Technical Comparison between several representative
checkpoint/rollback solutions for MPI programs

Yuan Tang
Innovative Computing Laboratory
Department of Computer Science
University of Tennessee Knoxville, U.S.A

yuantang@cs.utk.edu

ABSTRACT

With the increasing number of processors in modern HPC(High

Performance Computing) systems (65536 in current #1 IBM
BlueGene/L), there are two emergent problems to solve.
One is Scalability, that is, whether the performance of HPC
system could grow at the pace of the number of the pro-
cessor. The other is fault tolerance. Concluding from the
current experiences on the top-end machines, a 100, 000-
processor machine will experience a process failure every
few minutes. Currently, there’re following two representa-
tive fault tolerance solution of MPI program : M PICH —
V/V2/CL + condor, which employs un-coordinated check-
point approach and is a user level checkpoint/restart li-
brary; LAM/MPI + BLCR provides coordinated, system
level checkpoint /restart; FT'— M PI will be a user directive
fault tolerant MPI package. In this paper, we compare some
technical details between these solutions.

Categories and Subject Descriptors

B.8.1 [PERFORMANCE AND RELIABILITY]: Re-
liability, Testing, and Fault-Tolerance;

D.1.3 [PROGRAMMING TECHNIQUES]: Concurrent
Programming— Parallel programming;

Keywords
HPC, MPI, Fault Tolerance, checkpoint and rollback, per-
formance comparison, modelling and prediction

1. METHODOLOGY
In order to utilize MPICH-V2’s checkpoint /rollback features,

users must set the checkpoint interval (-xw-checkpoint ${time

-in_sec}) on command line, then the checkpoint/rollback ac-
tions will all be done by system. For LAM/MPI, the check-
point/ restart process are started by user separately on com-
mand line by ”cr_checkpoint ${pid_mpirun}” and ”cr_restart
context.${pid _mpirun}”, respectively.

Every time to take a checkpoint, MPICH-V2 snap shot only

one MPI process’ image as well as the message-in-fly in ran-
dom order. LAM/MPI will first drain all the message-in-
fly (synchronization/ coordination). Then, LAM/MPI will
checkpoint all MPI processes’ images plus that of MPIRUN
but excluding any messages.

In the rest of this paper, we firstly try running a synthe-
sized benchmark — do_coll_reset, which is easy to adjust the
message size, message frequency, computation time, and so
on to reflect needs. Based on the run and collection of data
of do_coll_reset , we will try establish a performance predic-
tion metric. Finally, we will try using this metric to predict
the performance of some real benchmarks, say NPB, and
compare it with the real run data.

1.1 do_coll_reset

The do_coll_reset application performs contiguous collective
communication among all the processes. There’re some unit
computation/ sleep distributed evenly between these com-
munication. There’re in total 4 parameters in do_coll_reset
which could be adjusted for modelling purpose : msgSize,
TAG_COLL (number of operation, including communica-
tion and computation), r_comm?2all num (number ratio of
communication to all, which decides the message frequency),
SLEEP_TIME (the duration time of unit computation).

1.2 Sample run of do_coll _reset
1.2.1 Istrun

In this sample run, we set:

o msgSize = 1000 X sizeof(int)
e SLEEP TIME = 0.00001seconds
e TAG.COLL = 30,000

Then, we set :

e msgSize = 10,000 X sizeof (int)
e SLEEP TIME = 0.0001seconds
e TAG_COLL = 30,000

First, we need some explanation of Table 1 and Table 2:

MPICH-V2

r_comm?2all_num 0.05 0.35 0.65 0.95
T_total (no ckpt) | 111.97 (111.9) 80.8 (79.17) 49.00 (46.58) 21.71 (19.58)
ckpt 56 40 21 8
single overhead 0.0012 0.0407 0.1152 0.2662
T_com (no ckpt) 1.26 (1.17) 7.57 (6.33) 11.71 (10.01) 15.48 (13.05)
Time_% (no ckpt) | 1.13% (1.04%) 9.37% (8%) 24.09% (21.51%) | 69.59% (66.65%)
% 4.79% 35.34% 65.44% 95.00%
LAM/MPI
r_comm?2all_num 0.05 0.35 0.65 0.95
T_total (no ckpt) | 124.65 (111.63) | 84.73 (76.02) 46.41 (41.50) 10.26 (8.98)
ckpt 88 61 33 8
single overhead 0.1479 0.1427 0.1487 0.16
T_com (no ckpt) 3.45 (0.67) 7.5 (3.91) 7.34 (4.33) 4.92 (3.97)
Time_% (no ckpt) | 2.76% (0.60%) | 8.85% (5.15%) | 15.84% (10.45%) | 48.07% (44.19%)
% 4.79% 35.34% 65.44% 95.00%

