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ABSTRACT

As the desire of scientists to perform ever larger computa-
tions drives the size of today’s high performance computers
from hundreds, to thousands, and even tens of thousands of
processors, node failures in these computers are becoming
frequent events. Although checkpoint/rollback-recovery is
the typical technique to tolerate such failures, it often intro-
duces a considerable overhead, especially when applications
modify a large mount of memory between checkpoints.

This paper presents an algorithm-based checkpoint-free
fault tolerance approach in which, instead of taking check-
points periodically, a coded global consistent state of the
critical application data is maintained in memory by modi-
fying applications to operate on encoded data. Although the
applicability of this approach is not so general as the typi-
cal checkpoint/rollback-recovery approach, in parallel linear
algebra computations where it usually works, because no
periodical checkpoint or rollback-recovery is involved in this
approach, partial node failures can often be tolerated with
a surprisingly low overhead.

We show the practicality of this technique by applying
it to the ScaLAPACK matrix-matrix multiplication kernel
which is one of the most important kernels for ScaLAPACK
library to achieve high performance and scalability. We
address the practical numerical issue in this technique by
proposing a class of numerically good real number erasure

codes based on random matrices. Experimental results demon-

strate that the proposed checkpoint-free approach is able to
survive process failures with a very low performance over-
head.

*This research was supported in part by the Los Alamos
National Laboratory under Contract No. 03891-001-99 49
and the Applied Mathematical Sciences Research Program
of the Office of Mathematical, Information, and Computa-
tional Sciences, U.S. Department of Energy under contract
DE-AC05-000R22725 with UT-Battelle, LLC.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Jack J. Dongarra

University of Tennessee, Knoxville
and
Oak Ridge National Laboratory

dongarra@cs.utk.edu

Keywords

Matrix Computations, ScalLAPACK, Checkpoint, Fault Tol-
erance, Parallel and Distributed Systems.

1. INTRODUCTION

As the number of processors in today’s high performance

computers continues to grow, the mean-time-to-failure (MTTF)

of these computers are becoming significantly shorter than
the execution time of many current high performance com-
puting applications. Even making generous assumptions on
the reliability of a single processor or link, it is clear that
as the processor count in high end clusters grows into the
tens of thousands, the MTTF of these clusters will drop
from a few years to a few hours, or less. The next gener-
ation DOE ASCI computers (IBM Blue Gene L) are being
designed with 131,000 processors [1]. The failure of some
nodes or links for such a large system is likely to be just a
few minutes away [17]. In recent years, the trend of the high
performance computing has been shifting from the expensive
massively parallel computer systems to the clusters of com-
modity off-the-shelf systems [9]. While the commodity off-
the-shelf cluster systems have excellent price-performance
ratios, due to the low reliability of the off-the-shelf compo-
nents in these systems, there is a growing concern with the
fault tolerance issues in such system. The recently emerg-
ing computational grid environments [20] with dynamic re-
sources have further exacerbated the problem. However,
driven by the desire of scientists for ever higher levels of de-
tail and accuracy in their simulations, many computational
science programs are now being designed to run for days or
even months. Therefore, the next generation computational
science programs must be able to tolerate hardware failures.

Today’s long running scientific applications typically deal
with faults by checkpoint/restart approaches in which all
process states of an application are saved into stable storage
periodically. The advantage of this approach is that it is
able to tolerate the failure of the whole system. However,
in this approach, if one process fails, usually all surviving
processes are aborted and the whole application is restarted
from the last checkpoint. The major source of overhead in all
stable-storage-based checkpoint systems is the time it takes
to write checkpoints into stable storage [23]. The checkpoint
of an application on a, say, ten-thousand-processor computer
implies that all critical data for the application on all ten
thousand processors have to be written into stable storage
periodically, which may introduce an unacceptable amount



of overhead into the checkpointing system. The restart of
such an application implies that all processes have to be
recreated and all data for each process have to be re-read
from stable storage into memory or re-generated by com-
putation, which often brings a large amount of overhead
into restart. It may also be very expensive or unrealistic
for many large systems such as grids to provide the large
amount of stable storage necessary to hold all process state
of an application of thousands of processes.

In order to tolerate partial failures with reduced over-
head, diskless checkpointing [23] has been proposed by Plank
et. al. By eliminating stable storage from checkpointing and
replacing it with memory and processor redundancy, disk-
less checkpointing removes the main source of overhead in
checkpointing [23]. Diskless checkpointing has been shown
to achieve a decent performance to tolerate single process
failure in [21]. For applications which modify a small amount
of memory between checkpoints, it is shown in [8] that ,even
to tolerate multiple simultaneous process failures, the over-
head introduced by diskless checkpointing is still negligible.

However, for applications, such as matrix-matrix multi-
plication, which modify a large mount of memory between
checkpoints, due to the large checkpoint size, even diskless
checkpointing still introduces a considerable overhead into
applications. Firstly, a local in memory checkpoint has to
be maintained in diskless checkpointing, which introduces a
large amount of memory overhead and hurts the efficiency
of applications. Secondly, the local checkpoint in diskless
checkpointing has to be taken and encoded periodically,
which introduce a considerable performance overhead into
applications. Despite the checksum and reverse computa-
tion technique in [21] has reduced the memory overhead, the
overhead to calculate the checkpoint encodings periodically
does not change. Furthermore after failures, this technique
increase the recovery overhead by reversing the computa-
tion.

In this paper, we present an algorithm-based checkpoint-
free fault tolerance approach in which, instead of taking
checkpoints periodically, a coded global consistent state of
the critical application data is maintained in memory by
modifying applications to operate on encoded data. Al-
though this approach is not as generally applicable as typi-
cal checkpoint approaches, in parallel matrix computations
where it usually works, because no periodical checkpoint and
rollback-recovery are involved in this approach, fault toler-
ance for partial node failures can often be achieved with a
surprisingly low overhead.

Despite the fact that there has been much research on
algorithm-based fault tolerance [19] in which applications
are modified to operate on encoded data to determine the
correctness of some mathematical calculations on parallel
platforms where failed processors produce incorrect calcu-
lations, to the best of our knowledge, this is the first time
that applications are modified to operate on encoded data to
maintain a global consistent state on parallel and distributed
systems where failed processors stop working.

