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Algorithm-Based Fault Tolerance

for Fail-Stop Failures

Zizhong Chen and Jack Dongarra

Abstract

Fail-stop failures in distributed environments are often tolerated by checkpointing or

message logging. In this paper, we show that fail-stop process failures in ScaLAPACK matrix

matrix multiplication kernel can be tolerated without checkpointing or message logging. It has

been proved in the previous algorithm-based fault tolerance research that, for matrix-matrix

multiplication, the checksum relationship in the input checksum matrices is preserved at the end

of the computation no matter which algorithm is chosen. From this checksum relationship in the

final computation results, processor miscalculations can be detected, located, and corrected at

the end of the computation. However, whether this checksum relationship in the input checksum

matrices can be maintained in the middle of the computation or not remains open. In this paper, we

first demonstrate that, for many matrix matrix multiplcation algorithms, the checksum relationship

in the input checksum matrices is not maintained in the middle of the computation. We then

prove that, however, for the outer product version matrix matrix multiplcation algorithm, the

checksum relationship in the input checksum matrices can be maintained in the middle of the

computation. Based on this checksum relationship maintained in the middle of the computation,

we demonstrate that fail-stop process failures in ScaLAPACK matrix-matrix multiplcation can

be tolerated without checkpointing or message logging. Because no periodical checkpointing

is involved, the fault tolerance overhead for this approach is surprisingly low.

Index Terms

Algorithm-based fault tolerance, checkpointing, fail-stop failures, parallel matrix matrix
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1 INTRODUCTION

As the number of processors in today’s high performance computers continues to grow,

the mean-time-to-failure (MTTF) of these systems are becoming significantly shorter

than the execution time of many current high performance computing applications.

Even making generous assumptions on the reliability of a single processor or link, it is

clear that as the processor count in high end systems grows into the tens of thousands,

the MTTF can drop from a few years to a few days, or less. For example, with 131,000

processors in the system, the current IBM Blue Gene L experienced failures every 48

hours during initial deployment [28]. In recent years, cluster of commodity off-the-

shelf systems becomes more and more popular. While the commodity off-the-shelf

cluster systems have excellent price-performance ratios, there is a growing concern

with the fault tolerance issues in such systems due to the low reliability of the off-

the-shelf components used in these systems. The recently emerging computational grid

environments [14] with dynamic computing resources have further exacerbated the

problem. However, driven by the desire of scientists for ever higher levels of detail

and accuracy in their simulations, many computational science applications are now

being designed to run for days or even months. To avoid restarting computations from

beginning after failures, the next generation high performance computing applications

need to be able to continue computations despite of failures.

Although there are many types of failures in today’s parallel and distributed systems,

in this paper, we focus on tolerating fail-stop process failures where the failed process

stops working and all data associated with the failed process are lost. This type of

failures is common in today’s large computing systems such as high-end clusters with

thousands of nodes and computational grids with dynamic computing resources. In

order to tolerate such fail-stop failures, it often requires a global consistent state of the

application be available or can be reconstructed when the failue occurs. Today’s long

running scientific applications typically tolerate such failures by checkpoint/restart in

which all process states of an application are saved into stable storage periodically.

The advantage of this approach is that it is able to tolerate the failure of the whole

system. However, in this approach, if one process fails, usually all surviving processes
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are aborted and the whole application is restarted from the last checkpoint. The major

source of overhead in all stable-storage-based checkpoint systems is the time it takes

to write checkpoints into stable storage [23]. In order to tolerate partial failures with

reduced overhead, diskless checkpointing [23] has been proposed by Plank et. al. By

eliminating stable storage from checkpointing and replacing it with memory and pro-

cessor redundancy, diskless checkpointing removes the main source of overhead in

checkpointing [23]. Diskless checkpointing has been shown to achieve a decent perfor-

mance to tolerate single process failure in [20]. For applications which modify a small

amount of memory between checkpoints, it is shown in [9] that, even to tolerate multiple

simultaneous process failures, the overhead introduced by diskless checkpointing is still

negligible. However, the matrix-matrix multiplication operation considered in this paper

often modifys a large mount of memory between checkpoints. Diskless checkpointing

for such applications often produces a large size checkpoint. Therefore, even diskless

checkpointing still introduces a considerable overhead [20], [22].

It has been proved in previous research [19] that, for some matrix operations, the

checksum relationship in input checksum matrices is preserved in the final computa-

tion results at the end of the operation. Based on this checksum relationship in the final

computation results, Huang and Abraham have developed the famous algorithm-based

fault tolerance (ABFT) [19] technique to detect, locate, and correct certain processor

miscalculations in matrix computations with low overhead. The algorithm-based fault

tolerance proposed in [19] was later extended by many researches [1], [2], [3], [5], [21].

However, previous ABFT researches have mostly focused on detecting, locating, and

correcting miscalculations or data corruption where failed processors are often assumed

to be able to continue their work but produce incorrect calculations or corrupted data.

The error detection are often performed at the end of the computation by checking

whether the final computation results satisfy the checksum relationship or not.

In order to be able to recover from a fail-stop process failure in the middle of the

computation, a global consistent state of the application is often required when a process

failure occurs. Checkpointing and message logging are typical approaches to maintain

or construct such global consistent state in a distributed environment. But if there exists

a checksum relationship between application data on different processes, such checksum
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relationship can actually be treated as a global consistent state. However, it is still an

open problem that whether the checksum relationship in input checksum matrices in

ABFT can be maintained during computation or not. Therefore, whether ABFT can

be extended to tolerate fail-stop process failures in a distributed environment or not

remains open.

