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Abstract

This paper is aimed at designing efficient parallel
matrix-product algorithms for homogeneous master-
worker platforms. While matrix-product is well-understood
for homogeneous 2D-arrays of processors(e.g., Cannon
algorithm and ScaLAPACK outer product algorithm), there
are two key hypotheses that render our work original and
innovative:
- Centralized data.We assume that all matrix files originate
from, and must be returned to, the master. The master dis-
tributes both data and computations to the workers (while
in ScaLAPACK, input and output matrices are initially
distributed among participating resources). Typically, our
approach is useful in the context of speeding up MATLAB
or SCILAB clients running on a server (which acts as the
master and initial repository of files).
- Limited memory. Because we investigate the paral-
lelization of large problems, we cannot assume that full
matrix panels can be stored in the worker memories
and re-used for subsequent updates (as in ScaLAPACK).
The amount of memory available in each worker is ex-
pressed as a given number of buffers, where a buffer can
store a square block of matrix elements. These square
blocks are chosen so as to harness the power of Level 3
BLAS routines; they are of size80 or 100 on most platforms.

We have devised efficient algorithms for resource selec-
tion (deciding which workers to enroll) and communication
ordering (both for input and result messages), and we re-
port a set of MPI experiments conducted on a platform at
the University of Tennessee.
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1 Introduction

Matrix product is a key computational kernel in many
scientific applications, and it has been extensively studied
on parallel architectures. Two well-known parallel ver-
sions are Cannon’s algorithm [4] and the ScaLAPACK outer
product algorithm [3]. Typically, parallel implementations
work well on 2D processor grids, because the input matrices
are sliced horizontally and vertically into square blocks that
are mapped one-to-one onto the physical resources; several
communications can take place in parallel, both horizon-
tally and vertically. Even better, most of these communica-
tions can be overlapped with (independent) computations.
All these characteristics render the matrix product kernel
quite amenable to an efficient parallel implementation on
2D processor grids.

However, current architectures typically take the form of
clusters, which are composed of computing resources inter-
connected by asparsenetwork: there are no direct links
between any pair of processors. Instead, messages from
one processor to another are routed via several links, likely
to have different capacities. Worse, congestion will occur
when two messages, involving two different sender/receiver
pairs, collide because a same physical link happens to be-
long to the two routing paths. Therefore, an accurate esti-
mation of the communication cost requires a precise knowl-
edge of the underlying target platform. In addition, it be-
comes necessary to include the cost of both the initial dis-
tribution of the matrices to the processors and of collect-
ing back the results. These input/output operations have
always been neglected in the analysis of the conventional
algorithms. This is because onlyO(n2) coefficients need to
be distributed in the beginning, and gathered at the end, as
opposed to theO(n3) computations to be performed (where
n is the problem size). The assumption that these commu-
nications can be ignored could have made sense on dedi-
cated processor grids like, say, the Intel Paragon, but it is no



longer reasonable on networks of workstations.
In this paper, we do not try to adapt the 2D processor

grid strategy to networks of workstations. Instead, we adopt
a realistic application scenario, where input files are read
from a fixed repository (disk on a data server). Computa-
tions will be delegated to available resources in the target
architecture, and results will be returned to the repository.
This calls for a master-worker paradigm, or more precisely
for a computational scheme where the master (the proces-
sor holding the input data) assigns computations to other
resources, the workers. In this centralized approach, all ma-
trix files originate from, and must be returned to, the master.
The master distributes both data and computations to the
workers (while in ScaLAPACK, input and output matrices
are supposed to be equally distributed among participating
resources beforehand). Typically, our approach is useful in
the context of speeding up MATLAB or SCILAB clients
running on a server (which acts as the master and initial
repository of files).

Because we investigate the parallelization of large prob-
lems, we cannot assume that full matrix panels can be stored
in worker memories and re-used for subsequent updates (as
in ScaLAPACK). The amount of memory available in each
worker is expressed as a given numberm of buffers, where
a buffer can store a square block of matrix elements. The
sizeq of these square blocks is chosen so as to harness the
power of Level 3 BLAS routines:q = 80 or 100 on most
platforms.