We show the practicality of this technique by applying
it to the ScaLAPACK [2] matrix-matrix multiplication ker-
nel which is one of the most important kernels for ScalLA-
PACK library to achieve high performance and scalability.
We address the practical numerical issue in this technique
by proposing a class of numerically good real number era-
sure codes based on random matrices. Experimental results

for matrix-matrix multiplication demonstrate that the pro-
posed approach is able to survive a small number of process
failures with a very low performance overhead.

Although the algorithm-based checkpoint-free fault toler-
ance approach presented in this paper is non-transparent
and algorithm-dependent, it is meaningful in that

1. It can often achieve a surprisingly low overhead in par-
allel matrix computations where it usually works.

2. It is often possible to build it into frequently used nu-
merical libraries such as ScaLAPACK to relieve the
involvement of the application programmer.

The specific contributions this paper makes can be sum-
marized as following

e Algorithm-Based Checkpoint-Free Fault Toler-
ance: We present an algorithm-based checkpoint-free
fault tolerance approach in which, instead of taking
checkpoint periodically, a coded global consistent state
of the critical application data is maintained in mem-
ory by modifying applications to operate on encoded
data. We show the practicality of this technique by
applying it to the ScaLAPACK matrix-matrix multi-
plication kernel which is one of the most important
kernels for ScaLAPACK to achieve high performance
and scalability.

e Numerically Good Real Number Erasure Codes:
We present a class of numerically good real number
erasure codes based on random matrices which can
be used to algorithm-based checkpoint-free fault toler-
ance technique to tolerate multiple simultaneous pro-
cess failures. We prove our codes are numerically highly
reliable.

The rest of this paper is organized as follows. Section
2 gives a brief review of the related work. Section 3 spec-
ifies the type of failures we focus on. Section 4 presents
the basic idea of algorithm-based checkpoint-free fault tol-
erance. In Section 5, we present an example to demon-
strate how algorithm-based checkpoint-free fault tolerance
works in practice by applying this technique to the ScalLA-
PACK matrix-matrix multiplication kernel. In Section 6, we
address the practical numerical issue in this technique by
proposing a class of numerically good real number erasure
codes. In Section 7, we evaluate the performance overhead of
applying this technique to the ScaLAPACK matrix-matrix
multiplication kernel. Section 8 compares algorithm-based
checkpoint-free fault tolerance with existing works and dis-
cusses the limitations of this technique. Section 9 concludes
the paper and discusses future work.

2. RELATED WORK

There is a rich literature on algorithm-based fault toler-
ance and fault tolerant computing in parallel and distributed
systems. This section briefly reviews previous fault tolerance
work related to our work.

2.1 Checkpoint/Restart

Checkpoint/restart is probably the most typical approach
to tolerate failures in parallel and distributed systems. By
writing checkpoints into stable storage periodically, the check-
point/restart approach is able to tolerate the failure of the



whole system. Checkpoint could be performed either from
a system level or from an application level. There is often a

trade off between transparency and performance. Transparant

system level approach usually introduces a higher perfor-
mance overhead than non-transaprant application level ap-
proach. The recent compiler based approach from [5] is a
very promising approch in this class of approaches.

The advantage of this class of approaches is that it is
very general and is able to tolerate the failure of the whole
system.

The limitations of this class of approaches are that it gen-
erally needs stable storage to save a global consistent state
periodically and that it aborts all survival processes even if
only one of many processes failed.

2.2 Diskless Checkpointing

Diskless checkpointing [23] is a technique for checkpoint-
ing the state of a long running application on a distributed
system without relying on stable storage. By eliminating
stable storage from checkpointing and replacing it with mem-
ory and processor redundancy, diskless checkpointing re-
moves the main source of overhead in checkpointing.

The advantages of this class of approaches are that it tol-
erates partial failures with reduced overhead and it does not
rely on stable storage.

The limitation of this class of approaches is that it is not
able to tolerate the failure of the whole system. And there
is additional memory, processor, and network overhead that
is absent in typical checkpoint/restart approach.

2.3 Checkpoint-Free Fault Tolerance

This class of approaches considers the specific character-
istic of an application and designs fault tolerance schemes
according to the specific characteristic of an application.
In [17], Geist et. el. investigated the natural fault tolerance
concept in which the application can finish the computa-
tion task even if a small amount of application data is lost,
therefore, checkpoint can be avoided for this type of applica-
tions. In [4], a checkpoint-free scheme is given for iterative
method. In [6], a checkpoint-free scheme is incorporated
into a parallel direct search application.

The advantage of this class of approaches is that it is
able to achieve very low overhead according to the specific
characteristic of an application.

The limitation of this approach is that it is non-transparant
and has to be designed according to the specific character-
istic of an application

2.4 Algorithm based fault tolerance

Algorithm based fault tolerance [19] is a class of approaches
which tolerant byzantine failures, in which failed processors
continues to work but produce incorrect calculations. In this
approach, applications are modified to operate on encoded
data to determine the correctness of some mathematical cal-
culations. This class of approaches can mainly be applied
to applications performing linear algebra computations and
usually achieves a very low overhead.

One of the most important characteristics of this research
is that it assume a fail-continue model in which failed pro-
cessors continues to work but produce incorrect calculations.

3. FAILURE MODEL

To define the problem we are targeting and clarify the
differences with traditional algorithm-based fault tolerance,
in this section, we specify the type of failures we are focusing
on.

Assume the computing system consists of many nodes
connected by network connections. Each node has its own
memory and local disk. The communication between pro-
cesses are assumed to be message passing. Assume the tar-
get application is optimized to run on a fixed number of
processes.

We assume nodes in the computing system are volatile,
which means a node may leave the computing system due
to failure, or join the computing system after being repaired.
Unlike in traditional algorithm-based fault tolerance which
assumes a failed processor continues to work but produce
incorrect results, in this paper, we assume a fail-stop failure
model. That is the failure of a node will cause all pro-
cesses on the failed nodes stop working. All data of the
processes on the failed node is lost. The processes on sur-
vival nodes could not either send or receive any message
from the processes on the failed node. Although there are
many other type of failures exist, in this paper, we only con-
sider this type of failures. This type of failure is common
in today’s large computing systems such as high-end clus-
ters with thousands of nodes and computational grids with
dynamic resources.

