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1 Introduction

The idea that computational modeling and simulation represents a new branch
of scientific methodology, alongside theory and experimentation, was introduced
about two decades ago. It has since come to symbolize the enthusiasm and sense
of importance that people in our community feel for the work they are doing. But
when we try to assess how much progress we have made and where things stand
along the developmental path for this new “third pillar of science,” recalling
some history about the development of the other pillars can help keep things in
perspective. For example, we can trace the systematic use of experiment back
to Galileo in the early seventeenth century. Yet for all the incredible successes
it enjoyed over its first three centuries, and the considerable contributions from
many outstanding scientists such as G. Mendel or C. R. Darwin, the experimental
method arguably did not fully mature until the elements of good experimental
design and practice were finally analyzed and described in detail by R. A. Fisher
and others in the first half of the twentieth century. In that light, it seems clear
that while Computational Science has had many remarkable youthful successes,
it is still at a very early stage in its growth.

Many of us today who want to hasten that growth believe that the most
progressive steps in that direction require much more community focus on the
vital core of Computational Science: software and the mathematical models and
algorithms it encodes. Of course the general and widespread obsession with hard-
ware is understandable, especially given exponential increases in processor per-
formance, the constant evolution of processor architectures and supercomputer
designs, and the natural fascination that people have for big, fast machines. But
when it comes to advancing the cause of computational modeling and simula-
tion as a new part of the scientific method, there is no doubt that the complex
software “ecosystem” it requires must take its place on the center stage.

At the application level the science has to be captured in mathematical mod-
els, which in turn are expressed algorithmically and ultimately encoded as soft-
ware. Accordingly, on typical projects the majority of the funding goes to support
this translation process that starts with scientific ideas and ends with executable
software, and which over its course requires intimate collaboration among do-
main scientists (physicists, chemists, biologists, etc), computer scientists and
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applied mathematicians. This process also relies on a large infrastructure of
mathematical libraries, protocols and system software that has taken years to
build up and that must be maintained, ported, and enhanced for many years
to come if the value of the application codes that depend on it are to be pre-
served and extended. The software that encapsulates all this effort, energy, and
thought, routinely outlasts (usually by years, sometimes by decades) the hard-
ware it was originally designed to run on, as well as the individuals who designed
and developed it.

Thus the life of Computational Science revolves around a multifaceted soft-
ware ecosystem. But today there is (and should be) a real concern that this
ecosystem of Computational Science, with all its complexities, is not ready for
the major challenges that will soon confront the field. Domain scientists now
want to create much larger, multi-dimensional applications in which a variety
of previously independent models are coupled together, or even fully integrated.
They hope to be able to run these applications on Petascale systems with tens
of thousands of processors, to extract all the performance that these platforms
can deliver, to recover automatically from the processor failures that regularly
occur at this scale, and to do all this without sacrificing good programmability.
This vision of what Computational Science wants to become contains numerous
unsolved and exciting problems for the software research community. Unfortu-
nately, it also highlights aspects of the current software environment that are
either immature or under funded or both [3].

2 The Challenges of Multicore

It is difficult to overestimate the magnitude of the discontinuity that the high
performance computing (HPC) community is about to experience because of
the emergence of the next generation of multi-core and heterogeneous processor
designs [4]. For at least two decades, HPC programmers have taken for granted
that each successive generation of microprocessors would, either immediately or
after minor adjustments, make their old software run substantially faster. But
three main factors are converging to bring this “free ride” to an end. First, sys-
tem builders have encountered intractable physical barriers — too much heat, too
much power consumption, and too much leaking voltage — to further increases
in clock speeds. Second, physical limits on the number and bandwidth of pins
on a single chip means that the gap between processor performance and mem-
ory performance, which was already bad, will get increasingly worse. Finally,
the design trade-offs being made to address the previous two factors will render
commodity processors, absent any further augmentation, inadequate for the pur-
poses of tera- and peta-scale systems for advanced applications. This daunting
combination of obstacles has forced the designers of new multi-core and hybrid
systems, searching for more computing power, to explore architectures that soft-
ware built on the old model are unable to effectively exploit without radical
modification [5].
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But despite the rapidly approaching obsolescence of familiar programming
paradigms, there is currently no well understood alternative in whose viability
the community can be confident. The essence of the problem is the dramatic
increase in complexity that software developers will have to confront. Dual-core
machines are already common, and the number of cores is expected to roughly
double with each processor generation. But contrary to the assumptions of the
old model, programmers will not be able to consider these cores independently
(i.e. multi-core is not “the new SMP”) because they share on-chip resources in
ways that separate processors do not. This situation is made even more com-
plicated by the other non-standard components that future architectures are
expected to deploy, including mixing different types of cores, hardware acceler-
ators, and memory systems. Finally, the proliferation of widely divergent design
ideas shows that the question of how to best combine all these new resources and
components is largely unsettled. When combined, these changes produce a pic-
ture of a future in which programmers must overcome software design problems
that are vastly more complex and challenging than in the past in order to take
advantage of the much higher degrees of concurrency and greater computing
power that new architectures will offer.

