
An Evaluation of Open MPI’s Matching
Transport Layer on the Cray XT

Richard L. Graham1, Ron Brightwell2, Brian Barrett3,
George Bosilca4, and Jelena Pješivac-Grbović4

1 Oak Ridge National Laboratory�

Oak Ridge, TN USA
rlgraham@ornl.gov

2 Sandia National Laboratories��,
Albuquerque, NM USA
rbbrigh@sandia.gov

3 Los Alamos National Laboratory� � �

Los Alamos, NM USA
bbarrett@lanl.gov

4 The University of Tennessee,
Knoxville, TN USA

{bosilca,pjesa}@cs.utk.edu

Abstract. Open MPI was initially designed to support a wide variety
of high-performance networks and network programming interfaces. Re-
cently, Open MPI was enhanced to support networks that have full sup-
port for MPI matching semantics. Previous Open MPI efforts focused
on networks that require the MPI library to manage message matching,
which is sub-optimal for some networks that inherently support match-
ing. We describes a new matching transport layer in Open MPI, present
results of micro-benchmarks and several applications on the Cray XT
platform, and compare performance of the new and the existing trans-
port layers, as well as the vendor-supplied implementation of MPI.

1 Introduction

The Open MPI implementation of MPI is the result of an active international
open-source collaboration between industry, research laboratories, and academia.
In a short time, Open MPI has evolved into a robust, scalable, high-performance
implementation for a wide variety of architectures and interconnects. It is

� Research sponsored by the Mathematical, Information, and Computational Sci-
ences Division, Office of Advanced Scientific Computing Research, U.S. Depart-
ment of Energy, under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC.

�� Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed
Martin Company, for the United States Department of Energy’s National Nuclear
Security Administration under contract DE-AC04-94AL85000.

� � � Los Alamos National Laboratory is operated by Los Alamos National Security,
LLC, for the National Nuclear Security Administration of the U.S. Department of
Energy under contract DE-AC52-06NA25396.

F. Cappello et al. (Eds.): EuroPVM/MPI 2007, LNCS 4757, pp. 161–169, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

162 R.L. Graham et al.

currently being run in production on several of the largest production com-
puting systems in the world. Much of the current effort in developing Open MPI
has targeted networks and network programming interfaces that do not support
MPI matching semantics. These networks depend on the MPI implementation
to perform message selection inside the MPI library. As such, existing transport
layers in Open MPI were designed to provide this fundamental capability. Unfor-
tunately, these transport layers have been shown to be sub-optimal in some cases
for networks that support MPI matching semantics, mostly due to redundant
functionality.

Recently, a new transport layer has been developed that is designed specif-
ically for networks that provide MPI matching semantics. This new transport
layer eliminates much of the overhead of previous transport layers and exploits
the capabilities of the underlying network layer to its fullest. This paper de-
scribes this new matching transport layer and its implementation on the Cray
XT platform. We compare and contrast features of the new transport with the
existing non-matching transport layer. Performance results from several micro-
benchmarks demonstrate the capabilities of the new transport layer, and we also
show results from several real-world applications. We also include performance
results for the native vendor-supplied MPI implementation.

The rest of this paper is organized as follows. Section 2 presents an overview
of the Open MPI implementation for the Cray XT platform, the Cray MPI
implementation, and the test platform for experiments presented in this paper.
Results for microbenchmarks and applications are presented in Sections 3 and
4, respectively. Relevant conclusions are presented in Section 5.

2 Background

The Cray XT4 platform utilizes the Portals [1] interface for scalable, high per-
formance communication. Portals provides a number of features not common
to high performance networks, particularly rich receive matching capable of im-
plementing the MPI message matching rules. Initial work with Open MPI on
the XT4 treated Portals like traditional commodity networks [2]. Recent work
extends Open MPI to take advantage of Portals’ rich feature set.

2.1 Open MPI Point-to-Point Architecture

Open MPI implements point-to-point MPI semantics utilizing a component
interface, the Point-To-Point Management Layer (PML) [3]. The PML is re-
sponsible for implementing all MPI point-to-point semantics, including message
buffering, message matching, and scheduling message transfers. The general ar-
chitecture is shown in Figure 1. At run-time, one PML component will be selected
and used for all point-to-point communication. Three PMLs are currently avail-
able: OB1, DR, and CM.1 The PMLs can be grouped into two categories based
based on responsibility for data transfer and message matching: OB1 and DR or
CM.
1 PML names are internal code names and do not have any meaning.