Table 1: Run of do_coll_reset with TAG_COLL=30,000; tm_sleep_us(0.00001); msgSize=1000Int

MPICH-V2
r_comm2all_num 0.05 0.35 0.65 0.95
T_total (no ckpt) | 117.64 (113.79) | 106.11 (89.25) 83.50 (71.85) 75.04 (63.93)
7 ckpt 54 23 13 9
single overhead 0.0712 0.7330 0.8961 1.2344
T_com (no ckpt) 5.83 (2.68) 32.61 (17.57) 43.62 (34.27) 64.79 (54.26)
Time_% (no ckpt) | 4.9% (2.35%) | 30.62% (19.7%) | 52.24% (48.03%) | 86.42% (84.97%)
#% 4.79% 35.34% 65.44% 95.00%
LAM/MPI
r_comm2all_num 0.05 0.35 0.65 0.95
T_total (no ckpt) | 124.74 (112.21) 90.97 (82.18) 63.61 (57.29) 43.79 (38.76)
ckpt 87 59 42 28
single overhead 0.1440 0.1489 0.1504 0.1796
T_com (no ckpt) 3.91 (1.56) 14.31 (10.10) 25.43 (21.03) 38.65 (33.81)
Time_-% (no ckpt) | 3.13% (1.39%) | 15.74% (12.3%) | 40.06% (36.46%) | 88.18% (87.23%)
#-% 4.79% 35.34% 65.44% 95.00%

Table 2: Run of do_coll_reset with TAG_COLL=30,000; tm_sleep_us(0.0001); msgSize=10,000Int

e r_comm?2all_num is the number ratio of communication
to all. This number decides the message frequency in
the 'do_coll_reset’. In ’do_coll_reset’, we employ the
pseudo random number generator to make the commu-
nication and computation operation distributed evenly
across the run. For example, if r_comm2all_.num =
0.65, 65% of all the operation will be communication.

e # ckpt is the total number of checkpoint taken dur-
ing the run. In MPICH-V2, we set ’-xw-checkpoint
60’, while in LAM/MPI, we set ’sleep 1’ in between
consecutive cr_checkpoint operation.

e T_total (no ckpt) is the total time of the run. The num-
ber without parenthesis is the time taken with check-
point. The number in parenthesis is the time taken
without any checkpoint.

e single overhead is the number of
(T-total — T total_no_ckpt) /(#ckpt)

e T_com (no ckpt) is the total communication time taken
with/ without checkpoint, respectively.

e Time_% (no ckpt) is the ratio of communication time
to total with/ without checkpoint, respectively.

e # % is the ratio of actual number of communication
operation to all.

e all the numbers listed in Table 1 and Table 2 are the
average of at least 4 runs.

In both Table 1 and Table 2, we could see the number
of ’single overhead’ (the average overhead of taking one
checkpoint) of MPICH-V2 and LAM/MPI will cross at some
point. Intuitively, if the total communication time is less
than some threshold, the MPICH-V2’s single overhead is
much smaller, else the LAM/MPI will win. As we know,
the total communicatin time depends on both the message
size and frequency. In Table 1 and Table 2, we have different
message size and frequency and the cross point are at differ-
ent ‘r.comm?2all_num’s. If we use only one metric to describe
it, it should be 'T_com’ without any checkpoint. That is, if
the "T_com’ without any checkpoint is less than about 10-11
seconds, the single overhead of MPICH-V2 will be smaller
than LAM/MPI. The reason of selecting "T_com’ is due to
the message cumulative effects of MPICH-V2. Also, in both
Table 1 and Table 2, we could notice that without check-
point, the total run time of LAM/MPI is always a little bit
smaller than MPICH-V2. The more percentage of commu-
nication, the larger the gap will be.

Table 3 and Table 4 provide a zoom-in picture of Table 1
and Table 2.

1.3 Run of NPB’s BT

In this subsection, we list the running results of NPB 2.4’s
BT on both LAM/MPI and MPICH-V2.

Table 5 tells us that without checkpoint, the LAM version
of BT, no matter class A or B, are always a little bit faster.
While with checkpoint taken, the LAM version of BT, espe-
cially the time overhead of taking a single checkpoint will be

longer than that of MPICH-V2. And the larger the problem
set size, the larger the gap will be.