4. ALGORITHM-BASED CHECKPOINT-FREE

FAULT TOLERANCE

In this section, we present the basic idea of algorithm-
based checkpoint-free fault tolerance. We restrict our scope
to the long running numerical computing applications only.
As indicated in Section 5, this approach can mainly be ap-
plied to linear algebra computations on parallel and dis-
tributed systems.

4.1 Failure Detection and Location

It is assumed that fail-stop failures can be detected and lo-
cated with the aid of the programming environment. Many

current programming environments such as PVM [25], Globus [14],

FT-MPI [11], and Open MPI [16] do provide this kind of fail-
ure detection and location capability. We assume the lost
of partial processes in the message passing system does not
cause the aborting of the survival processes and it is possible
to replace the failed processes in the message passing sys-
tem and continue the communication after the replacement.
FT-MPI [11] is one such programming environments that
support all these functionalities. In the rest of this section,
we will mainly focus on how to recover the application.

4.2 Single Failure Recovery

Today’s long running scientific programs typically deal
with faults by checkpoint and rollback recovery in which
all process states of an application are saved into certain
storage periodically. If one process fails, the data on all pro-
cesses has to be recovered from the last checkpoint. The
checkpoint and rollback of an application on a, say, ten-
thousand-processor computer implies that all critical data
for the application on all ten thousand processors have to
be saved into and recovered from some storage periodically,
which may introduce an unacceptable amount of overhead



(both time and storage) into the checkpointing system. Con-
sidering that all data on all survival processes are still effec-
tive, it is interesting to ask: is it possible to recover only the
lost data on the failed process?

Consider the simple case where there will be only one
process failure. Before the failure actually occurs, we do not
know which process will fail, therefore, a scheme to recover
only the lost data on the failed process actually need to be
able to recover data on any process. It seems difficult to be
able to recover data on any process without saving all data
on all processes somewhere. However, if we assume, at any
time during the computation, the data on the i** process P;
satisfies

P1+P2+"'+Pn71:Pn7 (1)

where n is the total number of process used for the com-
putation. Then the lost data on any failed process would
be able to be recovered from (1). Assume the j** process
failed, then the lost data P; can be recovered from

Pi=P,—(Pi+- -+ Pi-1+Piy1+ -+ Pa1)

In this very special case, we are lucky enough to be able
to recover the lost data on any failed process without check-
point due to the special checksum relationship (1). In prac-
tice, this kind of special relationship is by no means natural.
However, it is natural to ask: is it possible to design an ap-
plication to maintain such a special checksum relationship
on purpose?

Assume the original application is designed to run on n
processes. Let P; denotes the data on the " computation
process. The special checksum relationship above can actu-
ally be designed on purpose as follows

e Add another encoding process into the application.
Assume the data on this encoding process is C'. For nu-
merical computations, P; is often an array of floating-
point numbers, therefore, at the beginning of the com-
putation, we can create a checksum relationship among
the data of all processes by initializing the data C' on
the encoding process as

Pi+Prt-+P=C (2)

e During the executing of the application, redesign the
algorithm to operate both on the data of computation
processes and on the data of encoding process in such a
way that the checksum relationship (2) is always main-
tained.

The specially designed checksum relationship (2) actually
establishes an equality between the data P; on computation
processes and the encoding data C on the encoding pro-
cess. If any processor fails then the equality (2) becomes
an equation with one unknown. Therefore, the data in the
failed processor can be reconstructed through solving this
equation.

4.3 Multiple Failure Recovery

The specially designed checksum relationship in the last
sub-section can only survive one process failure. However,
in today’s high performance computers, there are usually
more than one processors on each node. Hence, it is usual
to run multiple processes on one node, which implies that
the failure of one node often causes the lost of multiple pro-
cesses. Furthermore, as the number of nodes increases, the

possibility of lost multiple nodes also increases. Therefore,
it is often necessary to be able to survive multiple simulta-
neous process failures. In this section, we present a scheme
which can be used to recover multiple simultaneous process
failures.

Suppose there are n processes used for computation. As-
sume the data on the i-th computation process is P;. In
order to be able to reconstruct the lost data on m failed
processes, another m processes are dedicated to hold m en-
codings (weighted checksums) of the computation data. At
the beginning of the application, the weighted checksum C;
on the jth encoding process can be calculated from

anPr+...+a1nPn =C

. 3)
am1 P14+ ... 4 amnPn :CWM

where a;j, ¢ = 1,2,...,m, j = 1,2,...,n, is the weight we
need to choose. During the executing of the application, the
application need to be re-designed to operate both on the
data of computation processes and on the data of encoding
processes in such a way that the relationship (3) is always
maintained.

We call the relationship (3) the weighted checksum re-
lationship. We call A = (aij)mn the encoding matriz for
the weighted checksum relationship. The specially designed
weighted checksum relationship (3) actually establishes m
equalities between the data P; on computation processes
and the encoding data C; on the encoding processes. If
some processes fail, then the m equalities become a system
of linear equations. Therefore, the lost data in the failed
processes may be able to be reconstructed through solving
the system of linear equations.

Suppose that k computation processes and m — h encod-
ing processes have failed, then there are n — k computation
processors and h encoding processes survive. If we look at
the data on failed processors as unknowns, then (3) becomes
m equations with m — (h — k) unknowns.

If & > h, then there are less equations than unknowns.
There is no unique solution for (3). The lost data on the
failed processes can not be recovered.

However, if & < h, then there are more equations than
unknowns. By appropriately choosing A, a unique solution
for (3) can be guaranteed. Therefore, the lost data on the
failed processes can be recovered by solving (3).

Without loss of generality, we assume: (1) the computa-
tional process ji, jo, ..., jr failed and the computational pro-
CeSS Jk+1, Jk+2s .-y Jn survived; (2) the encoding process i1,
2, ..., 1n survived and the encoding process in4+1, th42, .-y im
failed. Then, in equation (3), Pj,, ..., P, and Ci, ., ..., Ci,,
become unknowns after the failure occurs. If we re-structure
(3), we can get

Qiy 5y le + ot @iy gy, ij - Cll Et:k+1 Qiqje PJt

n
@i Pjy + o+ a5, P =0y — Et:k+1 @iy, 5 Pje

and

Cipyr =i 1Pi+...+ai nPa

Ciy, = Qi1 P1+ ...+ @iy P



Let A, denote the coefficient matrix of the linear system
(4). If A, has full column rank, then Pj,..., P;, can be
recovered by solving (4), and Ci, _,, ..., Ci,, can be recovered
by substituting Pj,, ..., P;, into (5).