To summarize, the target platform is composed of several
workers with limited memory capacities. The first prob-
lem is resource selection. How many workers should be
enrolled in the execution? All of them, or maybe only a
fraction? Once participating resources have been selected,
there remain several scheduling decisions to take: how to
minimize the number of communications? in which order
workers should receive input data and return results? what
amount of communications can be overlapped with (inde-
pendent) computations? The goal of this paper is to design
efficient algorithms for resource selection and communica-
tion ordering. In addition, we report MPI experiments on
platforms at the University of Tennessee.

The rest of the paper is organized as follows. In Sec-
tion 2, we state the scheduling problem precisely, and we
introduce some notations. Next, in Section 3, we proceed
with the analysis of the total communication volume that
is needed in the presence of memory constraints, and we
improve a well-known bound by Toledo [8, 5]. In Sec-
tion 4, we propose a scheduling algorithm that includes
resource selection. We report several MPI experiments in
Section 5. Finally, we state some concluding remarks in
Section 6. Due to lack of space, related work is not dis-
cussed in this paper: please refer to the extended version [6]
for an overview of relevant literature.
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Figure 1. Partition of the three matrices A, B,
and C.

2 Framework

Application

We deal with the computational kernelC ← C + A × B.
We partition the three matricesA, B, andC as illustrated in
Figure 1. More precisely:
• We use a block-oriented approach. The atomic ele-

ments that we manipulate are not matrix coefficients
but instead squareblocksof sizeq × q (hence withq2

coefficients). This is to harness the power of Level 3
BLAS routines [3]. Typically,q = 80 or 100 when
using ATLAS-generated routines [9].
• The input matrixA is of sizenA × nAB:

- we splitA into r horizontal stripesAi, 1 ≤ i ≤ r,
wherer = nA/q;
- we split each stripeAi into t squareq×q blocksAi,k,
1 ≤ k ≤ t, wheret = nAB/q.
• The input matrixB is of sizenAB × nB:

- we splitB into s vertical stripesBj , 1 ≤ j ≤ s, where
s = nB/q;
- we split stripeBj into t squareq × q blocksBk,j ,
1 ≤ k ≤ t.
• We computeC = C + A × B. Matrix C is accessed

(both for input and output) by squareq× q blocksCi,j ,
1 ≤ i ≤ r, 1 ≤ j ≤ s. There arer × s such blocks.

We point out that with such a decomposition all stripes
and blocks have same size. This will greatly simplify the
analysis of communication costs.

Platform

We target astar networkS = {P0, P1, P2, . . . , Pp}, com-
posed of a masterP0 and ofp identical workersPi, 1 ≤ i ≤
p. Because we manipulate large data blocks, we adopt a lin-



ear cost model, both for computations and communications
(i.e., we neglect start-up overheads). We have the following
notations:
• It takesX.w time-units to execute a task of sizeX on

Pi;
• It takesX.c time units for the masterP0 to send a mes-

sage of sizeX to Pi or to receive a message of sizeX
from Pi.

Without loss of generality, we assume that the master has
no processing capability (otherwise, add a fictitious extra
worker paying no communication cost to simulate compu-
tation at the master).

Next, we need to define the communication model. We
adopt theone-portmodel [1, 2], which is defined as follows:
(i) the master can only send data to, and receive data from,
a single worker at a given time-step; (ii) a given worker
cannot start execution before it has terminated the reception
of the message from the master; similarly, it cannot start
sending the results back to the master before finishing the
computation. In fact, thisone-portmodel naturally comes
in two flavors, depending upon whether we allow the mas-
ter to simultaneously send and receive messages or not. If
we do allow for simultaneous sends and receives, we have
actually thetwo-port model. Here we concentrate on the
true one-portmodel, where the master cannot be enrolled
in more than one communication at any time-step.

