the segmented pipeline reduce algorithm



(a) Binomial reduce, 8 nodes (b) Binomial reduce, 24 nodes

(c) Pipeline reduce, 8 nodes (d) Pipeline reduce, 24 nodes

Fig. 3. Performance of Segmented binomial and pipelined reduce methods on
8 and 24 nodes. Fitted parameter values were used to make predictions for
LogP/LogGP and PLogP models (MPICH-2, Boba cluster, GigE).

should take a constant amount of time for message of size m and should not
depend on number of processes, P . The results in Figure 3 (c) and (d) are con-
sistent with this observation: the duration of segmented pipeline reduce on 8
and 24 nodes takes around 4× 104µsec. All three models correctly captured the
relative performance of segmented pipeline algorithm, and the PLogP model had
best estimate of the absolute duration of the operation.

Modeling performance of segmented binomial reduce algorithm proved to be
a challenge for all three models. Contrary to the measured results, the formulas
in Table 3 seem to indicate that with increased number of segments the duration
of binomial reduce operation should increase and model predictions in Figure 3
agree with that. However, to determine if models are capable of recognizing the
benefit of segmentation for binomial reduce algorithm we have to analyze these
formulas in more detail.

According to the Hockney model of segmented binomial reduce algorithm,
the segmentation should improve operation performance when (α(m)+β(m)·m+



γ ·m) > ns × (α(ms)+β(ms) ·ms +γ ·ms). Taking in account that m = ns ·ms,
we conclude that under the Hockney model, segmentation of binomial reduce
algorithm would improve performance when (α(m)

m + β(m)) > (α(ms)
ms

+ β(ms)).
Figure 4 (a) shows how do the left- and right-hand sides of this condition depend
on message size. On systems we considered, measured Hockney model parameter
values were such that according to the model, segmentation should not improve
the performance of binomial reduce.

In LogP/LogGP model of segmented binomial reduce algorithm, we can see
that only condition under which segmentation would be beneficial is (max{g, (o+
γ · m)}) > ((ns − 1) · (ms − 1) · G + ns · max{g, (o + γ · ms)}), or equivalently
(max{g, (o+γ ·m)}) > ((ns−1) ·(ms−1) ·G+max{ns ·g, (ns ·o+γ ·m)}). Noting
that all LogP/LogGP parameters are positive numbers, as well as message size,
segment size, and number of segments, we conclude that this condition is not
possible to obtain. Thus, under LogP/LogGP model it is impossible to get re-
sult in which the message segmentation would improve performance of binomial
reduce algorithm.

The PLogP model of segmented binomial reduce algorithm shows that the
following condition is necessary for segmentation to improve performance of
this algorithm: (max{g(m), (or(m) + os(m) + γ · m)}) > max{(ns · g(ms)), [ns ·
(or(ms)+os(ms))+γ ·m]}). Figure 4 (b) illustrates this condition as function of
message size. In case of fitted parameters on both clusters (See discussion from
Section 6.1), the non-segmented version of binomial reduce algorithm always
outperforms the one with 1KB segments. However, when the directly measured
PLogP parameters on Boba cluster are used to evaluate the condition, the seg-
mented version outperforms non-segmented version by a slight margin. Thus,
using the measured parameters the PLogP model of binomial reduce algorithm
would capture segmentation effect correctly.

The analysis of model parameters and effect of segmentation on binomial re-
duce shows that the models are fairly sensitive to parameter values. As observed
in the case of the flat-tree barrier algorithm, the gap between messages depends
on number of nodes we are communicating with, and for communicator sizes
greater than 16 nodes it decreased in comparison to smaller communicator sizes.
However, PLogP and LogP/LogGP models cannot include this dependence, and
Hockney model does not even have notion of the gap. Additionally, MPI li-
braries in our experiments used the TCP/IP stack. The TCP window size on
our systems is 128KB. This means that sending messages larger than the TCP



(a) Hockney (b) PLogP

Fig. 4. Segmentation and binomial reduce algorithm. Figure displays necessary
conditions under which segmentation of binomial reduce algorithm would im-
prove algorithm performance using Hockney and PLogP models. LogP/LogGP
models do not have condition under which the segmentation of this algorithm
would improve performance. In this Figure we use parameters from Figure 1 and
assume segment size of 1KB.

window could require resizing the window and an extra memory copy operation
per pair of communicating parties (which in this case is log2(P ) times). Only
PLogP model considers sender and receiver overheads to depend on message
size, LogP/LogGP and Hockney do not have this notion.