In Table 6, we could see the difference of application run
time image between MPICH-V2 and LAM are very little.
Figure 1(a) and Figure 1(b) illustrate the difference of check-
point size. The MPICH-V2 takes only one MPI process’
image at one time, and the size keep increasing as the run
continues. The LAM/MPI everytime takes all the MPI pro-
cesses’ image as checkpoints, and the checkpoint size keeps
almost constant. The LAM curve in Figure 1(a) and Fig-
ure 1(b) illustrate the checkpoint size of one MPI process.

MPICH-V2
r_comm?2all_num 0.05 0.10 0.35
T_total (no ckpt) | 117.64 (113.79) | 122.28 (108.76) 106.11 (89.25)
ckpt 54 48 23
single overhead 0.0712 0.2816 0.7330
T_com (no ckpt) 5.83 (2.68) 15.27 (5.02) 32.61 (17.57)
Time_% (no ckpt) | 4.9% (2.35%) | 12.43% (4.62%) | 30.62% (19.7%)
#-% 4.79% 9.88% 35.34%
LAM/MPI
r_comm?2all_num 0.05 0.10 0.35
T_total (no ckpt) | 124.74 (112.21) | 121.35 (106.89) 93.45 (82.56)
ckpt 87 97 75
single overhead 0.1440 0.1490 0.1452
T_com (no ckpt) 3.91 (1.56) 6.30 (3.09) 16.40 (10.80)
Time_% (no ckpt) | 3.13% (1.39%) | 5.19% (2.89%) | 17.55% (13.08%)
#-% 4.79% 9.88% 35.34%

Table 3: Run of do_coll_reset with TAG_COLL=30,000; tm_sleep_us(0.0001); msgSize=10,000Int

MPICH-V2
r_comm?2all_num 0.45 0.55 0.60 0.65
T_total (no ckpt) 73.70 (67.02) 58.77 (56.72) 56.45 (51.71) 49.27 (45.85)
ckpt 36 27 27 21
single overhead 0.1855 0.0759 0.1755 0.1628
T_com (no ckpt) 12.57 (6.92) 10.13 (8.70) 11.68 (9.35) 12.36 (9.40)
Time_% (no ckpt) | 17.05% (10.33%) | 17.26% (15.37%) | 20.74% (18.09%) | 25.12% (20.50%)
% 45.23% 55.29% 60.29% 65.44%
LAM/MPI
r_comm?2all_num 0.45 0.55 0.60 0.65
T_total (no ckpt) 73.32 (64.65) 60.22 (53.38) 53.75 (47.37) 47.40 (41.35)
ckpt 75 49 44 38
single overhead 0.1156 0.1395 0.145 0.1592
T_com (no ckpt) 8.91 (4.80) 8.73 (6.49) 7.99 (4.77) 8.09 (3.67)
Time_-% (no ckpt) | 12.16% (7.43%) | 14.52% (12.16%) | 14.89% (10.08%) | 17.03% (8.89%)
% 45.23% 55.29% 60.29% 65.44%

Table 4: Run of do_coll_reset with TAG_COLL=30,000; tm_sleep_us(0.00001); msgSize=1000Int

V2-bt. A4 V2-bt.B.4 LAM-bt.A 4 LAM-bt.B.4
T_total () | 192.16 (160.38) | 759.74 (687.97) | 215.7 (155.39) | 1682.8 (673.36)
ckpt 22 27 42 121
single 1.4148 2.6235 1.4358 8.3077
T_com 35.76 (11.38) 80.31 (45.83) 33.16 (7.20) | 434.12 (23.28)
ratio | 19.66% (7.09%) | 10.56% (6.65%) | 15.37% (4.63%) | 25.8% (3.45%)

Table 5: Comparison of NPB2.4’s BT between MPICH-V2 and LAM/MPI

V2-bt.A.4 | V2-bt.B.4 | LAM-bt.A.4 | LAM-bt.B.4
VmSize | 82808K B | 298836K B 91680K B 307828K B
VmRSS | 74580K B | 280376K B 75260K B 281072K B
VmHeap | 81588K B | 297620K B 89444K B 305596 K B
VmStk 28K B 28KB 24KB 24K B
VmExe 1148K B 1144K B 484K B 480K B
VmLib 0K B 0K B 1636 K B 1636 K B

Table 6: Comparison of NPB2.4’s BT between MPICH-V2 and LAM/MPI

1)

2]

8]
[4]

[5]

[6]

[7]

8]