In this paper, we extend the ABFT idea to recover applications from fail-stop fail-

ures in the middle of the computation by maintaining a checksum relationship during

the whole computation. We show that fail-stop process failures in ScaLAPACK [4]

matrix-matrix multiplication kernel can be tolerated without checkpointing or mes-

sage logging. We first demonstrate that, for many matrix matrix multiplication al-

gorithms, the checksum relationship in input checksum matrices does not preserve

during computation. We then prove that, however, for the outer product version matrix

matrix multiplcation algorithm, it is possible to maintain the checksum relationship

in input checksum matrices during computation. Based on this checksum relationship

maintained during computation, we demonstrate that it is possible to tolerate fail-stop

process failures (which are typically tolerated by checkpoting or message logging) in the

outer product version distributed matrix matrix multiplcation without checkpointing or

message logging. Because no periodical checkpoint or rollback-recovery is involved in

this approach, process failures can often be tolerated with a surprisingly low overhead.

We show the practicality of this technique by applying it to the ScaLAPACK matrix-

matrix multiplication kernel which is one of the most important kernels for the widely

used ScaLAPACK library to achieve high performance and scalability.

The rest of this paper is organized as follows. Section 2 explores properties of ma-

trix matrix multiplication with input checksum matrices. Section 3 presents the basic

idea of algorithm-based checkpoint-free fault tolerance. In Section 4, we demonstrate

how to tolerate fail-stop process failures in ScaLAPACK matrix-matrix multiplcation

without checkpointing or message logging. In Section 5, we evaluate the performance

overhead of the proposed fault tolerance approach. Section 6 compares algorithm-based

checkpoint-free fault tolerance with existing works and discusses the limitations of this

technique. Section 7 concludes the paper and discusses future work.
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2 MATRIX MATRIX MULTIPLICATION WITH CHECKSUM MATRICES

In this section, we explore the properties of different matrix matrix multiplication algo-

rithms when the input matrices are checksum matrices defined in [19].

It has been proved in [19] that the checksum relationship of the input checksum

matrices is preserved in the final computation results at the end of computation no mater

which algorithm is used in the operation. However, whether this checksum relationship

in input checksum matrices can be maintained during computation or not remains open.

In this section, we demonstrate that, for many algorithms to perform matrix matrix

multiplication, the checksum relationship in the input checksum matrices does not pre-

serve during computation. We prove that, however, for the outer product version matrix

matrix multiplcation algorithm, it is possible to maintain the checksum relationship in

the input checksum matrices during computation.

2.1 Maintaining Checksum at the End of Computation

Assume Im×m is the identity matrix of dimmension m, Em×n is the m-by-n matrix with

all elements being 1. Let Hc
m = [Im×m, Em×1]

T , Hr
n = [In×n, En×1]. It’s trival to verify

Hc
m = Hr

n
T if m = n. For any m-by-n matrix A, the column checksum matrix Ac of A is

defined by Ac = Hc
m ∗ A, the row checksum matrix Ar of A is defined by Ar = A ∗ Hr

n,

and the full checksum matrix Af of A is defined by Af = Hc
m ∗ A ∗ Hr

n.

Theorem 1: Assume A is an m-by-k matrix, B is a k-by-n matrix, and C is an m-by-n

matrix. If A ∗ B = C, then Ac ∗ Br = Cf .

Proof:

Ac ∗ Br = (Hc
m ∗ A) ∗ (B ∗ Hr

n)

= Hc
m ∗ (A ∗ B) ∗ Hr

n

= Hc
m ∗ C ∗ Hr

n

= Cf .

Theorem 1 was first proved by Huang and Abraham in [19]. We prove it here again to

show that the proof of Theorem 1 is independent of the algorithms used for the matrix



6

matrix multiplication operation. Therefore no mater which algorithm is used to perform

the matrix matrix multiplication, the checksum relationship of the input matrices will

always be preserved in the final computation results at the end of the computation.

Based on this checksum relationship in the final computation result, the low-overhead

ABFT technique has been developed in [19] to detect, locate, and correct certain pro-

cessor miscalculations in matrix computations.

2.2 Is the Checksum Maintained During Computation?

Algorithm-based fault tolerance usually detects, locates, and corrects errors at the end

of the computation. But in today’s highperformance computing environments such as

PVM [27] and MPI [26], after a fail-stop process failure occurs in the middle of the

computation, it is often required to recover from the failure first before the continuation

of the rest of the computation.

In order to be able to recover from fail-stop failures occured in the middle of the

computation, a global consistent state of an application is often required in the middle

of the computation. The checksum relationship, if exists, can actually be treated as

a global consistent state. However, from Theorem 1, it is still uncertain whether the

checksum relationship is preserved in the middle of the computation or not.

In what follows, we demonstrate, for both Cannon’s algorithm and Fox’s algorithm for

matrix matrix multiplication, this checksum relationship in the input checksum matrices

is generally not preserved in the middle of the computation.

Assume A is an (n− 1)-by-n matrix, B is an n-by-(n − 1) matrix. Then Ac = (aij)n×n,

Br = (bij)n×n, and Cf = Ac ∗Br are all n-by-n matrices. For convenience of description,

but without loss of generality, assume there are n2 processors with each processor stores

one element from Ac, Br,and Cf respectively. The n2 processors are organized into a

n-by-n processor grid.

Consider using the Cannon’s algorithm [6] in Fig. 1 to perform Ac ∗Br in parallel on

an n-by-n processor grid. We can prove the following Theorem 2.

Theorem 2: If the Cannon’s algorithm in Fig. 1 is used to perform Ac ∗Br, then there

exist matrices A and B such that, at the end of each step s, where s = 0, 1, 2, · · · , n− 2,

the partial sum matrix C = (cij) in Fig. 1 is not a full checksum matrix.
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/* Calculate C = Ac ∗ Br by cannon’s algorithm. */

initialize C = 0;

for i = 0 to n − 1

left-circular-shift row i of Ac by i

so that ai,j is overwritten by ai, (j+i) mod n;

end

for i = 0 to n − 1

up-circular-shift column i of Br by i

so that bi,j is overwritten by b(i+j) mod n, j ;

end

for s = 0 to n − 1

every processor (i,j) performs cij = cij + aij ∗ bij

locally in parallel;

left-circular-shift each row of Ac by 1;

up-circular-shift each column of Br by 1;

/* Here is the end of the sth step. */

end

Fig. 1. Matrix-matrix multiplication by cannon’s algorithm with checksum input matrices

Proof: This can be proved by giving a simple example.