The work that we currently pursue is the initial phase of a larger project
in Parallel Linear Algebra for Scalable Multi-Core Architectures(PLASMA) that
aims to address this critical and highly disruptive situation. While PLASMA’s
ultimate goal is to create software frameworks that enable programmers to sim-
plify the process of developing applications that can achieve both high perfor-
mance and portability across a range of new architectures, the current high levels
of disorder and uncertainty in the field processor design make it premature to
attack this goal directly. More experimentation is needed with these new designs
in order to see how prior techniques can be made useful by recombination or
creative application and to discover what novel approaches can be developed
into making our programming models sufficiently flexible and adaptive for the
new regime.

Preliminary work we have already done on available multi-core and hetero-
geneous systems, such as the IBM CELL processor, shows that techniques for
increasing parallelism and exploiting heterogeneity can dramatically accelerate
application performance on these types of systems. Other researchers have al-
ready begun to utilize these results. Under this early PLASMA project, we are
leveraging our initial work in the following three-pronged research effort:

— FExperiment with techniques — Building on the model of large grain data flow
analysis, we are exploring techniques that exploit dynamic and adaptive out-
of-order execution patterns on multi-core and heterogeneous systems. Early
experiences with matrix factorization techniques have already led us to the
idea of dynamic look-ahead, and our preliminary experiments show that this
technique can yield great improvements in performance.

— Develop prototypes — We are testing the most promising techniques through
highly optimized (though neither flexible nor portable and thus not general
enough) implementations that we, and other researchers in the community,
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can use to study their limits and gain insight into potential problems. These
prototypes are also enabling us to assess how well suited these approaches
are to dynamic adaptation and automated tuning.

— Provide a design draft for the PLASMA framework — An initial design plan
for PLASMA frameworks for multi-core and hybrid architectures is being
developed and, in combination with PLASMA software prototypes, will be
distributed for community feedback.

Though it is clear that the impact of the multi-core revolution will be ubig-
uitous, we believe that, in developing a programming model for this radically
different environment, there are clear advantages to focusing on Linear Algebra
(LA) in general and Dense Linear Algebra (DLA) in particular, as PLASMA
does. For one thing, DLA libraries are critically important to Computational
Science across an enormous spectrum of disciplines and applications, so a pro-
gramming framework of the type we envision for PLASMA will certainly be
indispensable and needs to be achieved as quickly as possible. But DLA also has
strategic advantages as a research vehicle, because the methods and algorithms
that underlie it have been so thoroughly studied and are so well understood.
This background understanding will allow us to devise techniques that maxi-
mally exploit the resources of the microprocessor platforms under study.

As a third point, we claim that the techniques developed for LA are general
enough to be utilized in other software libraries. In this respect, the research
performed on the PLASMA project is expected to be beneficial for other libraries.
Historically this has been the case with LAPACK and its use of the BLAS.
Nowadays several libraries outside the LA discipline have followed the LAPACK
example and their performance heavily relies on the BLAS. The inverse is not
true, and we can not find such a generality in other disciplines.

2.1 Main factors driving the multi-core discontinuity

Among the various factors that are driving the momentous changes now occur-
ring in the design of microprocessors and high end systems, three stand out as
especially notable: 1) the number of transistors on the chip will continue to dou-
ble roughly every 18 months, but the speed of processor clocks will not continue
to proportionally increase; 2) the number and bandwidth of pins on CPUs are
reaching their limits and 3) there will be a strong drift toward hybrid installations
for petascale (and larger) systems. The first two involve fundamental physical
limitations that nothing currently on the horizon is likely to overcome. The third
is a consequence of the first two, combined with the economic necessity of us-
ing many thousands of CPUs to scale up to petascale and larger systems. Each
of these factors has a somewhat different effect on the design space for future
programming:

1. More transistors and slower clocks means multi-core designs and more par-
allelism required — The modus operandi of traditional processor design —
increase the transistor density, speed up the clock rate, raise the voltage —
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has now been blocked by a stubborn set of physical barriers — too much heat
produced, too much power consumed, too much voltage leaked. Multi-core
designs are a natural response to this situation. By putting multiple proces-
sor cores on a single die, architects can continue to increase the number of
gates on the chip without increasing the power densities. But since excess
heat production means that frequencies can not have a sustained increase,
deep-and-narrow pipeline models will tend to recede as shallow-and-wide
pipeline designs become the norm. Moreover, despite obvious similarities,
multi-core processors are not equivalent to multiple-CPUs or to SMPs. Mul-
tiple cores on the same chip can share various caches (including TLB!) and
they certainly share the bus. Extracting performance from this configuration
of resources means that programmers must exploit increased thread-level
parallelism (TLP) and efficient mechanisms for inter-processor communica-
tion and synchronization to manage resources effectively. The complexity of
parallel processing will no longer be hidden in hardware by a combination of
increased instruction level parallelism (ILP) and deep-and-narrow pipeline
techniques, as it was with superscalar designs. It will have to be addressed
in software.

. Thicker “memory wall” means that communication efficiency will be even
more essential — The pins that connect the processor to main memory have
become a strangle point, with both the rate of pin growth and the band-
width per pin slowing down, if not flattening out. Thus the processor to
memory performance gap, which is already approaching a thousand cycles,
is expected to grow, by 50% per year according to some estimates. At the
same time, the number of cores on a single chip is expected to continue to
double every 18 months, and since limitations on space will keep the cache
resources from growing as quickly, cache per core ratio will continue to go
down. Problems of memory bandwidth, memory latency, and cache fragmen-
tation will, therefore, tend to get worse.

. Limitations of commodity processors will further increase heterogeneity and
system complexity — Experience has shown that tera- and petascale systems
must, for the sake of economic viability, use commodity off-the-shelf (COTS)
processors as their foundation. Unfortunately, the trade-offs that are being
(and will continue to be) made in the architecture of these general purpose
multi-core processors are unlikely to deliver the capabilities that leading
edge research applications require, even if the software is suitably modi-
fied. Consequently, in addition to all the different kinds of multithreading
that multi-core systems may utilize — at the core-level, socket-level, board-
level, and distributed memory level — they are also likely to incorporate
some constellation of special purpose processing elements. Examples include
hardware accelerators, GPUs, off-load engines (TOEs), FPGAs, and commu-
nication processors (NIC-processing, RDMA). Since the competing designs
(and design lines) that vendors are offering are already diverging, and mixed
hardware configurations (e.g. Los Alamos Roadrunner, Cray BlackWidow)
are already appearing, the hope of finding a common target architecture
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around which to develop future programming models seems at this point to
be largely forlorn.

We believe that these major trends will define, in large part at least, the
design space for scientific software in the coming decade. But while it may be
important for planning purposes to describe them in the abstract, to appreciate
what they mean in practice, and therefore what their strategic significance may
be for the development of new programming models, one has to look at how their
effects play out in concrete cases. Below we describe our early experience with
these new architectures, both how they render traditional, cornerstone numerical
libraries obsolete, and how innovative techniques can exploit their parallelism
and heterogeneity to address these problems.

2.2 Free ride is over for HPC software: Case of
LAPACK/ScaLAPACK

One good way to appreciate the impact and significance of the multi-core revo-
lution is to examine its effect on software packages that are comprehensive and
widely used. The LAPACK/ScalLAPACK libraries fit that description. These li-
braries, which embody much of our work in the adaptation of block partitioned
algorithms to parallel linear algebra software design, have served the HPC and
Computational Science community remarkably well for twenty years. Both LA-
PACK and ScalLAPACK apply the idea of blocking in a consistent way to a wide
range of algorithms in linear algebra (LA), including linear systems, least square
problems, singular value decomposition, eigenvalue decomposition, etc., for prob-
lems with dense and banded coefficient matrices. ScaLAPACK also addresses the
much harder problem of implementing these routines on top of distributed mem-
ory architectures. Yet it manages to keep close correspondence to LAPACK in
the way the code is structured or organized. The design of these packages has
had a major impact on how mathematical software has been written and used
successfully during that time. Yet when you look at how these foundational li-
braries can be expected to fair on large-scale multi-core systems, it becomes clear
that we are on the verge of a transformation in software design at least as potent
as the change engendered a decade ago by message passing architectures, when
the community had to rethink and rewrite many of its algorithms, libraries, and
applications.