Alltoall performance. Figure 5 demonstrates the performance of the pairwise-
exchange alltoall algorithm. The alltoall type of collectives can cause network
flooding even when we attempt to carefully schedule communication between the
nodes. Hockney model does not have the notion of network congestion and this
is one of the possible reasons why it significantly underestimates the completion
time of collective operation. While we did not explicitly include a congestion
component in the PLogP and LogGP model formulas, they were able to predict
measured performance with reasonable accuracy. This indicates that in the test,
the communication was scheduled correctly and we did not over-flood the switch.

6.3 Analysis of optimal broadcast implementation.

Figure 6 shows the optimal implementation of the broadcast collective using
measured data and model predictions on the Frodo cluster. The optimal im-
plementation of the collective is described by a decision function. Given the



(a) (b)

Fig. 5. Performance of Pairwise Exchange alltoall algorithm: (a) Measured per-
formance and predictions for 24 nodes, and (b) Measured performance on 2 to
24 nodes. The message size represents the total send buffer size (FT-MPI, Boba
cluster, GigE).

collective operation, message and communicator size, the decision function de-
termines which algorithm, topology, and segment size combination should be
used.

The measured decision function was derived from exhaustive testing on the
Frodo cluster. We considered sample message sizes from 1 byte up to 8 Megabytes
and every communicator size from 3 to 32 nodes. We examined linear, binomial,
binary, splitted-binary, and pipeline algorithms with and without segmentation,
with segment sizes of 1KB and 8KB. The model decision functions were com-
puted by analyzing predicted performance of the measured methods on the iden-
tical message and communicator sizes. Then the best method according to the
model was chosen, and the model decision function was constructed.

Examining the optimal measured broadcast method for small messages and
larger communicator sizes (above 16 nodes) we observe that the non-segmented
linear algorithm is the best option. Contrary to this, for smaller communicator
sizes and small messages non-segmented binomial algorithm executed in the least
time. This result is surprising but possible if we take in account the decrease in
the gap per message parameter when communicating to more than 16 nodes.
Not surprisingly, all models mispredict the optimal method for that section of
the parameter space. For message sizes close to 1KB measured data suggests
that all tree-based non-segmented algorithms can be optimal, i.e. binomial, bi-
nary, and splitted binary trees. Once the message size increases to a couple of
kilobytes, splitted-binary method with 1KB segments outperforms the other two



algorithms, and for large message sizes segmented pipeline methods dominate.
It is important to notice that the switching points between methods for large
message sizes appears to depend on communicator size.

The Hockney model broadcast decision function, Figure 6 (b), reflects the
fact that in the Hockney model we must wait a full latency before being able
to send another message. For small messages, binomial tree algorithm is the
algorithm of choice for all communicator sizes. Except for a message size range
around 10KB where the splitted-binary method with 1KB segments is optimal,
8KB segment is used for sending larger messages either using splitted-binary or
pipeline method.

The LogP/LogGP model broadcast decision function utilizes non-segmented
versions of linear, binomial, and binary algorithms for small messages. For inter-
mediate size messages, depending on communicator size, either splitted-binary
with 1KB segments or pipeline with 1KB segments method should be used.
For really large messages, pipeline with 8KB segments is the best performing
method. While this captures the general shape of the measured decision func-
tion, the points at which we switch from 1KB to 8KB segments differ. The
LogP/LogGP decision function switches “too early.”

The PLogP model broadcast decision function uses non-segmented bino-
mial method for small message sizes. This is the only model decision function
which recognizes that the binary algorithm with 1KB segments can be bene-
ficial for intermediate size messages. For larger messages, as in the case with
the LogP/LogGP model and measured decision function, it utilizes splitted-
binary algorithm with 1KB segments, followed by segmented pipeline with 1KB
and 8KB segment sizes. However, the PLogP decision function switches from
splitted-binary to pipeline and between 1KB and 8KB segments even “earlier”
than the LogP/LogGP decision function.

Deciding the correct switching point is ultimately related to understanding
the exact behavior of the gap parameter in the underlying model, since gap
determines whether it will be more cost effective to have a longer pipeline or a
wider tree. The Hockney model which has no notion of gap parameter, favors
tree-based algorithms as they decrease the latency term, and larger segment size
because they lower the overall number of messages. However, the experimental
results clearly show that in case of broadcast and reduce collectives segmented
pipeline algorithms should be considered for large message sizes.