Let

A =
(

1 2

)

,

B =







3

4





 .

Then

Ac =







1 2

1 2





 ,

Br =







3 3

4 4





 .

In this example, n = 2, thus it is enough to just check one case: s = 0.
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When the Cannon’s algorithm in Fig. 1 is used to perform Ac∗Br, at the end of s = 0th

step

C =







3 8

8 3





 ,

which is not a full checksum matrix.

Actually, when the Cannon’s algorithm in Fig. 1 is used to perform Ac ∗Br in parallel

for matrix A and B in Theorem 2, it can be proved that at the end of the sth step

cij =
s
∑

k=0

ai, (i+j+k) mod n ∗ b(i+j+k) mod n, j

It can be verified that C = (cij)n×n is not a full checksum matrix unless s = n− 1 which

is the end of the computation. Therefore the checksum relationship in the matrix C

is generally not preserved during computation in the cannon’s algorithm for matrix-

multiplication.

Each step of Cannon’s algorithm updates the partial sum matrix C by adding a rank

one matrix T where each entry of Ac and each entry of Br contribute to some different

entry of the matrix T . The rank one matrix T is a outer product between a column

vector of entries from different columns of Ac and a row vector of entries from different

rows of Br. From the irreducibility of outer products, the rank one matrix T cannot

algebraically equals to a full checksum matrix. Therefore, the partial sum matrix C

cannot algebraically equals to a full checksum matrix.

How about if Fox’s algorithm [16] in Fig. 2 is used to perform Ac ∗ Br?

Theorem 3: If the Fox’s algorithm in Fig. 2 is used to perform Ac ∗Br, then there exist

matrices A and B such that, at the end of each step s, where s = 0, 1, 2, · · · , n − 2, the

partial sum matrix C = (cij) in Fig. 2 is not a full checksum matrix.

Proof: The same example matrices A and B in the proof of Theorem 2 can be used

to prove Theorem 3. Because n = 2, it is also enough to just check only one case: s = 0.

When the Fox’s algorithm in Fig. 2 is used to perform Ac ∗Br, at the end of 0th step

C =







3 3

8 8





 ,

which is not a full checksum matrix.
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/* Calculate Ac ∗ Br by fox’s algorithm. */

initialize C = (cij) = 0;

for s = 0 to n − 1

for i = 0 to n − 1 in parallel

processor (i, (i + s) mod n) broadcast local

t = ai, (i+s) mod n to other processors in row i;

for i, j = 0 to n − 1 in parallel

every processor (i, j)

performs cij = cij + t ∗ bij locally;

up-circular-shift each column of Br by 1;

/* Here is the end of the sth step. */

end

Fig. 2. Matrix matrix multiplication by Fox’s algorithm with input checksum matrices

When the Fox’s algorithm in Fig. 2 is used to perform Ac∗Br in parallel, it can actually

be proved that at the end of the sth step

cij =
s
∑

k=0

ai, (i+k) mod n ∗ b(i+k) mod n, j

It can be verified that C = (cij)n×n is not a full checksum matrix either unless s =

n − 1 which is the end of the computation. Therefore the checksum relationship in the

matrix C is generally not preserved during computation either in the Fox’s algorithm

for matrix-multiplication.

It can also be demonstrated that the checksum relationship in the input matrix C is

not preserved during computation in many other parallel algorithms for matrix matrix

multiplication.

2.3 Maintaining Checksum During Computation

Despite the checksum relationship of the input matrices is preserved in final results at

the end of computation no mater which algorithm is used, from last subsection, we

konw that the checksum relationship is not necessarily preserved during computation.
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However, it is interesting to ask: is there any algorithm that preserves the checksum

relationship during computation?

Consider using the outer product version algorithm [18] in Fig. 3 to perform Ac ∗Br

in parallel. Assume the matrices Ac, Br, and C have the same data distribution scheme

as the matrices in Subsection 2.2.

Theorem 4: If the algorithm in Fig. 3 is used to perform Ac ∗Br, then the partial sum

matrix C = (cij) in Fig. 3 is a full checksum matrix at the end of each step s, where

s = 0, 2, · · · , n − 1.

Proof: Let A(:, 1 : s) be the first s columns of A, B(1 : s, :) be the first s rows of B,

and C(s) be the partial sum matrix C at the end of the sth step of the outer product

version algorithm in Fig. 2. Then

C(s) = Ac(:, 1 : s) ∗ Br(1 : s, :)

= (Hc
n−1 ∗ A(:, 1 : s)) ∗ (B(1 : s, :) ∗ Hr

n−1)

= Hc
n−1 ∗ (A(:, 1 : s) ∗ B(1 : s, :)) ∗ Hr

n−1

which is the full checksum matrix of the matrix A(:, 1 : s) ∗ B(1 : s, :).

/*Calculate C = Ac ∗ Br by outer product algorithm.*/

initialize C = 0;

for s = 0 to n − 1

row broadcast the sth row of Ac;

column broadcast the sth column of Br;

every processor (i,j) performs cij = cij + ais ∗ bsj

locally in parallel;

/* Here is the end of the sth step. */

end

Fig. 3. Matrix-matrix multiplication by outer product algorithm with checksum input

matrices

Theorem 4 implies that a coded global consistent state of the critical application data
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(i.e. the checksum relationship in Ac, Br, and Cf ) can be maintained in memory at the

end of each iteration in the outer product version matrix matrix multiplication if we

perform the computation with the checksum input matrices.