Historically, LA methods have put a strong emphasis on weak scaling or
1soscaling of algorithms, where speed is achieved when the number of processors
is increased while the problem size per processor is kept constant, effectively
increasing the overall problem size. This measure tells us when we can exploit
parallelism to solve larger problems. In this approach, increasing speed of a single
processing element should decrease the time to solution. But in the emerging
era of multiprocessors, although the number of processing elements (i.e., cores)
in systems will grow rapidly (exponentially, at least for a few generations), the
computational power of individual processing units is likely to be reduced. Many
problems in scientific computing reach their scaling limits on a certain number
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of processors determined by the ratio of computation/communication. With the
speed of individual cores in the system on a decline, those problems will require
increased time to solution on the next generation of architectures. In order to
address the issue, emphasis has to be shifted from weak to strong scaling, where
speed is achieved when the number of processors is increased while the overall
problem size is kept constant, which effectively decreases the problem size per
processor. In other words we need to seek more parallelism in algorithms and
push their existing scaling limitations by investigating parallelization at a much
finer levels of granularity.

The standard approach to parallelization of numerical linear algebra algo-
rithms for both shared and distributed memory systems, utilized by the LA-
PACK/ScalLAPACK libraries, is to rely on a parallel implementation of BLAS -
threaded BLAS for shared memory systems and PBLAS for distributed memory
systems. Historically, this approach made the job of writing hundreds of rou-
tines in a consistent and accessible manner doable. But although this approach
solves numerous complexity problems, it also enforces a very rigid and inflexible
software structure, where, at the level of LA, the algorithms are expressed in a
serial way. This obviously inhibits the opportunity to exploit inherently parallel
algorithms at finer granularity. This is shown by the fact that the traditional
method is successful mainly in extracting parallelism from Level 3 BLAS; in the
case of most of the Level 1 and 2 BLAS, however, it usually fails to achieve
speedups and often results in slowdowns. It relies on the fact that, for large
enough problems, the O(n?) cost of Level 3 BLAS dominates the computation
and renders the remaining operations negligible. The problem with encapsulat-
ing parallelization in the BLAS/PBLAS in this way is that it requires a heavy
synchronization model on a shared memory system and a heavily synchronous
and blocking form of collective communication on distributed memory systems
with message passing. This paradigm will break down on the next generation
architectures, because it relies on coarse grained parallelization and emphasizes
weak scaling, rather than strong scaling.

2.3 Preliminary work: Exploiting parallelism on multi-core

We used the forgoing analysis of the problems of LAPACK/ScaLAPACK on
multi-core systems as the basis of some preliminary tests of techniques for do-
ing fast and efficient LA on multi-core. LA operations are usually performed
as a sequence of smaller tasks; it is possible to represent the execution flow of
an operation as a Directed Acyclic Graph (DAG) where the nodes represent
the sub-tasks and the edges represent the dependencies among them. What-
ever the execution order of the sub-tasks is, the result will be correct as long
as these dependencies are not violated. This concept has been used in the past
to define “look-ahead” techniques that have been extensively applied to the LU
factorization . Such methods can be used to remedy the problem of synchroniza-
tions introduced by non-parallelizable tasks by overlapping their execution with
the execution of more efficient ones [1]. Although the traditional technique of
look-ahead usually provides only a static definition of the execution flow that is
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hardwired in the source code, the idea of out-of-order execution it embodies can
be extended to broader range of cases, where the execution flow is determined at
run time in a fully dynamic fashion. With this dynamic approach, the subtasks
that contribute to the result of the operation can be scheduled dynamically de-
pending on the availability of resources and on the constraints defined by the
dependencies among them (i.e., edges in the DAG).

Our recent work shows how the one-sided factorizations, LU, QR and Cholesky
can benefit from the application of this technique [2]. Block formulations of these
three factorizations, as well as many other one-sided transformations, follow a
common scheme. In a single step of each algorithm, first operations are applied
to a single block of rows or columns, referred to as the panel, then the result is
applied to the remaining portion of the matrix. The panel operations are usu-
ally implemented with Level 1 and 2 BLAS and, in most cases, achieve the best
performance when executed on a single processor or a small subset of all the
processors used for the factorization.

while(1)
fetch_task();
switch(task.type) {
case PANEL: // reduce the panel
dgetf2();
update progress();
case COLUMN: // update a block-column
dlaswp(); // of the trailing submatrix
dtrsm();
dgemm( ) ;
update progress();
case END: // perform left swap and return
for()
dlaswp();
return;

Fig. 1. Pseudo-code showing the execution flow for the LU factorization. The same
execution scheme applies to the other one-sided transformations Cholesky and QR.