Whether we can recover the lost data on the failed pro-
cesses or not directly depends on whether A, has full column
rank or not. However, A, in (4) can be any sub-matrix (in-
cluding minor) of A depending on the distribution of the
failed processors. If any square sub-matrix (including mi-
nor) of A is non-singular and there are no more than m
process failed, then A, can be guaranteed to have full col-
umn rank. Therefore, to be able to recover from any no more
than m failures, the encoding matrix A has to satisfy: any
square sub-matriz (including minor) of A is non-singular.

How can we find such kind of matrices? It is well known
that some structured matrices such as Vandermonde matrix,
Cauchy matrix, and DFT matrix satisfy any square sub-
matrix (including minor) of the matrix is non-singular.

5. CHECKPOINT-FREE FAULT TOLERANCE

FOR MATRIX MULTIPLICATION

As an example to demonstrate how the algorithm-based
checkpoint-free fault tolerance works in practice, in this sec-
tion, we apply this technique to the ScaLAPACK matrix-
matrix multiplication kernel which is one of the most impor-
tant kernels for ScaLAPACK to achieve high performance
and scalability.

Actually, it is also possible to incorporate fault toler-
ance into many other ScaLAPACK routines through this
approach. However, in this section, we will restrict our pre-
sentation to the matrix-matrix multiplication kernel. For
the simplicity of presentation, in this section, we only dis-
cuss the case where there is only one process failure. How-
ever, just as described in the last section, it is straight to
extend the result here to the multiple simultaneous process
failures case by simply using the weighted checksum scheme
in Section 4.3.

5.1 Two-Dimensional Block-Cyclic
Distribution

It is well-known [2] that the layout of an application’s data
within the hierarchical memory of a concurrent computer is
critical in determining the performance and scalability of
the parallel code. By using two-dimensional block-cyclic
data distribution [2], ScaLAPACK seeks to maintain load
balance and reduce the frequency with which data must be
transferred between processes.
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Figure 1: Process grid in ScaLAPACK

For reasons described above, ScaLAPACK organizes the
one-dimensional process array representation of an abstract
parallel computer into a two-dimensional rectangular pro-
cess grid. Therefore, a process in ScaLAPACK can be ref-
erenced by its row and column coordinates within the grid.
An example of such an organization is shown in Figure 1.

Global View Local (distributed) View

Figure 2: Two-dimensional block-cyclic matrix dis-
tribution

The two-dimensional block-cyclic data distribution scheme
is a mapping of the global matrix onto the rectangular pro-
cess grid. There are two pairs of parameters associated with
the mapping. The first pair of parameters is (mb, nb), where
mb is the row block size and nb is the column block size. The
second pair of parameters is (P, @), where P is the number
of process rows in the process grid and @ is the number of
process columns in the process grid. Given an element a;;
in the global matrix A, the process coordinate (pi,¢;) that
a;; resides can be calculated by

pi = Lﬁj mod P,
i = |5) mod Q,
The local coordinate (ip,, jq;) Which a;; resides in the pro-

cess (pi, ¢i) can be calculated according to the following for-
mula

-

I

L5 )
=%

Ja; = LL’&?JJ.nb—l-i mod nb,

|.mb+i mod mb,

Ip;

[+

S

Figure 2 is an example of mapping a 9 by 9 matrix onto a
2 by 3 process grid according two-dimensional block-cyclic
data distribution with mb = nb = 2.

5.2 Encoding Two-Dimensional Block Cyclic
Matrices

In this section, we will construct different encoding schemes
which can be used to design checkpoint-free fault tolerant
matrix computation algorithms in ScaLAPACK.

Assume a matrix M is originally distributed in a P by @
process grid according to the two dimensional block cyclic
data distribution. For the convenience of presentation, as-
sume the size of the local matrices in each process is the
same. We will explain different coding schemes for the ma-
trix M with the help of the example matrix in Figure 3.
Figure 3 (a) shows the global view of an example matrix.
After the matrix is mapped onto a 2 by 2 process grid with
mb = nb = 1, the distributed view of this matrix is shown
in Figure 3 (b).

0 1
01|01 0l0]1]1
2|3]2|3 0 0|l0]1]1
0|1]0|1 22|33
2|3]|2|3 1 212|313

(a). Original matrix from global view (b). Origina matrix from distributed view

Figure 3: An example matrix



Suppose we want to tolerate a single process failure. We
dedicate another P+ Q41 additional processes and organize
the total PQ+ P+ @+ 1 process as a P+ 1 by Q41 process
grid with the original matrix M distributed onto the first P
rows and ) columns of the process grid.

The distributed column checksum matriz M€ of the matrix
M is the original matrix M plus the part of data on the
(P + 1)*" process row which can be obtained by adding all
local matrices on the first P process rows. Figure 4 (b)
shows the distributed view of the column checksum matrix
of the example matrix from Figure 1. Figure 4 (a) is the
global view of the column checksum matrix.
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(a). Column checksum matrix from global view  (b). Column checksum matrix from distributed view

Figure 4: Distributed column checksum matrix of
the example matrix

The distributed row checksum matriz M" of the matrix
M is the original matrix M plus the part of data on the
(Q@+ 1)th process columns which can be obtained by adding
all local matrices on the first @@ process columns. Figure 5
(b) shows the distributed view of the row checksum matrix
of the example matrix from Figure 1. Figure 5 (a) is the
global view of the row checksum matrix.