However, in a high performance distributed environment, different processes may

update their data in local memory asynchronously. Therefore, if a failure happens at

a time when some processes have updated their local matrix in memory and other

processes are still in the communication stage, then the checksum relationship in the

distributed matrix will be damaged and the data on all processes will not form a global

consistent state.

But this problem can be solved by simply performing a synchronization before per-

forming local memory update. Therefore, it is possible to maintain a coded global consis-

tent state ( i.e. the checksum relationship) of the matrix Ac, Br and Cf in the distributed

memory at any time during computation. Hence, a single fail-stop process failure in the

middle of the computation can be recovered from the checksum relationship.

Note that it is also the outer product version algorithm that is often used in today’s

highperformance computing practice. The outer product version algorithm is more

popular due to both its simplicity and and it’s efficiency in modern high performance

computer architecture. In the widely used parallel numerical linear algebra library

ScaLAPACK [4], it is also the outer product version algorithm that is chosen to perform

the matrix matrix mulitiplication.

More importantly, it can also be proved that similar checksum relationship exists for

the outer product version of many other matrix operations (such as Cholesky and LU

factorization).

3 ALGORITHM-BASED CHECKPOINT-FREE FAULT TOLERANCE FOR FAIL-

STOP FAILURES

In this section, we develop some general princples for recovering fail-stop failures in the

middle of computation by maintaining checksum relationship in the algorithm instead

of checkpointing or message logging.
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3.1 Failure Detection and Location

Handling fault-tolerance typically consists of three steps: 1) fault detection, 2) fault

location, and 3) fault recovery. Fail-stop process failures can often be detected and

located with the aid of the programming environment. For example, many current

programming environments such as PVM [27], Globus [15], FT-MPI [12], and Open

MPI [17] provide this type of failure detection and location capability. We assume the

loss of partial processes in the message passing system does not cause the aborting of

the survival processes and it is possible to replace the failed processes in the message

passing system and continue the communication after the replacement. FT-MPI [12] is

one such programming environments that support all these functionalities.

In this paper, we use FT-MPI to detect and locate failures. FT-MPI is a fault tolerant

version of MPI that is able to provide basic system services to support fault survivable

applications. FT-MPI implements the complete MPI-1.2 specification, some parts of the

MPI-2 document and extends some of the semantics of MPI for allowing the application

the possibility to survive process failures. FT-MPI can survive the failure of n-1 processes

in a n-process job, and, if requested, can re-spawn the failed processes. However, the

application is still responsible for recovering the data structures and the data of the

failed processes. Interested readers are refered to [12], [13] for more detail on how to

recover FT-MPI programming environment. In the rest of this paper, we will mainly

focus on how to recover the lost data in the failed processes.

3.2 Failure Recovery

Consider the simple case where there will be only one process failure. Before the failure

actually occurs, we do not know which process will fail, therefore, a scheme to recover

only the lost data on the failed process actually need to be able to recover data on

any process. It seems difficult to be able to recover data on any process without saving

all data on all processes somewhere. However, if we assume, at any time during the

computation, the data on the ith process Pi satisfies

P1 + P2 + · · · + Pn−1 = Pn, (1)
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where n is the total number of process used for the computation. Then the lost data

on any failed process would be able to be recovered from formula (1). Assume the jth

process failed, then the lost data Pj can be recovered from

Pj = Pn − (P1 + · · · + Pj−1 + Pj+1 + · · ·+ Pn−1)

In this very special case, we are lucy enough to be able to recover the lost data on any

failed process without checkpoint due to the special checksum relationship (1). In practice,

this kind of special relationship is by no means natural. However, it is natural to ask: is

it possible to design an application to maintain such a special checksum relationship throughout

the computation on purpose?

Assume the original application is designed to run on n processes. Let Pi denotes the

data on the ith computation process. In some algorithms for matrix operations (such

as the outer product version algorithm for matrix-matrix multiplication), the special

checksum relationship above can actually be designed on purpose as follows

• step 1: Add another encoding process into the application. Assume the data on this

encoding process is C. For numerical computations, Pi is often an array of floating-

point numbers, therefore, at the beginning of the computation, we can create a

checksum relationship among the data of all processes by initializing the data C

on the encoding process as

P1 + P2 + · · ·+ Pn = C (2)

• step 2: During the execution of the application, redesign the algorithm to operate

both on the data of computation processes and on the data of encoding process

in such a way that the checksum relationship (2) is always maintained during

computation.

The specially designed checksum relationship (2) actually establishes an equality

between the data Pi on computation processes and the encoding data C on the encoding

process. If any processor fails then the equality (2) becomes an equation with one

unknown. Therefore, the data in the failed processor can be reconstructed through

solving this equation.
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The above fault tolerance technique can be used to tolerate single fail-stop process

failure in parallel matrix-matrix multiplication without checkpointing or message log-

ging. The special checksum relationship between the data on different processes can be

designed on purpose by: (1). using the checksum matrices of the original matrices as

the input matrices, and (2). choosing the outer product version algorithm to perform

the matrix-matrix multiplication. Section 2.3 is the application of the technique to the

case where each element of the matrix is on a different process. In the next section,

we will apply this technique to the case where matrices are distributed onto processes

according to the two-dimensional block cyclic distribution.

4 INCORPORATING FAULT TOLERANCE INTO THE SCALAPACK MATRIX-

MATRIX MULTIPLICATION

In this section, we apply the algorithm-based checkpoint-free technique developed in

Section 3 to the ScaLAPACK matrix-matrix multiplication kernel which is one of the

most important kernels for the widely used ScaLAPACK library to achieve high perfor-

mance and scalability.

Actually, it is also possible to incorporate fault tolerance into many other ScaLAPACK

routines through this approach. However, in this section, we will restrict our presenta-

tion to the matrix-matrix multiplication kernel. For the simplicity of presentation, in this

section, we only discuss the case where there is only one process failure. However, it is

straightforward to extend the result here to the multiple simultaneous process failures

case by simply using a weighted checksum scheme [11].