Theone-portmodel isrealistic. Bhat, Raghavendra, and
Prasanna [2] advocate its use because “current hardware
and software do not easily enable multiple messages to be
transmitted simultaneously.” Even if non-blocking multi-
threaded communication libraries allow for initiating mul-
tiple send and receive operations, they claim that all these
operations “are eventually serialized by the single hardware
port to the network.” Experimental evidence of this fact has
recently been reported by Saif and Parashar [7], who report
that asynchronous MPI sends get serialized as soon as mes-
sage sizes exceed a hundred kilobytes. Their result hold
for two popular MPI implementations, MPICH on Linux
clusters and IBM MPI on the SP2. Note that all the MPI
experiments in Section 5 obey the one-port model.

Our final assumption is related to memory capacity; we
assume that a workerPi can only storem blocks (either
fromA, B, or C). For large problems, this memory limita-
tion will considerably impact the design of the algorithms,
as data re-use will be greatly dependent on the amount of
available buffers.

3 Minimization of the communication vol-
ume

In this section, we derive a lower bound on the total num-
ber of communications (sent from, or received by, the mas-
ter) that are needed to execute any matrix multiplication al-

gorithm. Since we aim at minimizing the total communi-
cation volume, we can simulate any parallel algorithm on
a single worker. Therefore, we only need to consider the
one-worker case. We deal with the original, and realistic,
formulation of the problem as follows:
• The master sends blocksAik, Bkj , andCij ,
• The master retrieves final values of blocksCij , and
• We enforce limited memory on the worker; onlym

buffers are available, which means that at mostm
blocks ofA, B, and/orC can simultaneously be stored
on the worker.

First, we describe an algorithm that aims at re-usingC
blocks as much as possible after they have been loaded.
Next, we assess the performance of this algorithm. Fi-
nally, we improve a lower bound previously established by
Toledo [8, 5].

3.1 The maximum re-usealgorithm

Below we introduce and analyze the performance of the
maximum re-usealgorithm, whose memory management is
illustrated in Figure 2. Four consecutive execution steps
are shown in Figure 3. Assume that there arem available
buffers. First we findµ as the largest integer such that1 +
µ+µ2 ≤ m. The idea is to use one buffer to storeA blocks,
µ buffers to storeB blocks, andµ2 buffers to storeC blocks.
In the outer loop of the algorithm, aµ×µ square ofC blocks
is loaded. Once theseµ2 blocks have been loaded, they are
repeatedly updated in the inner loop of the algorithm until
their final value is computed. Then the blocks are returned
to the master, andµ2 newC blocks are sent by the master
and stored by the worker. As illustrated in Figure 2, we need
µ buffers to store a row ofB blocks, but only one buffer for
A blocks: A blocks are sent in sequence, each of them is
used in combination with a row ofµ B blocks to update the
corresponding row ofC blocks. This leads to the following
sketch of the algorithm:

Outer loop: while there remainC blocks to be computed
• Storeµ2 blocks ofC in worker’s memory:

send aµ×µ square{Ci,j / i0 ≤ i < i0 +µ, j0 ≤ j <
j0 + µ}
• Inner loop: For eachk from 1 to t:

1. Send a row ofµ elements{Bk,j / j0 ≤ j < j0 +
µ};

2. Sequentially send µ elements of column
{Ai,k / i0 ≤ i < i0 + µ}. For eachAi,k, update
µ elements ofC

• Return results to master.

3.2 Performance and lower bound

The performance of one iteration of the outer loop of the
maximum re-usealgorithm can readily be determined. We
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Figure 2. Memory usage for the maximum re-usealgorithm when m = 21: µ = 4; 1 block is used for A,
µ for B, and µ2 for C.
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Figure 3. Four steps of the maximum re-usealgorithm, with m = 21 and µ = 4. The elements of C
updated are displayed on white on black.

need2µ2 communications to send and retrieveC blocks.
For each value oft, we needµ elements ofA andµ ele-
ments ofB, and we updateµ2 blocks. In terms of block op-
erations, the communication-to-computation ratio achieved
by the algorithm is thus

CCR=
2µ2 + 2µt

µ2t
=

2
t

+
2
µ

.