0 1 2
o|1|1]|0|1]|1 o|o0|1(1]1(1
2|3|5|2|3]|5 ° oO|Oo|1(|1]1|1
oO|1|1]|0|1]|1 2123|355
2|3|5|2|3]|5 . 2|2]|3|3]|5]|5

(a@). Row checksum matrix from global view

Figure 5: Distributed row checksum matrix of the
original matrix

The distributed full checksum matrizc M7? of the matrix
M is the original matrix M, plus the part of data on the
(P + 1)*" process row which can be obtained by adding all
local matrices on the first P process rows, plus the part of
data on the (Q+1)*" process column which can be obtained
by adding all local matrices on the first ) process columns.
Figure 6 (b) shows the distributed view of the full checksum
matrix of the example matrix from Figure 3. Figure 6 (a) is
the global view of the full checksum matrix.

0 1 2
ol1|1fo|1]1 ojlof1f1]1|1
2(3|5|2[3]|5 °Tololz 212
2|al6|2]|a]|6 2(2]3[3|5]s
o|1|1]o|1]|1 BB aE
2(3|5|2[3]|5 2|2]alale]s6
2|ale|2]|a]6 212024 lal6]6

(a). Full checksum matrix from global view

Figure 6: Distributed full checksum matrix of the
original matrix

(b). Row checksum matrix from distributed view

(b). Full checksum matrix from distributed view
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Figure 7: The ;' step of the matrix-matrix multi-
plication algorithm in ScaLAPACK

5.3 Scalable Universal Matrix Multiplication
Algorithm

To achieve high performance, the matrix-matrix multipli-
cation in ScaLAPACK uses a blocked outer product version
of the matrix matrix multiplication algorithm. Let A; de-
note the 5 column block of the matrix A and B]T denote
the j*" row block of the matrix B. The following Figure 8 is
the algorithm to perform the matrix matrix multiplication.
Figure 7 shows the j* step of the matrix matrix multipli-
cation algorithm.

for j=0,1,...
row broadcast Aj;
column broadcast BjT;
C=C+HA; * BJT;
end

Figure 8: Scalable Universal Matrix-Matrix Multi-
plication Algorithm in ScaLAPACK

5.4 Maintaining Global Consistent States by
Computation

Assume A, B and C are distributed matrices on a P by
Q process grid with the first element of each matrix on pro-
cess (0,0). Let A°, B" and CY denote the corresponding
distributed checksum matrix. Let Aj denote the 3" column
block of the matrix A¢ and BJT-T denote the j** row block
of the matrix B". We first prove the following fundamen-
tal theorem for matrix matrix multiplication with checksum
matrices.

THEOREM 1. Let S; = C7 + 321~ Ag + Bp", then S; is
a distributed full checksum matriz.

PROOF. It is straightforward that A$ « BiT is a dis-
tributed full checksum matrix and the sum of two distributed
full checksum matrices is a distributed checksum matrix. S;
is the sum of j distributed full checksum matrices, therefore
is a distributed full checksum matrix. O

Theorem 1 tells us that at the end of each iteration of the
matrix matrix multiplication algorithm with checksum ma-
trices, the checksum relationship of all checksum matrices
are still maintained. This tells us that a coded global con-
sistent state of the critical application data is maintained
in memory at the end of each iteration of the matrix ma-
trix multiplication algorithm if we perform the computation
with related checksum matrices.
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Figure 9: The j'* step of the fault tolerant matrix-
matrix multiplication algorithm

However, in a distributed environment, different process
may update there local data asynchronously. Therefore, if
when some process has updated their local matrix and some
process is still in the communication stage, a failure hap-
pens, then the relationship of the data in the distributed
matrix will no be maintained and the data on all processes
would not form a consistent state. But this could be solved
by simply performing a synchronization before performing
local update. Therefore, in the following algorithm in Fig-
ure 10, there will always be a coded global consistent state
(i.e. the checksum relationship) of the matrix A°, B" and
C’ in memory. Hence, a single process failure at any time
during the matrix matrix multiplication would be able to
recovered from the checksum relationship.

Despite in this algorithm, the only modification to the li-
brary routine is to perform a synchronization before local
update. However the amount of modification necessary to
maintain a consistent state is highly dependent on the char-
acteristic of an algorithm. For example, in LU factorization,
due to the damage of the linear relationship by the global
row pivoting, one also needs to adjust the encodings appro-
priately when performing pivoting to maintain a consistent
encoded state in memory.

construct checksum matrices A¢, B", and C7;
for j =0,1,...

row broadcast A;;

column broadcast BJT-T;

synchronize;

Cl=cf + A5 « ByT;
end

Figure 10: A fault tolerant matrix-matrix multipli-
cation algorithm

5.5 Overhead and Scalability Analysis

In this section, we analysis the overhead introduced by the
algorithm-based checkpoint-free fault tolerance for matrix
matrix multiplication.

For the simplicity of presentation, we assume all three ma-
trices A, B, and C are square. Assume all three matrices are
distributed onto a P by P process grid with m by m local
matrices on each process. The size of the global matrices is
Pm by Pm. Assume all elements in matrices are 8-byte dou-
ble precision floating-point numbers. Assume every process
has the same speed and disjoint pairs of processes can com-
municate without interfering each other. Assume it takes

a + Bk seconds to transfer a message of k bytes regardless
which processes are involved, where « is the latency of the
communication and % is the bandwidth of the communica-
tion. Assume a process can concurrently send a message to
one partner and receive a message from a possibly differ-
ent partner. Let « denote the time it takes for a process to
perform one floating-point arithmetic operation.

55.1 Time Complexity for Parallel Matrix Matrix
Multiplication

Note that the sizes of all three global matrices A, B, and
C' are all Pm, therefore, the total number of floating-point
arithmetic operations in the matrix matrix multiplication is
2P3m3. There are P? process with each process execute the
same number of floating-point arithmetic operations. Hence,
the total number of floating-point arithmetic operations on
each process is 2Pm?3. Therefore, the time Tratriz_comp for
the computation in matrix matrix multiplication is

3
Tmatrix_comp =2Pm -

In the parallel matrix matrix multiplication algorithm in
Figure 8, the columns of A and the rows of B also need to
broadcast to other column and row processes respectively.
To broadcast one block columns of A using a simple binary
tree broadcast algorithm, it takes 2(a+8bm/f3) log, P, where
b is the row block size in the two dimensional block cyclic
distribution. Therefore, the time Tinatriz_comm for the com-
munication in matrix matrix multiplication is

Tmatriz_comm = 2aPTm 10g2 P+ 16ﬂPm2 10g2 P.