4.1 Two-Dimensional Block-Cyclic Distribution

It is well-known [4] that the layout of an application’s data within the hierarchical

memory of a concurrent computer is critical in determining the performance and scal-

ability of the parallel code. By using two-dimensional block-cyclic data distribution [4],

ScaLAPACK seeks to maintain load balance and reduce the frequency with which data

must be transferred between processes.

For reasons described above, ScaLAPACK organizes the one-dimensional process

array representation of an abstract parallel computer into a two-dimensional rectangular
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(a). One-dimensional process array      (b). Two-dimensional process grid

Fig. 4. Process grid in ScaLAPACK

Fig. 5. Two-dimensional block-cyclic matrix distribution

process grid. Therefore, a process in ScaLAPACK can be referenced by its row and

column coordinates within the grid. An example of such an organization is shown in

Fig. 4.

The two-dimensional block-cyclic data distribution scheme is a mapping of the global

matrix onto the rectangular process grid. There are two pairs of parameters associated

with the mapping. The first pair of parameters is (mb, nb), where mb is the row block

size and nb is the column block size. The second pair of parameters is (P, Q), where

P is the number of process rows in the process grid and Q is the number of process

columns in the process grid. Given an element aij in the global matrix A, the process

coordinate (pi, qj) that aij resides can be calculated by














pi = b i
mb

c mod P,

qj = b j
nb
c mod Q,

The local coordinate (ipi
, jqj

) which aij resides in the process (pi, qj) can be calculated

according to the following formula














ipi
= b

b i
mb

c

P
c . mb + (i mod mb),

jqj
= b

b j

nb
c

Q
c . nb + (j mod nb),
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Fig. 5 is an example of mapping a 9-by-9 matrix onto a 2-by-3 process grid according

two-dimensional block-cyclic data distribution with mb = nb = 2.

4.2 Encoding Two-Dimensional Block Cyclic Matrices

In this section, we will construct different encoding schemes which can be used to

design checkpoint-free fault tolerant matrix computation algorithms in ScaLAPACK.

The purpose of encoding is to creat the checksum relationship proposed in the step 1

of Section 3.2.

Assume a matrix M is originally distributed in a P -by-Q process grid according to

the two dimensional block cyclic data distribution. For the convenience of presentation,

assume the size of the local matrices in each process is the same. We will explain different

coding schemes for the matrix M with the help of the example matrix in Fig. 6. Fig.

6 (a) shows the global view of all the elements of the example matrix. After the matrix

is mapped onto a 2-by-2 process grid with mb = nb = 1, the distributed view of this

matrix is shown in Fig. 6 (b).

0 1 0 1

2 3 2 3

0 1 0 1

2 3 2 3

0 0 1 1

0 0 1 1

2 2 3 3

2 2 3 3

0           1

0

1

(a). Original matrix from global view           (b). Original matrix from distributed view

Fig. 6. Two-dimensional block cyclic distribution of an example matrix

Suppose we want to tolerate a single process failure. We dedicate another P + Q + 1

additional processes and organize the total PQ + P + Q + 1 process as a P + 1-by-Q + 1

process grid with the original matrix M distributed onto the first P rows and Q columns

of the process grid.

The distributed column checksum matrix M c of the matrix M is the original matrix M

plus the part of data on the (P + 1)th process row which can be obtained by adding

all local matrices on the first P process rows. Fig. 7 (b) shows the distributed view of

the column checksum matrix of the example matrix from Fig. 6. Fig. 7 (a) is the global

view of the column checksum matrix.
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0 1 0 1

2 3 2 3

2 3 2 3

2 4 2 4

0 1 0 1

2 4 2 4

0 0 1 1

0 0 1 1

2 2 3 3

2 2 3 3

2 2 4 4

2 2 4 4

0           1

0

1

2

(a). Column checksum matrix from global view       (b). Column checksum matrix from distributed view

Fig. 7. Distributed column checksum matrix of the example matrix

The distributed row checksum matrix M r of the matrix M is the original matrix M plus

the part of data on the (Q + 1)th process columns which can be obtained by adding all

local matrices on the first Q process columns. Fig. 8 (b) shows the distributed view of

the row checksum matrix of the example matrix from Fig. 6. Fig. 8 (a) is the global view

of the row checksum matrix.

0 1 1 0 1 1

2 3 5 2

0

2

53

1

3

0 1 1 1

2 3 5 5

0 0 1 1 1 1

0 0 1 1

3

3

1

2 2 3

1

5 5

2 2 3 5 5

0           1            2

0

1

(a). Row checksum matrix from global view     (b). Row checksum matrix from distributed view

Fig. 8. Distributed row checksum matrix of the original matrix

The distributed full checksum matrix Mf of the matrix M is the original matrix M , plus

the part of data on the (P + 1)th process row which can be obtained by adding all local

matrices on the first P process rows, plus the part of data on the (Q+1)th process column

which can be obtained by adding all local matrices on the first Q process columns.

Fig. 9 (b) shows the distributed view of the full checksum matrix of the example matrix

from Fig. 6. Fig. 9 (a) is the global view of the full checksum matrix.

4.3 Parallel Matrix Multiplication Algorithm in ScaLAPACK

To achieve high performance, the matrix-matrix multiplication in ScaLAPACK uses a

blocked outer product version of the matrix matrix multiplication algorithm. Let Aj

denote the jth column block of the matrix A and BT
j denote the jth row block of the

matrix B. Fig. 11 is the algorithm to perform the matrix matrix multiplication. Fig. 10

shows the jth step of the matrix matrix multiplication algorithm.
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(a). Full checksum matrix from global view          (b). Full checksum matrix from distributed view

Fig. 9. Distributed full checksum matrix of the original matrix

b

B j
T

B

A b
A j

= +C ( j+1) C ( j ) A j B j
T

Fig. 10. The jth step of the blocked outer product version parallelmatrix-matrix multiplica-

tion algorithm

4.4 Maintaining Global Consistent States by Computation

Many algorithms can be used to perform parallel matrix matrix multiplication. But, as

shown in Section 2.2, the checksum relationship may not be maintained in the middle

of the computation if inappropriate algorithms are chosen to perform the operation.