(bt.A.4) ckpt size comparison between MPICH-V2 and LAM/MPI

250000 T
ckpt_sz_lam —+—
ckpt_sz_v2 ---x---- X
200000 e
8 150000 b o
° X
4
o
100000 -
/’x’
X
50000 =
5 10 15 20

ckpt #

(a) ckpt size comparison of bt.A.4 between V2 and
LAM

ckpt size

(bt.B.4) ckpt size comparison between MPICH-V2 and LAM/MPI

700000
ckpt_sleif?ﬁ —

ckpt_sz_y2 -
600000 '

o

X

500000

400000 ®

300000

200000

100000 |

20 40 60 80 100
ckpt #

(b) ckpt size comparison of bt.B.4 between V2 and
LAM

Figure 1: ckpt size comparison between V2 and LAM

REFERENCES

G. Bosilca, A. Bouteiller, F. Cappello, S. Djilali,

G. Fedak, C. Germain, T. Herault, P. Lemarinier,

O. Lodygensky, F. Magniette, V. Neri, and

A. Selikhov. Mpich-v: toward a scalable fault tolerant
mpi for volatile nodes. In Supercomputing ’02:
Proceedings of the 2002 ACM/IEEE conference on
Supercomputing, pages 1-18, Los Alamos, CA, USA,
2002. IEEE Computer Society Press.

Y. Chen, K. Li, and J. S. Plank. CLIP: A
checkpointing tool for message-passing parallel
programs. In SC97: High Performance Networking
and Computing, San Jose, CA, USA, 1997.

J. Dongarra. An overview of high performance
computers, clusters, and grid computing. 2nd Teraflop
Workbench Workshop, March 2005.

G. E. Fagg, A. Bukovsky, and J. J. Dongarra. Harness
and fault tolerant mpi. Parallel Computing,
27(11):1479-1495, 2001.

G. E. Fagg and J. Dongarra. Ft-mpi: Fault tolerant
mpi, supporting dynamic applications in a dynamic
world. In Proceedings of the 7th European PVM/MPI
Users’ Group Meeting on Recent Advances in Parallel
Virtual Machine and Message Passing Interface, pages
346-353, London, UK, 2000. Springer-Verlag.

G. E. Fagg, E. Gabriel, G. Bosilca, and et al.
Extending the mpi specification for process fault
tolerance on high performance computing systems.
Proceedings of the ISC2004, June 2004.

G. A. Geist, J. A. Kohl, and P. M. Papadopoulos.
Cumulvs: Providing fault-tolerance, visualization and
steering of parallel applications. International Journal
of High Performance Computing Applications,
11(3):224-236, August 1997.

E. Godard, S. Setia, and E. L.. White. Dyrect:
Software support for adaptive parallelism on nows. In
IPDPS ’00: Proceedings of the 15 IPDPS 2000

(10]

(11]

(12]

(16]

(17]

(18]

(19]

Workshops on Parallel and Distributed Processing,
pages 1168-1175, London, UK, 2000. Springer-Verlag.

W. Gropp and E. Lusk. Fault tolerance in mpi
programs. submitted to a special issue of the Journal
High Performance Computing and Applications.

Y. Kim, J. Plank, and J. Dongarra. Fault tolerant
matrix operations for networks of workstations using
multiple checkpointing. 1997.

K. Li, J. F. Naughton, and J. S. Plank. Low-latency,
concurrent checkpointing for parallel programs. IEEE
Trans. Parallel Distrib. Syst., 5(8):874-879, 1994.

V. K. Naik, S. P. Midkiff, and J. E. Moreira. A
checkpointing strategy for scalable recovery on
distributed parallel systems. pages 1-19, 1997.

T. Organization. System processor counts/systems in
top500 list nov. 2004. November 2004.

T. Organization. System processor counts/systems in
topH00 list june 2005. June 2005.

J. Plank, J. Xu, and R. Netzer. Compressed
differences: An algorithm for fast incremental
checkpointing, 1995.

J. S. Plank. A tutorial on reed-solomon coding for
fault-tolerance in raid-likesystems. 1996.

J. S. Plank, M. Beck, G. Kingsley, and K. Li.
Libckpt: Transparent checkpointing under Unix.
pages 213-223, January 1995.

J. S. Plank and Y. Ding. Note: Correction to the 1997
tutorial on reed-solomon coding. (CS-03-504), April
2003.

J. S. Plank, Y. Kim, and J. J. Dongarra.
Fault-tolerant matrix operations for networks of
workstations using diskless checkpointing. Journal of
Parallel and Distributed Computing, 43(2):125-138,
1997.

[20] J. S. Plank, K. Li, and M. A.Puening. Diskless
checkpointing. 1997.

[21] S. Vadhiyar and J. Dongarra. Srs - a framework for
developing malleable and migratable parallel
applications for distributed systems. 2002.

[22] N. H. Vaidya. A case for two-level recovery schemes.
IEEE Trans. Comput., 47(6):656-666, 1998.