Therefore, the total time to perform parallel matrix ma-
trix multiplication is

Tratriz_mult = Tmatriz_comp + Tmatric-comm
Pm
b
+168Pm? log, P. (6)

= 2Pm®y +2a log, P

5.5.2 Overhead for Calculating Encoding

To make matrix matrix multiplication fault tolerant, the
first type of overhead introduced by the algorithm-based
checkpoint-free fault tolerance technique is (1) construct-
ing the distributed column checksum matrix A€ from A; (2)
constructing the distributed row checksum matrix B" from
B; (3) constructing the distributed full checksum matrix Cf
from C

The distributed checksum operation involved in construct-
ing all these checksum matrices performs the summation of
P local matrices from P processes and saves the result into
the (P + 1)th process. Let Teach_encode denote the time for
one checksum operation and Tiotal_encode denote the time for
constructing all three checksum matrices A°, B", and C¥,
then

Ttotal_encode = 4Teach_encode

By using a fractional tree reduce style algorithm [24], the
time complexity for one checksum operation can be expressed

as
1/3
8sm?8 (1 +0 <(—1°§122P> ))

+0(alog, P) + O(m*y)

Teach_encode



Therefore, the time complexity for constructing all three
checksum matrices is

1/3
Tiotalencode = 32m2ﬁ (1 +0 ((M) ))
m

+O0(alog, P) + O(m2’y)‘ (7)

In practice, unless the size of the local matrices m is very
small or the size of the process grid P is extremely large,
the total time for constructing all three checksum matrices
is almost independent of the size of the process grid P.

The overhead (%) Ritotal_encode for constructing checksum
matrices for matrix matrix multiplication is
Ttotal_encode

Rtotal_encode =
Tmat'riz_mult

O(5-) ®)

From (8), we can conclude

1. If the size of the data on each process is fixed (m is
fixed), then as the number of processes increases to
infinite (that is P — oo), the overhead (%) for con-
structing the checksum matrices decreases to zero with
a speed of O(+)

2. If the number of processes is fixed (P is fixed), then as
the size of the data on each process increases to infinite
(that is m» — oo) the overhead (%) for constructing
the checksum matrices decreases to zero with a speed
of O()

5.5.3 Overhead for Performing Computations on
Encoded Matrices

The fault tolerant matrix matrix multiplication algorithm
in Figure 10 performs computations using checksum matri-
ces which have larger size than the original matrices. How-
ever, the total number of processes devoted to computation
also increases. A more careful analysis of the algorithm in
Figure 10 indicates that the number of floating-point arith-
metic operations on each process in the fault tolerant algo-
rithm (Figure 10) is actually the same as that of the original
non-fault tolerant algorithm (Figure 8).

As far as the communication is concerned, in the original
algorithm (in Figure 8), the column (and row) blocks are
broadcast to P processes. In the fault tolerant algorithms
(in Figure 10), the column (and row) blocks now have to be
broadcast to P + 1 processes.

Therefore, the total time to perform matrix matrix mul-
tiplication with checksum matrices is

Pm

Tmatriz-mult-ahecksum = QPm3"Y + QOZT 1Og2 (P + 1)

+168Pm* log, (P + 1).

Therefore, the overhead (time) to perform computations
with checksum matrices is

Tmatriz-mult-ahecksum -

P 1
(QaTm +168Pm>) log, (1 + F)

Toverhead-matrizomult =

(9)

The overhead (%) Roverhead-matriz_muit for performing com-
putations with checksum matrices in fault tolerant matrix

Tmatriz-mult

matrix multiplication is

Touerhead_matriz_mult

Roverhead_matrix_mult =
Tmatrix_mult

1

() (10)

From (9), we can conclude that

1. If the size of the data on each process is fixed (m is
fixed), then as the number of processes increases to in-
finite (that is P — o0), the overhead (%) for perform-
ing computations with checksum matrices decreases to
zero with a speed of O(+)

2. If the number of processes is fixed (P is fixed), then as
the size of the data on each process increases to infinite
(that is m — oo) the overhead (%) for performing
computations with checksum matrices decrease to zero
with a speed of O()

m

5.5.4 Overhead for Recovery

The failure recovery contains two steps: (1) recover the
programming environment; (2) recover the application data.

The overhead for recovering the programming environ-
ment depends on the specific programming environment.
For FT-MPI [11] which we perform all our experiment on,
it introduce a negligible overhead (refer Section 7).

The procedure to recover the three matrices A, B, and C
is similar to calculating the checksum matrices. Except for
matrix C, it can be recovered from either the row check-
sum or the column checksum relationship. Therefore, the
overhead to recover data is

1/3
Trecoverdata = 24m?p (1+0<(%> ))
m

+0(alog, P) + O(m?*y) (11)

In practice, unless the size of the local matrices m is very
small or the size of the process grid P is extremely large, the
total time for recover all three checksum matrices is almost
independent of the size of the process grid P.

The overhead (%) Rrecover-data for constructing checksum
matrices for matrix matrix multiplication is

_ Trecover_data

Rrecover-data -
Tmatriz-mult

() (12

6. PRACTICAL NUMERICAL ISSUE

The algorithm-based checkpoint-free fault tolerance pre-
sented in Section 4 involves solving system of linear equa-
tions to recover multiple simultaneous process failures. There-
fore, in the practice of the algorithm-based checkpoint-free
fault tolerance, the numerical issues involved in recovering
multiple simultaneous process failures have to be addressed.

6.1 Numerical Stability of Real Number Codes

In Section 4, it has been derived that, to be able to recover
from any no more than m failures, the encoding matrix A
has to satisfy: any square sub-matrix (including minor) of
A is non-singular. This requirement for the encoding matrix
coincides with the properties for the generator matrices of
real number Reed-Solomon style erasure correcting codes.



In fact, our weighted checksum encoding in Section 4.3 can
be viewed as a version of the Reed-Solomon erasure coding
scheme [22] in real number field. Therefore any generator
matrix from real number Reed-Solomon style erasure codes
can actually be used as the encoding matrix of algorithm-
based checkpoint-free fault tolerance

In the existing real number or complex-number Reed-
Solomon style erasure codes in literature, the generator ma-
trices mainly include: Vandermonde matrix (Vander) [1§],
Vandermonde-like matrix for the Chebyshev polynomials
(Chebvand) [3], Cauchy matrix (Cauchy), Discrete Cosine
Transform matrix (DCT), Discrete Fourier Transform ma-
trix (DFT) [13]. Theoretically, these generator matrices can
all be used as the encoding matrix of the algorithm-based
checkpoint-free fault tolerance scheme.