For large problems, i.e., large values oft, we see that CCR is
asymptotically close to the value CCR∞ = 2√

m
. We point

out that, in terms of data elements, the communication-to-
computation ratio is divided by a factorq. Indeed, a block
consists ofq2 coefficients but an update requiresq3 floating-
point operations.

How can we assess the performance of themaximum re-
usealgorithm? How good is the value of CCR? To see
this, we refine an analysis due to Toledo [8]. The idea is
to estimate the number of computations made thanks tom
consecutive communication steps (again, the unit is a matrix
block here). We need some notations:
• We let αold, βold, andγold be the number of buffers

dedicated toA, B, andC at the beginning of them
communication steps;
• We letαrecv, βrecv, andγrecv be the number ofA, B,

andC blocks sent by the master during them commu-
nication steps;
• Finally, we letγsend be the number ofC blocks re-

turned to the master during thesem steps.
Obviously, the following equations must hold true:

{
αold + βold + γold ≤ m
αrecv + βrecv + γrecv + γsend = m

The following lemma is given in [8]: consider any al-
gorithm that uses the standard way of multiplying matrices
(this excludes Strassen’s or Winograd’s algorithm, for in-
stance). IfNA elements ofA, NB elements ofB andNC

elements ofC are accessed, then no more thanK computa-
tions can be done, where

K = min
{

(NA + NB)
√

NC , (NA + NC)
√

NB ,

(NB + NC)
√

NA

}
. (1)

To use this result here, we see that no more thanαold+αrecv

blocks ofA are accessed, henceNA = (αold + αrecv)q2.
Similarly, NB = (βold + βrecv)q2 and NC = (γold +
γrecv)q2 (the C blocks returned are already counted). We
simplify notations by writingαold + αrecv = αm, βold +
βrecv = βm, andγold + γrecv = γm. Then we obtain

K =min
{

(α+β)
√

γ, (β+γ)
√

α, (γ+α)
√

β
}
×m
√

mq3

Writing K = km
√

mq3, we obtain the following system of
equations 

MAXIMIZE k S.T.
k ≤ (α + β)

√
γ

k ≤ (β + γ)
√

α

k ≤ (γ + α)
√

β

α + β + γ ≤ 2



whose solution is easily found to beα = β = γ =
2
3 , AND k =

√
32
27 . This gives a lower bound for the

communication-to-computation ratio (in terms of blocks) of
any algorithm:

CCRopt =
m

km
√

m
=

√
27

32m
.

In fact, it is possible to refine this bound. Instead of using
the lemma given in [8], we use Loomis-Whitney inequal-
ity [5]: if NA elements ofA, NB elements ofB, andNC

elements ofC are accessed, then no more thanK compu-
tations can be done, whereK =

√
NANBNC . HereK =√

αβγ ×m
√

mq3. We obtainα = β = γ = 2
3 , andk =√

8
27 , so that the lower bound for the communication-to-

computation ratio becomes: CCRopt =
√

27
8m . The max-

imum re-usealgorithm does not achieve the lower bound:

CCR∞ = 2√
m

=
√

32
8m but it is quite close!

Finally, we point out that the bound CCRopt improves

upon the best-known value
√

1
8m derived in [5]. Also, the

ratio CCR∞ achieved by themaximum re-usealgorithm is
lower by a factor

√
3 than the ratio achieved by theblocked

matrix-multiplyalgorithm of [8].

4 Algorithms for homogeneous platforms

In this section, we adapt themaximum re-usealgorithm
to fully homogeneous platforms. We must first decide
which part of the memory will be used to stock which part
of the original matrices, in order to maximize the total num-
ber of computations per time unit. Cannon’s algorithm [4]
and the ScaLAPACK outer product algorithm [3] both dis-
tribute square blocks ofC to the processors. Intuitively,
squares are better than elongated rectangles because their
perimeter (which is proportional to the communication vol-
ume) is smaller for the same area. We use the same ap-
proach here, but we have not been able to assess any optimal
result.