An Evaluation of Open MPI’s Matching Transport Layer on the Cray XT 163

MPI

PML - OB1/DR

BML - R2
BTL -
GM

MPool-
GM

Rcache

BTL -
OpenIB

MPool-
 OpenIB

Rcache

PML - CM

MTL- MX
(Myrinet)

MTL- PSM
(QLogic)

MTL-
Portals

Fig. 1. Open MPI’s Layered Architecture

OB1 and DR. OB1 and DR implement message matching and data transfer
scheduling within the MPI layer, utilizing the BTL interface for data transfer.
OB1 provides high performance communication on a variety of HPC networks
and is capable of utilizing remote direct memory access (RDMA) features pro-
vided by the underlying network. DR is focused on data integrity and only utilizes
send/receive semantics for message transfer. Both PMLs share the lower level
Byte Transfer Layer (BTL), which is the layer that handles the data transfer,
the supporting Byte Management Layer (BML), Memory Pool (MPool), and the
Registration Cache (Rcache) frameworks. While these are illustrated and defined
as layers, critical send/receive paths bypass the BML, which is used primarily
during initialization and BTL selection.

When using OB1 and the Portals BTL, short messages are sent eagerly and
long messages are sent using a rendezvous protocol. Eager message transfer in-
volves a copy into BTL-specific buffers at the sender and a copy out of BTL-
specific buffers at the receiver. For long messages, a Portals RDMA get is issued
to complete data transfer directly into the application receive buffer. User-level
flow control ensures messages are not dropped, even for large numbers of unex-
pected sends.

CM. The CM PML provides request management and handling of buffered
sends, relying on the MTL framework to provide message matching and data
transfer. The MTL is designed specifically for networks such as Portals or Myrinet
MX, which are capable of implementing message matching inside the commu-
nication library. Unlike OB1, which supports multiple simultaneous BTLs, only
one MTL may be utilized per application.

The Portals MTL utilizes a design similar to that described in [1]. The Portals
MTL sends all data eagerly, directly from application buffers. If a receive has been
pre-posted, the data is delivered directly to the user buffer. Unexpected short
message, less than 32K currently, are buffered in MTL level buffers. Unexpected
long messages are truncated, and after a match is made Portal’s RDMA get func-
tionality completes the data transfer. With the exception of unexpected receives,
messages are matching by the Portals library. The Portals MTL is designed to
provide optimal performance for applications that pre-post their receives.

OB1 and CM fundamentally differ in the handling of long messages. The OB1
protocol uses a rendezvous protocol with an eager limit of 32K bytes. On the

164 R.L. Graham et al.

receive side the memory descriptors are configured to buffer this data if messages
are unexpected. For large messages, the OB1 protocol attempts to keep network
congestion down, so sends only a header used for matching purposes. Once the
match is made, the Portals get method is used to deliver the user’s data in a
zero copy mode, if the MPI data type is contiguous, directly to the destination.
This mode of point-to-point communications is very useful when an application
run uses a lot of large unexpected messages, i.e. when the message is sent to the
destination, before the receive side has posted a matching receive.

CM does not specify a protocol for long messages, leaving such decisions to
the MTL. The Portals MTL procotol is agressive on sending data. Both the short
and the long protocol send all user data at once. If there is a matching receive
posted, the data is delivered directly to the user destination. In the absence
of such a posted receive, short messages, i.e. messages shorter than 32K bytes,
are buffered by the receive Portals memory descriptor. However, all he data
associated with long messages is dropped, and a Portals get request is performed
after the match is made to obtain the data. This protocol is aimed at providing
the highest bandwidth possible for the application.

2.2 Cray MPI

Cray MPI is derived from MPICH-2 [4], and supports the full MPI-2 standard,
with the exception of MPI process spawning. This is the MPI implementation
shipped with the Cray Message Passing Toolkit. The communication protocol
used by Cray MPI is generally similar to that of the Portals MTL, although there
are significant differences regarding the handling of event queue polling.

2.3 Application Codes

Four applications, VH-1, GTC, the Parallel Ocean Program (POP), and S3D,
were used to compare the protocols available on the Cray XT platform. VH-1 [5]
is a multidimensional ideal compressible hydrodynamics code. The Gyrokinetic
Toroidal Code [6] (GTC) uses first-principles kinetic simulation of the electrosta-
tic ion temperature gradient (ITG) turbulence in a reactor-scale fusion plasma
to study turbulent transport in burning plasmas. POP [7] is the ocean model
component of the Community Climate System Model, which is used to provide
input to the Intergovernmental Panel on Climate Change assessment. S3D [8]
is used for direct numerical simulations of turbulent combustion by solving the
reactive Navier-Stokes equations on a rectilinear grid.