It is well known that matrix factorizations have left-looking and right-looking
formulations. The transition between the two can be done by automatic code
transformations, although this requires more powerful methods than simple de-
pendency analysis. In particular, the technique of look-ahead can be used to sig-
nificantly improve the performance of matrix factorizations by performing panel
factorizations in parallel with the update to the remaining submatrix from a
previous step of the algorithm. The look-ahead can be of arbitrary depth, as
was shown, for example, in the High Performance LINPACK benchmark (HPL).
The look-ahead simply alters the order of operations in the factorization. A great
number of permutations is legal, as long as algorithmic dependencies are not vi-
olated. From this point of view, right-looking and left-looking formulations of
a matrix factorization are on two opposite ends of a wide spectrum of possible
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execution paths, with the look-ahead providing a transition between them. If the
straight right-looking formulation is regarded as one with the look-ahead of zero,
then the left-looking formulation is equivalent to the right looking formulation
with the maximum possible look-ahead for a given problem.

x 10 QR Factorization. Woodcrest, 4 threads

, s/ ; ; ; ; Dynamic scheduling
A § § § § ===:Threaded BLAS
0 Le i i i i i I I I I
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

matrix size

Fig. 2. Comparison of parallelization techniques for QR factorization (Two dual core
Intel 3.0GHz Woodcrest processors (four cores total), GOTO BLAS 1.05, blocksize
NB=64).

Applying the idea of dynamic execution flow definition to LU factorization
leads to the implementation of the left-looking variant of the algorithm, where
the panel factorizations are performed as soon as possible, with the modification
that if the panel factorization introduces a stall, then an update to a block of
columns (or rows) of the right submatrix is performed instead. The updating
continues only until next panel factorization is possible. Figure 1 (above) shows
the simplified code that defines the execution flow. Here the steps of checking
dependencies and making a transition are merged into the step of fetching the
next task (the fetch_task() subroutine), where the choice of transition is made
dynamically at run-time depending on the progress of the execution.

Experimental results show how the dynamic workflow technique is capable
of improving the overall performance while providing an extremely high level of
portability. Figure 2 shows that by applying dynamic task scheduling to the QR
factorization, it is possible to out perform a standard LAPACK implementation
with threaded BLAS.
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3 The Future

Advancing to the next stage of growth for computational simulation and mod-
eling will require us to solve basic research problems in Computer Science and
Applied Mathematics at the same time as we create and promulgate a new
paradigm for the development of scientific software. To make progress on both
fronts simultaneously will require a level of sustained, interdisciplinary collab-
oration among the core research communities that, in the past, has only been
achieved by forming and supporting research centers dedicated to such a com-
mon purpose. We believe that the time has come for the leaders of the Com-
putational Science movement to focus their energies on creating such software
research centers to carry out this indispensable part of the mission.

References

1. J. J. Dongarra, P. Luszczek, and A. Petitet, The LINPACK Benchmark: Past,
Present, and Future, Concurrency and Computation: Practice and Experience vol.
15, no. 9, pp. 803-820, August, 2003.
http://www.netlib.org/benchmark /hpl/.

2. J. Kurzak and J. J. Dongarra, Implementation of Linear Algebra Routines with
Lookahead - LU, Cholesky, QR. In Workshop on State-of-the-Art in Scientific and
Parallel Computing, Umea, Sweden, June, 2006.

3. D. E. Post and L. G. Votta, Computational Science Demands a New Paradigm
Physics Today, vol. 58, no. 1, pp. 35-41, January, 2005.

4. Herb Sutter, The Free Lunch Is Over: A Fundamental Turn Toward Concurrency
in Software, Dr. Dobb’s Journal, 30(3), March 2005.

5. Krste Asanovic, et. al., The Landscape of Parallel Computing Research: A View
from Berkeley, Electrical Engineering and Computer Sciences, University of Cali-
fornia at Berkeley, Technical Report No. UCB/EECS-2006-183, December 18, 2006.
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html.