Principle of the algorithm

We load into the memory of each workerµ q × q blocks
of A andµ q × q blocks ofB to computeµ2 q × q blocks
of C. In addition, we need2µ extra buffers, split intoµ
buffers forA andµ for B, in order to overlap computation
and communication steps. In fact,µ buffers forA andµ for
B would suffice for each update, but we need to prepare for
the next update while computing. Overall, the number ofC
blocks that we can simultaneously load into memory is the
largest integerµ such thatµ2 + 4µ ≤ m.

We have to determine the number of participating work-
ersP. For that purpose, we proceed as follows. On the
communication side, we know that in a round (computing
aC block entirely), the master exchanges with each worker
2µ2 blocks ofC (µ2 sent andµ2 received), and sendsµt
blocks ofA andµt blocks ofB. Also during this round,
on the computation side, each worker computesµ2t block
updates.

If we enroll too many processors, the communication ca-
pacity of the master will be exceeded. There is a limit on
the number of blocks sent per time unit, hence on the maxi-
mal processor numberP, which we compute as follows:P
is the smallest integer such that

2µtc×P ≥ µ2tw.

Indeed, this is the smallest value to saturate the communi-
cation capacity of the master required to sustain the corre-
sponding computations. We derive that

P =
⌈

µ2tw

2µtc

⌉
=

⌈µw

2c

⌉
.

In the context of matrix multiplication, we havec =
q2τc and w = q3τa, henceP =

⌈
µq
2

τa

τc

⌉
. Moreover,

we need to enforce thatP ≤ p, hence we finally obtain

P = min
{

p,
⌈

µq
2

τa

τc

⌉}
.

For the sake of simplicity, we suppose thatr is divisible
by µ, and thats is divisible byPµ. We allocateµ block
columns (i.e.,qµ consecutive columns of the original ma-
trix) of C to each processor. The algorithm is decomposed
into two parts. Algorithm 1 outlines the program of the mas-
ter, while Algorithm 2 is the program of each worker.

Impact of the start-up overhead

If we follow the execution of the homogeneous algorithm,
we may wonder whether we can really neglect the in-
put/output ofC blocks. Here we sequentialize the send-
ing, computing, and receiving of theC blocks, so that each
worker loses2c time-units per block, i.e., pertw time-units.
As there areP ≤ µw

2c + 1 workers, the total loss would be
of 2cP time-units everytw time-units, which is less than
µ
t + 2c

tw . For example, withc = 2, w = 4.5, µ = 4 and
t = 100, we enrollP = 5 workers, and the total lost is
at most4%, which is small enough to be neglected. Note
that it would be technically possible to design an algorithm
where the sending of the next block is overlapped with the
last computations of the current block, but the whole proce-
dure gets much more complicated.

5 MPI experiments

In this section, we aim at validating the previous theo-
retical results and algorithms. We conduct a variety of MPI



Algorithm 1 : Homogeneous version, master program.

µ←
⌊√

4 + m− 2
⌋
;

P← min
{

p,
⌈

µw
2c

⌉ }
;

Split the matrix into squaresCi′,j′ of µ2 blocks (of
sizeq × q):
Ci′,j′ = {Ci,j \ (i′ − 1)µ + 1 ≤ i ≤
i′µ, (j′ − 1)µ + 1 ≤ j ≤ j′µ};
for j′′ ← 0 to s

Pµ by StepP do
for i′ ← 1 to r

µ do
for idworker ← 1 to P do

j′ ← j′′ + idworker;
Send blockCi′,j′ to workeridworker;

for k ← 1 to t do
for idworker ← 1 to P do

j′ ← j′′ + idworker;
for j ← (j′ − 1)µ + 1 to j′µ do

SendBk,j ;

for i← (i′ − 1)µ + 1 to i′µ do
SendAi,k;

for idworker ← 1 to P do
j′ ← j′′ + idworker;
ReceiveCi′,j′ from workeridworker;

experiments to compare our new schemes with several other
algorithms from the literature.