However, if the outer product version algorithm is used to operate on the encoded

checksum matrices, the redesigning of the algorithm to maintain checksum during

computation (step 2 of Section 3.2) becomes a very simple task.

for j = 0, 1, . . .

row broadcast Aj ;

column broadcast BT
j ;

local update: C = C + Aj ∗ BT
j ;

end

Fig. 11. Blocked outer product version parallel matrix-matrix multiplication algorithm



19

Assume A, B and C are distributed matrices on a P by Q process grid with the first

element of each matrix on process (0, 0). Let Ac, Br and Cf denote the corresponding

distributed checksum matrix. Let Ac
j denote the jth column block of the matrix Ac and

Br
j
T denote the jth row block of the matrix Br. We first prove the following fundamental

theorem for matrix matrix multiplication with checksum matrices.

Theorem 5: Let Sj = Cf +
∑j−1

k=0 Ac
k ∗ Br

k
T , then Sj is a distributed full checksum matrix.

Proof: It is straightforward that Ac
k ∗ Br

k
T is a distributed full checksum matrix and

the sum of two distributed full checksum matrices is a distributed checksum matrix.

Sj is the sum of j + 1 distributed full checksum matrices, therefore is a distributed full

checksum matrix.

b

Br
j
T

Br

Ac b
Ac

j

= +C f ( j+1) C f ( j ) Ac
j Br

j
T

Fig. 12. The jth step of the fault tolerant matrix-matrix multiplication algorithm

Theorem 5 tells us that at the end of each iteration of the blocked outer product

version matrix matrix multiplication algorithm with checksum matrices, the checksum

relationship of all checksum matrices are still maintained. This tells us that a coded

global consistent state of the critical application data is maintained in memory at the

end of each iteration of the matrix matrix multiplication algorithm if we perform the

computation with related checksum matrices.

However, in a distributed environment, different process may update there local data

asynchronously. Therefore, if when some process has updated their local matrix and

some process is still in the communication stage, a failure happens, then the relationship

of the data in the distributed matrix will not be maintained and the data on all processes

would not form a consistent state. But this could be solved by simply performing a

synchronization before performing local update. Therefore, in the following algorithm

in Fig. 13, there will always be a coded global consistent state ( i.e. the checksum

relationship) of the matrix Ac, Br and Cf in memory. Hence, a single process failure at
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any time during the matrix matrix multiplication would be able to be recovered from

the checksum relationship. Fig. 12 shows the jth step of the fault tolerate matrix matrix

multiplication algorithm.

construct checksum matrices Ac, Br, and Cf ;

for j = 0, 1, . . .

row broadcast Ac
j ;

column broadcast Br
j

T ;

synchronize;

local update: Cf = Cf + Ac
j ∗ Br

j
T ;

end

Fig. 13. A fault tolerant matrix-matrix multiplication algorithm

4.5 Overhead and Scalability Analysis

In this section, we analysis the overhead introduced by the algorithm-based checkpoint-

free fault tolerance for matrix matrix multiplication.

For the simplicity of presentation, we assume all three matrices A, B, and C are square.

Assume all three matrices are distributed onto a P by P process grid with m by m local

matrices on each process. The size of the global matrices is Pm by Pm. Assume all

elements in matrices are 8-byte double precision floating-point numbers. Assume every

process has the same speed and disjoint pairs of processes can communicate without

interfering each other. Assume it takes α + βk seconds to transfer a message of k bytes

regardless which processes are involved, where α is the latency of the communication

and 1
β

is the bandwidth of the communication. Assume a process can concurrently send

a message to one partner and receive a message from a possibly different partner. Let γ

denote the time it takes for a process to perform one floating-point arithmetic operation.

4.5.1 Time Complexity for Parallel Matrix Matrix Multiplication

Note that the sizes of all three global matrices A, B, and C are all Pm, therefore, the

total number of floating-point arithmetic operations in the matrix matrix multiplication
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is 2P 3m3. There are P 2 processes with each process executing the same number of

floating-point arithmetic operations. Hence, the total number of floating-point arithmetic

operations on each process is 2Pm3. Therefore, the time Tmatrix comp for the computation

in matrix matrix multiplication is

Tmatrix comp = 2Pm3γ.

In the parallel matrix matrix multiplication algorithm in Fig. 11, the columns of A and

the rows of B also need to broadcast to other column and row processes respectively.

To broadcast one block columns of A using a simple binary tree broadcast algorithm,

it takes 2(α + 8bmβ) log2 P , where b is the row block size in the two dimensional block

cyclic distribution. Therefore, the time Tmatrix comm for the communication in matrix

matrix multiplication is

Tmatrix comm = 2α
Pm

b
log2 P + 16βPm2 log2 P.

Therefore, the total time to perform parallel matrix matrix multiplication is

Tmatrix mult = Tmatrix comp + Tmatrix comm

= 2Pm3γ + 2α
Pm

b
log2 P

+16βPm2 log2 P. (3)

4.5.2 Overhead for Calculating Encoding

To make matrix matrix multiplication fault tolerant, the first type of overhead introduced

by the algorithm-based checkpoint-free fault tolerance technique is (1) constructing the

distributed column checksum matrix Ac from A; (2) constructing the distributed row

checksum matrix Br from B; (3) constructing the distributed full checksum matrix Cf

from C;

The distributed checksum operation involved in constructing all these checksum

matrices performs the summation of P local matrices from P processes and saves

the result into the (P + 1)th process. Let Teach encode denote the time for one checksum

operation and Ttotal encode denote the time for constructing all three checksum matrices

Ac, Br, and Cf , then

Ttotal encode = 4Teach encode
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By using a fractional tree reduce style algorithm [25], the time complexity for one

checksum operation can be expressed as

Teach encode = 8m2β



1 + O





(

log2 P

m2

)1/3








+O(α log2 P ) + O(m2γ)

Therefore, the time complexity for constructing all three checksum matrices is

Ttotal encode = 32m2β



1 + O





(

log2 P

m2

)1/3








+O(α log2 P ) + O(m2γ). (4)

In practice, unless the size of the local matrices m is very small or the size of the

process grid P is extremely large, the total time for constructing all three checksum

matrices is almost independent of the size of the process grid P .