However, in computer floating point arithmetic where no

computation is exact due to round-off errors, it is well known [15]

that, in solving a linear system of equations, a condition
number of 10* for the coefficient matrix leads to a loss of ac-
curacy of about k decimal digits in the solution. Therefore,
in order to get a reasonably accurate recovery, the encod-
ing matrix A actually has to satisfy any square sub-matriz
(including minor) of A is well-conditioned.

The generator matrices from above real number or complex-
number Reed-Solomon style erasure codes all contain ill-
conditioned sub-matrices. Therefore, in these codes, when
certain error patterns occur, an ill-conditioned linear sys-
tem has to be solved to reconstruct an approximation of the
original information, which can cause the loss of precision of
possibly all digits in the recovered numbers.

6.2 Numerically Good Real Number Codes Based

on Random Matrices

In this section, we will introduce a class of new codes that
are able to reconstruct a very good approximation of the lost
data with high probability regardless of the failure patterns
processes. Our new codes are based on random matrices
over real number field.

It is well-known [10] that Gaussian random matrices are
well-conditioned. To estimate how well conditioned Gaus-
sian random matrices are, we have proved the following The-
orem:

THEOREM 2. Let Gixn be an m X n real random matriz
whose elements are independent and identically distributed
standard normal random variables, and let kK2(Gmxn) be the
2-norm condition number of Gmxn. Then, for any m > 2,
n>2and x> |n—m|+1, ka(Gmxn) satisfies

(g) faGn) ) (D)
<Pt 7o) <

and

E(ln k2(Gmxn)) < In + 2.258,

In—m|+1
where 0.245 < ¢ < 2.000 and 5.013 < C < 6.414 are univer-
sal positive constants independent of m, n and x.

Due to the length of the proof for Theorem 1, we omit the
proof here and refer interested readers to [7] for complete
proof.

Note that any sub-matrix of a Gaussian random matrix
is still a Gaussian random matrix. Therefore, a Gaussian

random matrix would satisfy any sub-matrix of the matrix
is well-conditioned with high probability.

Theorem 2 can be used to estimate the accuracy of re-
covery in the weighted checksum scheme. For example, if
an application uses 100,000 processes to perform computa-
tion and 20 processes to hold encodings, then the encoding
matrix is a 20 by 100,000 Gaussian random matrix. If 10
processors fail concurrently, then the coefficient matrix A,
in the recovery algorithm is a 20 by 10 Gaussian random
matrix. From Theorem 1, we can get

E(log,o k2(Ar)) < 1.25
and
P(k2(A) > 100) < 3.1 x 107",

Therefore, on average, we will loss about one decimal digit
in the recovered data and the probability to loss 2 digits is
less than 3.1 x 107

7. EXPERIMENTAL EVALUATION

In this section, we experimentally evaluate the perfor-
mance overhead of applying the algorithm-based checkpoint-
free fault tolerance technique to the ScaLAPACK matrix-
matrix multiplication kernel. We performed four sets of ex-
periments to answer the following four questions:

1. What is the performance overhead of constructing check-
sum matrices?

2. What is the performance overhead of performing com-
putations with checksum matrices?

3. What is the performance overhead of recovering FT-
MPI programming environments?

4. What is the performance overhead of recovering check-
sum matrices ?

For each set of experiments, the size of the problems and the
number of computation processes used are listed in Table 1.

Table 1: Experiment Configurations
Size of original matrix 12,800 | 19,200 | 25,600
Size of full checksum matrix | 19,200 | 25,600 | 32,000
Process grid without FT 2by2 | 3by3|4by4
Process grid with FT 3by3 |4by4 | 5byb

All experiments were performed on a cluster of 32 Pentium
IV Xeon 2.4 GHz dual-processor nodes. Each node of the
cluster has 2 GB of memory and runs the Linux operating
system. The nodes are connected with a Gigabit Ethernet.
The timer we used in all measurements is MPI_Wtime.

The programming environment we used is FT-MPI [11].
FT-MPI is a fault tolerant version of MPI that is able to pro-
vide basic system services to support fault survivable appli-
cations. FT-MPI implements the complete MPI-1.2 specifi-
cation, some parts of the MPI-2 document and extends some
of the semantics of MPI for allowing the application the pos-
sibility to survive process failures. FT-MPI can survive the
failure of n-1 processes in a n-process job, and, if required,
can re-spawn the failed processes. However, the application
is still responsible for recovering the data structures and the
data of the failed processes.



Although FT-MPI provides basic system services to sup-
port fault survivable applications, prevailing benchmarks
show that the performance of FT-MPI is comparable [12]
to the current state-of-the-art MPI implementations.

7.1 Overhead for Constructing Checksum
Matrices

The first set of experiments is designed to evaluate the
performance overhead of constructing checksum matrices.
We keep the amount of data in each process fixed (that is
the size of local matrices m fixed), and increase the size of
the test matrices (hence the size of process grid).

Table 2: Time and overhead (%) for constructing
checksum matrices

Size of original matrix 12,800 | 19,200 | 25,600

Exec. time for original matrix | 442.9 | 695.0 | 989.8

Time for calculating encoding | 38.0 40.8 43.2

Overhead (%) for encoding 8.6% |59% |4.4%

Table 2 reports the time for performing computations on
original matrices and the time for constructing the three
checksum matrices A°, B", and C.

From Table 2, we can see that, as the size of the global
matrices increases, the time for constructing checksum ma-
trices increases only slightly. This is because, in the formula
(7), when the size of process grid P is small, 32m?8 is the
dominate factor in the time to constructing checksum ma-
trices. Table 2 also indicates that the overhead (%) for con-
structing checksum matrices decreases as size of matrices
increases, which is consistent with our theoretical formula
(8) about the overhead for constructing checksum matrices.