Platform

For our experiments we are using a platform at the Uni-
versity of Tennessee. All experiments are performed on a
cluster of 64 Xeon 3.2GHz dual-processor nodes running
the Linux operating system. Each node has four Gigabytes
of memory, but we only use 512 MB of memory to fur-
ther stress the impact of limited memories. The nodes are
connected with a switched 100Mbps Fast Ethernet network.

Algorithm 2 : Homogeneous version, worker program.

for all blocksdo
ReceiveCi′,j′ from master;
for k ← 1 to t do

for j ← (j′− 1)µ + 1 to j′µ do ReceiveBk,j ;
for i← (i′ − 1)µ + 1 to i′µ do

ReceiveAi,k;
for j ← (j′ − 1)µ + 1 to j′µ do
Ci,j ← Ci,j +Ai,k.Bk,j ;

ReturnCi′,j′ to master;

In order to build a master-worker platform, we arbitrarily
choose one processor as the master, and the other proces-
sors become the workers. Finally we usedMPI WTimeas
timer in all experiments.

Algorithms

We choose and adapt four different algorithms from the gen-
eral literature to compare our algorithm to. We partition
these algorithms into two sets. The first set is composed
of algorithms which use the same memory allocation than
ours. The only difference between the algorithms is the or-
der in which the master sends blocks to workers.
• Homogeneous algorithm: HoLM is our homogeneous

algorithm. It makes resource selection, and sends
blocks to the selected workers in a round-robin fash-
ion.
• Overlapped Round-Robin, Optimized Memory Layout:

ORROML is very similar to our homogeneous algo-
rithm. The only difference between them is that it does
not make any resource selection, and so sends tasks to
all available workers in a round-robin fashion.
• Overlapped Min-Min, Optimized Memory Layout:

OMMOML is a static scheduling heuristic, which
sends the next block to the first worker that will be
available to compute it. As it is looking for potential
workers in a given order, this algorithm performs some
resource selection too. Theoretically, as our homoge-
neous resource selection ensures that the first worker
is free to compute when we finish to send blocks to the
others, they should have similar behavior.
• Overlapped Demand-Driven, Optimized Memory Lay-

out: ODDOML is a demand-driven algorithm. In or-
der to use the extra buffers available in the worker
memories, it will send the next block to the first worker
which can receive it. This would be a dynamic version
of our algorithm, if it took worker selection into ac-
count.
• Demand-Driven, Optimized Memory Layout:

DDOML is a very simple dynamic demand-driven
algorithm, close toODDOML . It sends the next block
to the first worker which is free for computation. As
workers never have to receive and compute at the
same time, the algorithm has no extra buffer, so the
memory available to storeA, B, andC is greater. This
may change the value ofµ and so the behavior of the
algorithm.

In the second set we have algorithms which do not use
our memory allocation:
• Block Matrix Multiply: BMM is Toledo’s algo-

rithm [8]. It splits each worker memory equally into
three parts, and allocate one slot for a square block of
A, another for a square block ofB, and the last one for
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a square block ofC, each square block having the same
size. Then it sends blocks to the workers in a demand-
driven fashion, when a worker is free for computation.
First a worker receives a block ofC, then it receives
corresponding blocks ofA andB in order to updateC,
until C is fully computed. In this version, a worker do
not overlap computation with the receiving of the next
blocks.
• Overlapped Block Matrix Multiply: OBMM is our at-

tempt to improve the previous algorithm. We try to
overlap the communications and the computations of
the workers. To that purpose, we split each worker
memory into five parts, so as to receive one block of
A and one block ofB while previous ones are used to
updateC.

Experiments

We have built several experimental protocols in order to as-
sess the performance of the various algorithms. In the fol-
lowing experiments we use nine processors, one master and
eight workers. In all experiments we compare the execution
time needed by the algorithms which use our memory allo-
cation to the execution time of the other algorithms. We also
point out the number of processors used by each algorithm,
an important parameter when comparing execution times.