The overhead (%) Rtotal encode for constructing checksum matrices for matrix matrix

multiplication is

Rtotal encode =
Ttotal encode

Tmatrix mult

= O(
1

Pm
) (5)

From (5), we can conclude

1) If the size of the data on each process is fixed (m is fixed), then as the number of

processes increases to infinite (that is P → ∞), the overhead (%) for constructing

the checksum matrices decreases to zero with a speed of O( 1
P
)

2) If the number of processes is fixed (P is fixed), then as the size of the data on each

process increases to infinite (that is m → ∞) the overhead (%) for constructing the

checksum matrices decreases to zero with a speed of O( 1
m

)

4.5.3 Overhead for Performing Computations on Encoded Matrices

The fault tolerant matrix matrix multiplication algorithm in Fig. 13 performs compu-

tations using checksum matrices which have larger size than the original matrices.

However, the total number of processes devoted to computation also increases. A more

careful analysis of the algorithm in Fig. 13 indicates that the number of floating-point
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arithmetic operations on each process in the fault tolerant algorithm (Fig. 13) is actually

the same as that of the original non-fault tolerant algorithm (Fig. 11).

As far as the communication is concerned, in the original algorithm (in Fig. 11), the

column (and row) blocks are broadcast to P processes. In the fault tolerant algorithms

(in Fig. 13), the column (and row) blocks now have to be broadcast to P + 1 processes.

Therefore, the total time to perform matrix matrix multiplication with checksum

matrices is

Tmatrix mult checksum = 2Pm3γ + 2α
Pm

b
log2(P + 1)

+16βPm2 log2(P + 1).

Therefore, the overhead (time) to perform computations with checksum matrices is

Toverhead matrix mult = Tmatrix mult checksum

−Tmatrix mult

= 2α
Pm

b
log2(1 +

1

P
)

+16βPm2 log2(1 +
1

P
). (6)

The overhead (%) Roverhead matrix mult for performing computations with checksum

matrices in fault tolerant matrix matrix multiplication is

Roverhead matrix mult =
Toverhead matrix mult

Tmatrix mult

= O(
1

Pm
) (7)

From (7), we can conclude that

1) If the size of the data on each process is fixed (m is fixed), then as the number of

processes increases to infinite (that is P → ∞), the overhead (%) for performing

computations with checksum matrices decreases to zero with a speed of O( 1
P
)

2) If the number of processes is fixed (P is fixed), then as the size of the data on

each process increases to infinite (that is m → ∞) the overhead (%) for performing

computations with checksum matrices decrease to zero with a speed of O( 1
m

)



24

4.5.4 Overhead for Recovery

The failure recovery contains two steps: (1) recover the programming environment; (2)

recover the application data.

The overhead for recovering the programming environment depends on the specific

programming environment. For FT-MPI [12] which we perform all our experiment on,

it introduce a negligible overhead (refer to Section 5).

The procedure to recover the three matrices A, B, and C is similar to calculating

the checksum matrices. Except for matrix C, it can be recovered from either the row

checksum or the column checksum relationship. Therefore, the overhead to recover data

is

Trecover data = 24m2β



1 + O





(

log2 P

m2

)1/3








+O(α log2 P ) + O(m2γ) (8)

In practice, unless the size of the local matrices m is very small or the size of the

process grid P is extremely large, the total time for recover all three checksum matrices

is almost independent of the size of the process grid P .

The overhead (%) Rrecover data for constructing checksum matrices for matrix matrix

multiplication is

Rrecover data =
Trecover data

Tmatrix mult

= O(
1

Pm
) (9)

which decreases with the speed of O( 1
Pm

).

5 EXPERIMENTAL EVALUATION

In this section, we experimentally evaluate the performance overhead of applying the

algorithm-based checkpoint-free fault tolerance technique to the ScaLAPACK matrix-

matrix multiplication kernel. We performed four sets of experiments to answer the

following five questions:

1) What is the performance overhead of constructing checksum matrices?
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2) What is the performance overhead of performing computations with checksum

matrices?

3) What is the performance overhead of recovering FT-MPI programming environ-

ments?

4) What is the performance overhead of recovering checksum matrices?

For each set of experiments, the size of the problems and the number of computation

processes used are listed in TABLE 1.

TABLE 1

Experiment Configurations

Process grid Process grid Size of the Size of the

w/out FT w/ FT original matrix checksum matrix

2 by 2 3 by 3 12,800 19,200

3 by 3 4 by 4 19,200 25,600

4 by 4 5 by 5 25,600 32,000

5 by 5 6 by 6 32,000 38,400

6 by 6 7 by 7 38,400 44,800

7 by 7 8 by 8 44,800 51,200

8 by 8 9 by 9 51,200 57,600

9 by 9 10 by 10 57,600 64,000

10 by 10 11 by 11 64,000 70,400

All experiments were performed on a cluster of 64 dual-processor nodes with AMD

Opteron(tm) Processor 240. Each node of the cluster has 2 GB of memory and runs a

Linux operating system. The nodes are connected with Myrinet. The timer we used in

all measurements is MPI Wtime.