Fig. 6. Broadcast decision function. Graphs in this figure should be read in the
following way: the color at point (m,P ) represents the best broadcast method for
message size m and communicator size P . Label with 0KB segment size denotes
a non-segmented version of the algorithm. (FT-MPI, Frodo cluster, 100Mbps).

Given the limitations of our models, it is reasonable to ask how useful are
their predictions in building decision functions for real collective implementa-
tion. Additionally, what is the performance penalty the user will pay by using
the model generated decision function instead of using a measured one? Fig-
ure 7 addresses this question. The performance penalty of not using the linear
algorithm for broadcasting small messages on 16 through 32 nodes is largest
with more than 300% performance penalty. For small numbers of nodes with
small messages, Hockney and PLogP vary between 0% and 15% performance
degradation, except in case when communicator size is 5. For messages of in-
termediate size (up to 10KB) the model decision functions pay a performance
penalty between 0% and 50%, with Hockney model decision performing worst.
For larger messages the performance penalty of LogP/LogGP decision function
for mispredicted switching points does not go above 25%. But the PLogP de-
cision function does pay higher performance penalty (up to 50% for bordering
points) for it switches algorithms even earlier. The fact that Hockney model
would utilize splitted-binary broadcast algorithm with 8KB segments over the



pipeline algorithm with 1KB segments would cost around 30% in performance
over that part of parameter space. Still, one needs to be careful when interpreting
the relative performance of decision functions, since the measured performance
in this case was only the result of a micro-benchmark. Individual, real-world ap-
plications’ performance and their performance losses or gains, could vary greatly
depending on application communication patterns.

(a) Hockney (b) LogP/LogGP (c) PLogP

Fig. 7. Performance penalty from using decision functions generated by models.
Graphs in this figure should be read in the following way: the shade at point
(m,P ) represents the percent of the relative performance cost. The color-bar at
the right of every graph shows the percentage range: from 0 to 300%, white color
means less than 5%. (FT-MPI, Frodo cluster, 100Mbps)

7 Discussion and future work

We compare the Hockney, LogP/LogGP, and PLogP parallel communication
models applied to inter-cluster MPI collective operations on two systems at the
University of Tennessee. Our results indicate that all of the models can pro-
vide useful insights into various aspects of the collective algorithms and their
relative performance. We also demonstrate the importance of accurate model-
ing of the gap between sending consecutive messages to a single destination
and to a set of different destination processes. Experiments show that the value
of gap between consecutive send operations depends on the number of unique
destination nodes. Unfortunately, neither of the models is able to capture this
behavior correctly. This shortcoming is reflected in underestimating the benefit
of using segmentation for binomial reduce algorithm and the inaccurate predic-
tion of switching points between available broadcast methods for large messages.
Additionally, neither of the point-to-point models used in this paper, considers



network congestion directly. Nonetheless, for the communicator and the mes-
sage size range we consider, PLogP and LogP/LogGP models are able to model
pairwise-exchange alltoall algorithm successfully.

We believe that parallel communication models can still be used to perform
focused tuning of collective operations. Based on measured parameter values cou-
pled with small number of test runs which would be used to verify predictions
and adjust model parameters, one could use the models to decrease the number
of physical tests needed to construct semi-optimal decision function for a partic-
ular collective. The work in this paper could be further improved by extending
existing models to include gap parameter which depends on both message size
and number of nodes we are communicating with, as well as the contention.

The performance analysis of different collective methods presented in this
paper was used to implement and optimize the collective operation subsystem of
the FT-MPI library by changing the static method-selecting decision function,
but can be used as a library for any MPI implementation. For example, this work
is currently being used to produce decision function within the tuned collective
module in the Open MPI library [21]. In FT-MPI experimental and analytical
analysis of collective algorithm performance was used to determine switching
points between available methods. At run time, based on a static table of values,
a particular method is selected depending on the number of processes in the
communicator, message size, and the rank of the root process.

We plan to extend this study in the following directions: addition of new
algorithms and collective operations to the OCC library; making the algorithm
selection process at run-time fully automated rather than hard-coded at compile
time10; and building decision function refinement capability which would use a
parallel computation model decision function as a starting point to generate a
list of physical tests to be executed on a given system.

Additionally, this analysis can be extended to hierarchical systems consisting
of multiple clusters. In order to model performance of collective operations in
such environments, we would have to include additional information about the
underlying network topology.
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