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ABSTRACT

With the increasing number of processors in modern HPC(High

Performance Computing) systems (65536 in current #1 IBM
BlueGene/L), there are two emergent problems to solve.
One is Scalability, that is, whether the performance of HPC
system could grow at the pace of the number of the pro-
cessor. The other is fault tolerance. Concluding from the
current experiences on the top-end machines, a 100, 000-
processor machine will experience a process failure every
few minutes. Currently, there’re following two representa-
tive fault tolerance solution of MPI program : M PICH —
V/V2/CL + condor, which employs un-coordinated check-
point approach and is a user level checkpoint/restart li-
brary; LAM/MPI + BLCR provides coordinated, system
level checkpoint /restart; FT'— M PI will be a user directive
fault tolerant MPI package. In this paper, we compare some
technical details between these solutions.

Categories and Subject Descriptors

B.8.1 [PERFORMANCE AND RELIABILITY]: Re-
liability, Testing, and Fault-Tolerance;

D.1.3 [PROGRAMMING TECHNIQUES]: Concurrent
Programming— Parallel programming;

Keywords
HPC, MPI, Fault Tolerance, checkpoint and rollback, per-
formance comparison, modelling and prediction

1. METHODOLOGY
In order to utilize MPICH-V2’s checkpoint /rollback features,

users must set the checkpoint interval (-xw-checkpoint ${time

-in_sec}) on command line, then the checkpoint/rollback ac-
tions will all be done by system. For LAM/MPI, the check-
point/ restart process are started by user separately on com-
mand line by ”cr_checkpoint ${pid_mpirun}” and ”cr_restart
context.${pid _mpirun}”, respectively.

Every time to take a checkpoint, MPICH-V2 snap shot only

one MPI process’ image as well as the message-in-fly in ran-
dom order. LAM/MPI will first drain all the message-in-
fly (synchronization/ coordination). Then, LAM/MPI will
checkpoint all MPI processes’ images plus that of MPIRUN
but excluding any messages.

In the rest of this paper, we firstly try running a synthe-
sized benchmark — do_coll_reset, which is easy to adjust the
message size, message frequency, computation time, and so
on to reflect needs. Based on the run and collection of data
of do_coll_reset , we will try establish a performance predic-
tion metric. Finally, we will try using this metric to predict
the performance of some real benchmarks, say NPB, and
compare it with the real run data.

1.1 do_coll_reset

The do_coll_reset application performs contiguous collective
communication among all the processes. There’re some unit
computation/ sleep distributed evenly between these com-
munication. There’re in total 4 parameters in do_coll_reset
which could be adjusted for modelling purpose : msgSize,
TAG_COLL (number of operation, including communica-
tion and computation), r_comm?2all num (number ratio of
communication to all, which decides the message frequency),
SLEEP_TIME (the duration time of unit computation).

1.2 Sample run of do_coll _reset
1.2.1 Istrun

In this sample run, we set:

o msgSize = 1000 X sizeof(int)
e SLEEP TIME = 0.00001seconds
e TAG.COLL = 30,000

Then, we set :

e msgSize = 10,000 X sizeof (int)
e SLEEP TIME = 0.0001seconds
e TAG_COLL = 30,000

First, we need some explanation of Table 1 and Table 2:



MPICH-V2

r_comm?2all_num 0.05 0.35 0.65 0.95
T_total (no ckpt) | 111.97 (111.9) 80.8 (79.17) 49.00 (46.58) 21.71 (19.58)
# ckpt 56 40 21 8
single overhead 0.0012 0.0407 0.1152 0.2662
T_com (no ckpt) 1.26 (1.17) 7.57 (6.33) 11.71 (10.01) 15.48 (13.05)
Time_% (no ckpt) | 1.13% (1.04%) 9.37% (8%) 24.09% (21.51%) | 69.59% (66.65%)
# % 4.79% 35.34% 65.44% 95.00%
LAM/MPI
r_comm?2all_num 0.05 0.35 0.65 0.95
T_total (no ckpt) | 124.65 (111.63) | 84.73 (76.02) 46.41 (41.50) 10.26 (8.98)
# ckpt 88 61 33 8
single overhead 0.1479 0.1427 0.1487 0.16
T_com (no ckpt) 3.45 (0.67) 7.5 (3.91) 7.34 (4.33) 4.92 (3.97)
Time_% (no ckpt) | 2.76% (0.60%) | 8.85% (5.15%) | 15.84% (10.45%) | 48.07% (44.19%)
# % 4.79% 35.34% 65.44% 95.00%