7.2 Overhead for Performing Computations
on Encoded Matrices

The algorithm-based checkpoint-free fault tolerance tech-
nique involve performing computations with checksum ma-
trices, which introduces some overhead into the fault toler-
ance scheme. The purpose of this experiment is to evaluate
the performance overhead of performing computations with
checksum matrices.

Table 3: Time and overhead (%) for performing
computations on encoded matrices

Size of original matrix 12,800 | 19,200 | 25,600

Size of full checksum matrix 19,200 | 25,600 | 32,000

Exec. time for original matrix | 442.9 | 695.0 | 989.8

Exec. time for encoded matrix | 462.6 716.4 1013.3
Increased time 19.7 21.4 23.5
Overhead (%) 4.4% | 3.1% | 24%

Table 3 reports the execution time for performing com-
putations on original matrices and the execution time for
performing computations on checksum matrices for differ-
ent size of matrices.

Table 3 indicates the amount time increased for perform-
ing computations on checksum matrices increases slightly as
the size of matrices increases. The reason for this increase
is that, when perform computations with checksum matri-
ces, column blocks of A° (and row blocks of B") have to be
broadcast to one more process. The dominate time for par-
allel matrix matrix multiplication is the time for computa-
tion which is the same for both fault tolerant algorithm and
non-fault tolerant algorithm. Therefore, the amount time
increased for fault tolerant algorithm increases only slightly
as the size of matrices increases.

7.3 Overhead for Recovering FT-MPI
Environment

The overhead for recovering programming environments
depends on the specific programming environments. In this
section, we evaluate the performance overhead of recovering
FT-MPI environment.

Table 4: Time and overhead (%) for recovering FT-
MPI environment

Size of original matrix 12,800 | 19,200 | 25,600
Exec. time for original matrix | 442.9 695.0 989.8
Time for recovery FT-MPI 0.6 1.1 1.6
Overhead (%) 0.14% | 0.16% | 0.16%

Table 4 reports the time for recovering FT-MPI commu-
nication environment with single process failure. Table 4
indicates that the overhead for recovering FT-MPI is less
than 0.2% which is negligible in practice.

7.4 Overhead for Recovering Application Data

The purpose of this set of experiments is to evaluate the
performance overhead of recovering application data from
single process failure.

Table 5: Time and overhead (%) for recovering rp-
plication data

Size of original matrix 12,800 | 19,200 | 25,600
Exec. time for original matrix | 442.9 | 695.0 | 989.8
Time for recovery data 28.5 30.6 324
Overhead (%) 6.4% | 44% | 3.3%

Table 5 reports the time for recovering the three check-
sum matrices A°, B”, and C’ in the case of single process
failure. Table 5 indicates that ,as the size of the matrices in-
creases, the time for recovering checksum matrices increases
slightly and the overhead for recovering checksum matrices
decreases, which again confirmed the theoretical results in
Section 5.4.4.

8. DISCUSSION

This paper presented an algorithm-based checkpoint-free
fault tolerance approach in which, instead of taking check-
point periodically, a coded global consistent state of the crit-



ical application data is maintained in memory by modify-
ing applications to operate on encoded data. Although the
algorithm-based checkpoint-free fault tolerance in this pa-
per share the same basic idea of modifying applications to
operate on encoded data with the traditional the algorithm-
based fault tolerance [19], they assume very different a fail-
ure model.

Compared with the typical checkpoint/restart approaches,
the algorithm-based checkpoint-free fault tolerance in this
paper can only tolerate partial process failures. It needs the
support from programming environments to detect and lo-
cate failures. It requires the programming environments to
be robust enough to survive node failures without suffering
complete system failure. Both the overhead of and the ad-
ditional effort to maintain a coded global consistent state of
the critical application data in algorithm-based checkpoint-
free fault tolerance is usually highly dependent on the spe-
cific characteristic of the application. Therefore, it is possi-
ble that the algorithm-based checkpoint-free fault tolerance
approach introduces higher overhead than checkpoint ap-
proaches.

Unlike in typical checkpoint/restart approaches which in-
volve periodical checkpoint and rollback-recovery, there is no
checkpoint or rollback-recovery involved in this approach.
Furthermore, in the algorithm-based checkpoint-free fault
tolerance in this paper, whenever process failures occur, it
is only necessary to recover the lost data on the failed pro-
cesses. Therefore, for many applications, it is also possi-
ble for this approach to achieve a much lower fault tolerant
overhead than typical checkpoint/restart approaches. As
shown in Section 5 and 7, for matrix matrix multiplication,
which is one of the most fundamental operations for compu-
tational science and engineering, as the size N of the matrix
increases, the fault tolerance overhead decreases with the
speed of %

Although the algorithm-based checkpoint-free fault toler-
ance approach presented in this paper is non-transparent
and algorithm-dependent, it is meaningful in that

1. It can often achieve a surprisingly low overhead in par-
allel matrix computations where it usually works.

2. It is often possible to build it into frequently used nu-
merical libraries such as ScaLAPACK to relieve the
involvement of the application programmer.

9. CONCLUSION AND FUTURE WORK

In this paper, we presented an algorithm-based checkpoint-
free fault tolerance approach in which, instead of taking
checkpoint periodically, a coded global consistent state of
the critical application data is maintained in memory by
modifying applications to operate on encoded data. Al-
though the applicability of this approach is not so general as
the typical checkpoint/rollback-recovery approach, in paral-
lel matrix computations where it usually works, because no
periodical checkpoint or rollback-recovery is involved in this
approach, process failures can often be tolerated with a sur-
prisingly low overhead.

We showed the practicality of this technique by applying
it to the ScaLAPACK matrix-matrix multiplication kernel
which is one of the most important kernels for ScaLAPACK
library to achieve high performance and scalability. Experi-
mental results demonstrated that the proposed checkpoint-

free approach is able to survive process failures with a very
low performance overhead.

We addressed the practical numerical issue in this tech-
nique by proposing a class of numerically good real number
erasure codes based on random matrices. We proved our
codes are numerically highly reliable in recovering the lost
data for multiple simultaneous process failures.

For the future, we plan to incorporate this fault toler-
ance technique into more ScaLAPACK library routines and
more high performance computing applications. We would
also like to evaluate this technique on systems with larger
number of processors.
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