2.4 Test Platforms

Application performance results were gathered on Jaguar, a Cray XT4 system
at Oak Ridge National Laboratory. Jaguar is composed of 11,508 dual-socket
2.6 GHz dual-core AMD Opterons, and the network is a 3-D torus with the
Cray SeaStar 2.1 [9] network. Micro-benchmark results were gathered on Red
Storm, a Cray XT3+ system at Sandia National Laboratories. Red Storm con-
tains 13,272 single-socket dual-core 2.4 GHz AMD Opteron chips, a SeaStar

An Evaluation of Open MPI’s Matching Transport Layer on the Cray XT 165

2.1 network, which is torus in only one direction. The major difference between
these two systems is the speed of the processor, and the communication micro-
benchmarks can be scaled appropriately. For both systems, compute nodes run
the Catamount lightweight kernel, and all network communications use the Por-
tals 3.3 programming interface [10].

For the application results, the default Cray MPI installation, XT/MPT ver-
sion 1.5.31 with default settings, is used for the benchmark runs. The trunk
version of Open MPI (1.3 pre-release) is used for these runs, with data collected
using both the Portal ports of the CM and OB1 PMLs. Open MPI’s tuned collec-
tives are used for collective operations. To minimize differences in timings due
to processor allocations, all runs for a given application and processor count are
sequentially run within a single resource allocation.

3 Micro-Benchmark Performance

We use several communication micro-benchmarks to compare the performance
of the two MPI implementations. We first compare latency and bandwidth per-
formance using the NetPIPE [11] benchmark. Figure 2(a) shows half round-trip
ping-pong latency results. The Cray implementation has the lowest zero-length
latency at 4.78 μs, followed by 4.91 μs and 6.16 μs respectively for Open MPI’s
CM and OB1. Figure 2(b) plots bandwidth performance. Results shows that be-
yond a message length of 100 bytes, Open MPI’s CM bandwidth is higher than
that of Cray MPI’s, but eventually the curves join as the asymptotic peak band-
width is reached. However, Cray MPI’s bandwidth curve is consistently higher
than that of Open MPI’s OB1 protocol. Note also that Open MPI’s transition
from the short-message protocol to the long-message protocol produces a much
smoother curve than Cray MPI’s.

Next, we measure CPU availability for sending and receiving using the San-
dia overhead benchmark [12]. This benchmark measures the percentage of the
processor that is available to the application process while sending and

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 10 100 1000 10000

La
te

nc
y

(u
s)

Message Size (Bytes)

Open MPI - CM
Open MPI - OB1

Cray MPI

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0.0001 0.001 0.01 0.1 1 10 100 1000 10000

B
an

dW
id

th
 (

M
B

yt
e/

S
ec

)

Datasize (KBytes)

Open MPI - CM
Open MPI - OB1

Cray MPI

(a) (b)

Fig. 2. NetPIPE (a) latency and (b) bandwidth performance

166 R.L. Graham et al.

 0

 20

 40

 60

 80

 100

 1 10 100 1000 10000 100000 1e+06 1e+07

C
P

U
 A

va
ila

bi
lit

y
(%

)

Message Size (bytes)

Open MPI - OB1
Open MPI - CM

Cray MPI
 0

 20

 40

 60

 80

 100

 1 10 100 1000 10000 100000 1e+06 1e+07

C
P

U
 A

va
ila

bi
lit

y
(%

)

Message Size (bytes)

Open MPI - OB1
Open MPI - CM

Cray MPI

(a) (b)

Fig. 3. SMB send availability (a) and receive availability (b)

receiving messages. Figure 3(a) shows send-side CPU availability, while Fig-
ure 3(b) shows receive-side CPU availability. On the send side, Cray MPI has a
very slight advantage for very small messages sizes. However, for message sizes
between 1 KB and 10 KB, the OB1 transport has a slight advantage over the
other two. This is likely due to memory copies in Cray MPI and CM that re-
duce latency at the expense of CPU availability. Results for receive availability
are much different. The CM transport has a slight advantage at small message
sizes, but is able to maintain high availability for very large messages. The eager
protocol messages in CM allow for nearly complete overlap of computation and
communication. The other two curves show a rapid decrease in availability at
the point where the eager protocol switches to a rendezvous protocol. Cray re-
cently modified their implementation to use a rendezvous protocol by default, in
spite of previous results that demonstrated high receive-side availability similar
to CM.