Table 1: Run of do_coll_reset with TAG_COLL=30,000; tm_sleep_us(0.00001); msgSize=1000Int

MPICH-V2
r_comm2all_num 0.05 0.35 0.65 0.95
T_total (no ckpt) | 117.64 (113.79) | 106.11 (89.25) 83.50 (71.85) 75.04 (63.93)
7 ckpt 54 23 13 9
single overhead 0.0712 0.7330 0.8961 1.2344
T_com (no ckpt) 5.83 (2.68) 32.61 (17.57) 43.62 (34.27) 64.79 (54.26)
Time_% (no ckpt) | 4.9% (2.35%) | 30.62% (19.7%) | 52.24% (48.03%) | 86.42% (84.97%)
#% 4.79% 35.34% 65.44% 95.00%
LAM/MPI
r_comm2all_num 0.05 0.35 0.65 0.95
T_total (no ckpt) | 124.74 (112.21) 90.97 (82.18) 63.61 (57.29) 43.79 (38.76)
# ckpt 87 59 42 28
single overhead 0.1440 0.1489 0.1504 0.1796
T_com (no ckpt) 3.91 (1.56) 14.31 (10.10) 25.43 (21.03) 38.65 (33.81)
Time_-% (no ckpt) | 3.13% (1.39%) | 15.74% (12.3%) | 40.06% (36.46%) | 88.18% (87.23%)
#-% 4.79% 35.34% 65.44% 95.00%

Table 2: Run of do_coll_reset with TAG_COLL=30,000; tm_sleep_us(0.0001); msgSize=10,000Int




e r_comm?2all_num is the number ratio of communication
to all. This number decides the message frequency in
the 'do_coll_reset’. In ’do_coll_reset’, we employ the
pseudo random number generator to make the commu-
nication and computation operation distributed evenly
across the run. For example, if r_comm2all_.num =
0.65, 65% of all the operation will be communication.

e # ckpt is the total number of checkpoint taken dur-
ing the run. In MPICH-V2, we set ’-xw-checkpoint
60’, while in LAM/MPI, we set ’sleep 1’ in between
consecutive cr_checkpoint operation.

e T_total (no ckpt) is the total time of the run. The num-
ber without parenthesis is the time taken with check-
point. The number in parenthesis is the time taken
without any checkpoint.

e single overhead is the number of
(T-total — T total_no_ckpt) /(#ckpt)

e T_com (no ckpt) is the total communication time taken
with/ without checkpoint, respectively.

e Time_% (no ckpt) is the ratio of communication time
to total with/ without checkpoint, respectively.

e # % is the ratio of actual number of communication
operation to all.

e all the numbers listed in Table 1 and Table 2 are the
average of at least 4 runs.

In both Table 1 and Table 2, we could see the number
of ’single overhead’ (the average overhead of taking one
checkpoint) of MPICH-V2 and LAM/MPI will cross at some
point. Intuitively, if the total communication time is less
than some threshold, the MPICH-V2’s single overhead is
much smaller, else the LAM/MPI will win. As we know,
the total communicatin time depends on both the message
size and frequency. In Table 1 and Table 2, we have different
message size and frequency and the cross point are at differ-
ent ‘r.comm?2all_num’s. If we use only one metric to describe
it, it should be 'T_com’ without any checkpoint. That is, if
the "T_com’ without any checkpoint is less than about 10-11
seconds, the single overhead of MPICH-V2 will be smaller
than LAM/MPI. The reason of selecting "T_com’ is due to
the message cumulative effects of MPICH-V2. Also, in both
Table 1 and Table 2, we could notice that without check-
point, the total run time of LAM/MPI is always a little bit
smaller than MPICH-V2. The more percentage of commu-
nication, the larger the gap will be.

Table 3 and Table 4 provide a zoom-in picture of Table 1
and Table 2.

1.3 Run of NPB’s BT

In this subsection, we list the running results of NPB 2.4’s
BT on both LAM/MPI and MPICH-V2.

Table 5 tells us that without checkpoint, the LAM version
of BT, no matter class A or B, are always a little bit faster.
While with checkpoint taken, the LAM version of BT, espe-
cially the time overhead of taking a single checkpoint will be

longer than that of MPICH-V2. And the larger the problem
set size, the larger the gap will be.