In the first set of experiments, we test the different algo-
rithms on matrices of different sizes and shapes. The matri-
ces we are multiplying are of actual size
- 8000× 8000 for A and8000× 64000 for B,
- 16000× 16000 for A and16000× 128000 for B, and
- 8000× 64000 for A and64000× 64000 for B.
All the algorithms using our optimized memory layout con-
sider these matrices as composed of square blocks of size
q × q = 80 × 80. For instance in the first case we have
r = t = 100 ands = 800.

In the second set of experiments we check whether the
choice ofq was wise. For that purpose, we launch the algo-

rithms on matrices of size8000× 8000 and8000× 64000,
changing from one experiment to another the size of the el-
ementary square blocks. Thenq will be respectively equal
to 40 and80. As the global matrix size is the same in both
experiments, we expect both results to be the same.

In the third set of experiments we investigate the impact
of the worker memory size onto the performance of the al-
gorithms. In order to have reasonable execution times, we
use matrices of size16000 × 16000 and16000 × 64000,
and the memory size will vary from 132MB to 512MB. We
choose these values to reduce side effects due to the parti-
tion of the matrices into blocks of sizeµq × µq.

In the fourth and last set of experiments we check the sta-
bility of the previous results. To that purpose we launch the
same execution five times, in order to determine the maxi-
mum gap between two runs.

Results and discussion

We see in Figure 4 the results of the first set of experi-
ments, where algorithms are computing different matrices.
The first remark is that the shape of the two experiments
is the same for all matrix sizes. We also underline the su-
periority of most of the algorithms which use our memory
allocation againstBMM : HoLM , ORROML , ODDOML ,
andDDOML are the best algorithms and have similar per-
formance. OnlyOMMOML needs more time to complete
its execution. This delay comes from its resource selec-
tion: it uses only two workers. For instance,HoLM uses
four workers, and is as competitive as the other algorithms
which all use the eight available workers.

In Figure 6, we see the impact ofq on the performance
of our algorithms.BMM andOBMM have same execution
times in the three experiments as these algorithms do not
split matrices into elementary square blocks of sizeq × q
but, instead, call the Level 3 BLAS routines directly on the
whole

√
m
3 ×

√
m
3 matrices. In the two cases we see that

the time of the algorithms are similar. We point out that this



experiment shows that the choice ofq has little impact on
the algorithms performance.

In Figure 5 we have the impact of the worker memory
size on the performance of the algorithms. As expected, the
performance increases with the amount of memory avail-
able. It is interesting to underline that our resource selection
always performs in the best possible way.HoLM will use
respectively two and four workers when the memory avail-
able increases, compared to the other algorithms which will
use all eight available workers on each test.OMMOML
also makes some resource selection, but it performs worse.

Finally, figure 7 shows the difference that we can have
between two runs. This difference is around6%. Thus if
two algorithms have less than6% of difference in execution
time, they should be considered as similar.
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Figure 7. Variation of algo-
rithm execution times.

To conclude, these experiments stress the superiority of
our memory allocation. Furthermore, our homogeneous al-
gorithm is as competitive as the others but uses fewer re-
sources.

6 Conclusion

The main contributions of this paper are the following:

1. On the theoretical side, we have derived a new, tighter,
bound on the minimal volume of communications
needed to multiply two matrices. From this lower
bound, we have defined an efficient memory layout,
i.e., an algorithm to share the memory available on the
workers among the three matrices.

2. On the practical side, starting from our memory layout,
we have designed an algorithm for homogeneous plat-
forms whose performance is quite close to the commu-
nication volume lower bound.

3. Through MPI experiments, we have shown that our al-
gorithm for homogeneous platforms has far better per-
formance than solutions using the memory layout pro-
posed in [8]. Furthermore, this static homogeneous

algorithm has similar performance as dynamic algo-
rithms using the same memory layout, but uses fewer
processors. It is therefore a very good candidate for
deploying applications on regular, homogeneous plat-
forms.

Future work is devoted to extending the memory man-
agement strategy and the corresponding algorithms to het-
erogeneous platforms. Preliminary results are available
in [6].
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