For our last communication micro-benchmark, we examine message rate us-
ing a modified version of the Ohio State University streaming bandwidth bench-
mark. This benchmark measures the number of messages per second that can

 0

 50

 100

 150

 200

 250

 300

 350

 400

 1 10 100 1000 10000

R
at

e
(M

es
sa

ge
s/

s/
10

00
)

Message Size (bytes)

Open MPI - OB1
Open MPI - CM

Cray MPI

Fig. 4. Small message rate

An Evaluation of Open MPI’s Matching Transport Layer on the Cray XT 167

be processed by streaming messages. In Figure 4 we can see that CM has an
advantage over Cray MPI for message sizes up to about 32 bytes, at which point
the curves almost converge. Performance of the CM transport drops significantly
at 2048 bytes. The OB1 message rate is nearly half of the other implementations,
due to both protocol overhead and rate limiting to ensure message reliability.

4 Application Performance

We compare the performance of VH-1, GTC, POP, and S3D, at medium process
count. Figure 5 shows overall application run-time for these codes, with data
for VH-1 and POP collected at 256 processes, and for GTC and S3D at 1024
processes. Overall, Open MPI CM PML slightly out-performs Cray MPI, and the
CM PML consistently outperforming the OB1 PML.

VH-1 was run using 256 MPI processes, with the CM run-times being about
0.4% faster than the Cray MPI run-times, and about 0.3% faster than the OB1
runs. For the GTC runs at 1024 processes, the Cray MPI application run-times
are about 4% faster than the Open MPI CM runs, and 15% than the OB1 runs.
Running POP at 256 processes, Open MPI CM outperforms Cray MPI by about
3%, and outperforms CM by 18%. Finally, at 1024 processes, Open MPI’s CM
outperforms Cray MPI by 12%, and it outperforms OB1 by 3%.

 100

 1000

A
pp

lic
at

io
n

W
al

l C
lo

ck
 T

im
e

(s
ec

)

VH-1 256p GTC 1024p POP 256p S3D 1024p

Open MPI - CM
Open MPI - OB1

Cray MPI

Fig. 5. Application Wall Clock Run-Time(sec)

Table 1 lists the fraction of run-time spent inside the MPI library, along with
the most time consuming MPI functions. The data was collected using mpiP [13],
with the CM PML. The average amount of time spent in MPI routines differs
considerably from application to application, with 6.1% of GTC’s run time at
1024 processes being spent in the MPI library, to 65.7% of POP’s run-time at
being spent in the MPI library. 7.9% of S3D’s run-time and 16.9% of VH-1’s
run-time are spent in the MPI library. For applications other than S3D—which
uses collectives sparingly—collective communications dominate the MPI traffic
at large processor counts. POP spends 40.8% of the run-time performing small
(8 byte) reduction operations. The collective communications used by Open MPI

168 R.L. Graham et al.

Table 1. Application Communications Profile with Open MPI’s CM Point-To-Point
communications

App # Procs Ave MPI Time Message Profile Top MPI Routines
% min,max # short # long #dropped

% total % total % long %Tot time %Tot time %Tot time
% min,max

VH-1 256 16.9% 240 3000 890 Alltoall Allreduce
15.5, 24.7 7.4 92.6 29.6 15.9 1.0

9.1, 51.7
GTC 1024 6.1% 6524 8404 2130 Allreduce Sendrecv Bcast

2.9, 13.9 43.7 56.3 25.3 4.6 1.3 0.1
7.6, 56.0

POP 256 65.7% 5472986 5648 789 Allreduce Waitall Isend
60.6, 70.5 99.9 0.1 13.3 40.8 14.4 5.5

1.8, 93.5
S3D 1024 7.9% 946 225015 104020 Wait Allreduce Barrier

5.5, 9.1 0.4 99.6 46.2 7.2 0.3 0.2
25.1, 96.0

use PML level communications for data exchange, and as such the performance of
the Point-To-Point communications is one of the factors contributing to overall
collective performance.