In Table 6, we could see the difference of application run
time image between MPICH-V2 and LAM are very little.
Figure 1(a) and Figure 1(b) illustrate the difference of check-
point size. The MPICH-V2 takes only one MPI process’
image at one time, and the size keep increasing as the run
continues. The LAM/MPI everytime takes all the MPI pro-
cesses’ image as checkpoints, and the checkpoint size keeps
almost constant. The LAM curve in Figure 1(a) and Fig-
ure 1(b) illustrate the checkpoint size of one MPI process.



MPICH-V2
r_comm?2all_num 0.05 0.10 0.35
T_total (no ckpt) | 117.64 (113.79) | 122.28 (108.76) 106.11 (89.25)
# ckpt 54 48 23
single overhead 0.0712 0.2816 0.7330
T_com (no ckpt) 5.83 (2.68) 15.27 (5.02) 32.61 (17.57)
Time_% (no ckpt) | 4.9% (2.35%) | 12.43% (4.62%) | 30.62% (19.7%)
#-% 4.79% 9.88% 35.34%
LAM/MPI
r_comm?2all_num 0.05 0.10 0.35
T_total (no ckpt) | 124.74 (112.21) | 121.35 (106.89) 93.45 (82.56)
# ckpt 87 97 75
single overhead 0.1440 0.1490 0.1452
T_com (no ckpt) 3.91 (1.56) 6.30 (3.09) 16.40 (10.80)
Time_% (no ckpt) | 3.13% (1.39%) | 5.19% (2.89%) | 17.55% (13.08%)
#-% 4.79% 9.88% 35.34%

Table 3: Run of do_coll_reset with TAG_COLL=30,000; tm_sleep_us(0.0001); msgSize=10,000Int

MPICH-V2
r_comm?2all_num 0.45 0.55 0.60 0.65
T_total (no ckpt) 73.70 (67.02) 58.77 (56.72) 56.45 (51.71) 49.27 (45.85)
# ckpt 36 27 27 21
single overhead 0.1855 0.0759 0.1755 0.1628
T_com (no ckpt) 12.57 (6.92) 10.13 (8.70) 11.68 (9.35) 12.36 (9.40)
Time_% (no ckpt) | 17.05% (10.33%) | 17.26% (15.37%) | 20.74% (18.09%) | 25.12% (20.50%)
# % 45.23% 55.29% 60.29% 65.44%
LAM/MPI
r_comm?2all_num 0.45 0.55 0.60 0.65
T_total (no ckpt) 73.32 (64.65) 60.22 (53.38) 53.75 (47.37) 47.40 (41.35)
# ckpt 75 49 44 38
single overhead 0.1156 0.1395 0.145 0.1592
T_com (no ckpt) 8.91 (4.80) 8.73 (6.49) 7.99 (4.77) 8.09 (3.67)
Time_-% (no ckpt) | 12.16% (7.43%) | 14.52% (12.16%) | 14.89% (10.08%) | 17.03% (8.89%)
# % 45.23% 55.29% 60.29% 65.44%

Table 4: Run of do_coll_reset with TAG_COLL=30,000; tm_sleep_us(0.00001); msgSize=1000Int

V2-bt. A4 V2-bt.B.4 LAM-bt.A 4 LAM-bt.B.4
T_total () | 192.16 (160.38) | 759.74 (687.97) | 215.7 (155.39) | 1682.8 (673.36)
# ckpt 22 27 42 121
single 1.4148 2.6235 1.4358 8.3077
T_com 35.76 (11.38) 80.31 (45.83) 33.16 (7.20) | 434.12 (23.28)
ratio | 19.66% (7.09%) | 10.56% (6.65%) | 15.37% (4.63%) | 25.8% (3.45%)

Table 5: Comparison of NPB2.4’s BT between MPICH-V2 and LAM/MPI

V2-bt.A.4 | V2-bt.B.4 | LAM-bt.A.4 | LAM-bt.B.4
VmSize | 82808K B | 298836K B 91680K B 307828K B
VmRSS | 74580K B | 280376K B 75260K B 281072K B
VmHeap | 81588K B | 297620K B 89444K B 305596 K B
VmStk 28K B 28KB 24KB 24K B
VmExe 1148K B 1144K B 484K B 480K B
VmLib 0K B 0K B 1636 K B 1636 K B

Table 6: Comparison of NPB2.4’s BT between MPICH-V2 and LAM/MPI
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