In addition, Table 1 lists the breakdown of Point-To-Point traffic for the ap-
plications. We categorize the data based the communication protocol used; ei-
ther the short-message protocol used at or below 32K byte cutoff length or the
long-message protocol. On average, S3D’s, VH-1’s, and GTC’s Point-To-Point
communications are dominated by long messages, with 99.6% of S3D’s messages,
92.6% of VH-1’s messages, and 56.3% of GTC’s messages being long-messages.
46.2%, 29.6%, and 25.3% of the long-messages sent by these respective applica-
tions are dropped, and retransmitted once a match is made. While additional
time is consumed retreiving the long-message data after the match is made,
there does not appear to be a strong correlation between the fraction of long-
messages being retransmitted and the overall application performance relative
to the CM PML. POP communications are dominated by short-messages, and
the long-message protocol is largely irrelevant to its performance in the current
set of runs.

5 Conclusions

This paper compares the performance of the Point-To-Point performance of
Open MPI’s new CM PML with the OB1 PML and with Cray MPI utilizing the
Portals communications library. Both micro-benchmarks and full application
benchmarks are used. The CM PML is designed to make optimal use of Portals
capabilities for providing good application performance at large scale. It provides
message injection rates that are comparable to those of Cray MPI and consis-
tently better than those obtained with the OB1 PML. It is superior to both Cray
MPI and OB1 with respect to CPU availability, allowing nearly all of the CPU to
be available during large message transfers on both the sender and the receiver.
CM also has good latency and bandwidth performance curves, comparable with
Cray MPI, but superior to the OB1 implementation. With regard to application
performance, CM gives slightly better overall performance when compared with
Cray MPI, and consistently better performance with respect to OB1.

An Evaluation of Open MPI’s Matching Transport Layer on the Cray XT 169

References

[1] Brightwell, R., Maccabe, A.B.R.R.: Design, implementation, and performance of
mpi on portals 3.0. International Journal of High Performance Computing Appli-
cations 17(1) (2003)

[2] Barrett, B.W., Brightwell, R., Squyres, J.M., Lumsdaine, A.: Implementation of
open mpi on the cray xt3. In: 46th CUG Conference, CUG Summit 2006 (2006)

[3] Graham, R.L., Barrett, B.W., Shipman, G.M., Woodall, T.S., Bosilca, G.: Open
mpi: A high performance, flexible implementation of mpi point-to-point commu-
nications. Parallel Processing Letters 17(1), 79–88 (2007)

[4] ArgonneNationalLab.: MPICH2. (http://www-unix.mcs.anl.gov/mpi/mpich2/)
[5] Blondin, J.M., Lufkin, E.A.: The piecewise-parabolic method in curvilinear coor-

dinates. The Astorphysical Journal 88, 589–594 (1993)
[6] Lin, Z., Hahm, T.S., Lee, W.W., Tang, W.M., White, R.B.: Turbulent transport

reduction by zonal flows: Massively parallel simulations. Science 281, 1835 (1998)
[7] Dukowicz, J.K., Smith, R., Malone, R.: A reformulation and implementation of

the bryan-cox-semter ocean model on the connection machine. J. Atmospheric
and Oceanic Tech. 10, 195–208 (1993)

[8] Hawkes, E., Sankaran, R., Sutherland, J., Chen, J.: Direct numerical simulation of
turbulent combustion: Fundamental insights towards predictive models. Journal
of Physics: Conference Series 16, 65–79 (2005)

[9] Alverson, R.: Red storm. Invited Talk, Hot Chips 15 (2003)
[10] Riesen, R., Brightwell, R., Pedretti, K., Maccabe, A.B., Hudson, T.: The Portals

3.3 Message Passing Interface - Revision 2.1. Technical Report SAND20006-0420,
Sandia National Laboratory (2006)

[11] Snell, Q., Mikler, A., Gustafson, J.: In: IASTED International Conference on
Intelligent Information Management and Systems (1996)

[12] Doerfler, D., Brightwell, R.: Measuring MPI send and receive overhead and ap-
plication availability in high performance network interfaces. In: 13th European
PVM/MPI Users’ Group Meeting, Bonn, Germany (2006)

[13] mpiP: Lightweight, Scalable MPI Profiling http://mpip.sourceforge.net

http://www-unix.mcs.anl.gov/mpi/mpich2/
http://mpip.sourceforge.net

	An Evaluation of Open MPI’s Matching Transport Layer on the Cray XT
	Introduction
	Background
	Open MPI Point-to-Point Architecture
	$Cray MPI$
	Application Codes
	Test Platforms

	Micro-Benchmark Performance
	Application Performance
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