The programming environment we used is FT-MPI [12]. A process failure is simulated

by killing one process in the middle of the computation. After a process failure is

detected, MPI Comm dup() is called to recover the communication environment. The

lost data on the failed process is then recovered by solving the checksum equation in

Section 3.2.
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Fig. 14 shows the flow of control and the state transition diagram for our fault tolerant

program. Upon failure, the system error recovery module replaces dead processes and

transfers control to a recovery point in the surviving processes More details on how to

write fault tolerant applications using FT-MPI can be found in reference [10], [12].

FT Application Layer
state.process = MPI_Init();

if ( state.process == RESTART )    /* FT Codes */

Restarted_process_initialization();

else 

Normal_Initialization(); 

Call_Numerical_Lib();

FT Numerical_Lib Layer
setjmp(state);     /* FT Codes */

if ( state.system == RECOVER )    

fault_recovery_here();

while not finished {

do_computation(); 

}

FT-MPI Layer

Fault_detection_here();

MPI ErrorHandler

state.system = RECOVER;

state.process = SURVIVAL;

longjmp(state);

process  failure detected

restarted  procs

surviving

processes

Fig. 14. Fault tolerant application control flow

5.1 Overhead for Constructing Checksum Matrices

The first set of experiments is designed to evaluate the performance overhead of con-

structing checksum matrices. We keep the amount of data in each process fixed (that is

the size of local matrices m fixed), and increase the size of the test matrices (hence the

size of process grid).

Fig. 15 reports the time for performing computations on original matrices and the

time for constructing the three checksum matrices Ac, Br, and Cf . Fig. 16 reports the

overhead (%) for constructing the three checksum matrices.

From Fig. 15, we can see that, as the size of the global matrices increases, the time for

constructing checksum matrices increases only slightly. This is because, in the formula

(4), when the size of process grid P is small, 32m2β is the dominate factor in the time

to constructing checksum matrices.

Fig. 16 indicates that the overhead (%) for constructing checksum matrices decreases

as the number of processes increases, which is consistent with our theoretical formula (5)
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Fig. 15. The overhead (time) for constructing checksum matrices

Fig. 16. The overhead (%) for constructing checksum matrices

for the overhead for constructing checksum matrices in Section 4.5.2.

5.2 Overhead for Performing Computations on Encoded Matrices

The algorithm-based checkpoint-free fault tolerance technique involve performing com-

putations with checksum matrices, which introduces some overhead into the fault tol-

erance scheme. The purpose of this experiment is to evaluate the performance overhead

of performing computations with checksum matrices.

Fig. 17 reports the execution time for performing computations on original matrices

and the execution time for performing computations on checksum matrices for different

size of matrices. Fig. 18 reports the overhead (%) for performing computations with

checksum matrices.

Fig. 17 indicates the amount of time increased for performing computations with
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Fig. 17. The overhead (time) for performing computations with encoded matrices

Fig. 18. The overhead (%) for performing computations with encoded matrices

checksum matrices increases slightly as the size of matrices increases. The reason for this

increase is that, when perform computations with checksum matrices, column blocks

of Ac (and row blocks of Br) have to be broadcast to one more process. The dominate

time for parallel matrix matrix multiplication is the time for computation which is the

same for both fault tolerant algorithm and non-fault tolerant algorithm. Therefore, the

amount of time increased for fault tolerant algorithm increases only slightly as the size

of matrices increases. This experimental results agree with our previous theretically

analysis in Section 4.5.3.

Fig. 18 shows that the overhead (%) for performing computations with checksum

matrices decreases as the number of processes increases, which is consistent with our

previous theoretical results (formula (7) in Section 4.5.3).
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5.3 Overhead for Recovering FT-MPI Environment

The overhead for recovering programming environments depends on the specific pro-

gramming environments. In this section, we evaluate the performance overhead of

recovering FT-MPI environment.

Time for Recovering FT-MPI
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Fig. 19. The overhead (time) for recovering FT-MPI environment

Fig. 20. The overhead (%) for recovering FT-MPI environment

Fig. 19 reports the time for recovering FT-MPI communication environment with

single process failure. Fig. 20 reports the overhead (%) for recovering FT-MPI com-

munication environment. Fig. 20 indicates that the overhead for recovering FT-MPI is

less than 0.2% which is negligible in practice.

5.4 Overhead for Recovering Application Data

The purpose of this set of experiments is to evaluate the performance overhead of

recovering application data from single process failure.
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Fig. 21. The overhead (time) for recovering application data

Fig. 22. The overhead (%) for recovering application data

Fig. 21 reports the time for recovering the three checksum matrices Ac, Br, and Cf in

the case of single process failure. Fig. 22 reports the overhead (%) recovering the three

checksum matrices Ac, Br, and Cf .

Fig. 21 indicates that, as the number of processes increases, the time for recovering

checksum matrices increases slightly. Fig. 22 indicates that, as the number of processes

increases, the overhead for recovering checksum matrices decreases, which confirmed

our theoretical analysis in Section 4.5.4.

5.5 Total Overhead for Fault Tolerance

When there is no failure occurs, the total overhead equals to the overhead for calculating

encoding at the begining plus the overhead of performing computation with encoded

matrices. If there are failures occur, then the total performance overhead equals the
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overhead without failures plus the overhead for recovering FT-MPI Environment and

the overhead for recovering the application data.

Fig. 23 reports the execution times of the original matrix-matrix multiplication, the

fault tolerant version matrix-matrix multiplication without failures, and the fault tolerant

version matrix-matrix multiplication with a single process failure. Fig. 24 reports the

total overhead (%) for the proposed algorithm-based checkpoint-free fault tolerance.

Fig. 24 demonstrates that, as the number of processes increases, the total overhead (%)

decreases. This is because, as the number of processors increases, except the overhead

for recovering FT-MPI Environment, all other overhead decreases (as indicated in Sec-

tion 5.1, Section 5.2, and Section 5.3). The overhead for recovering FT-MPI Environment

is less than 0.2% which is not the dominant overhead in the total fault tolerant overhead.

Fig. 23. The total overhead (time) for fault tolerance

Fig. 24. The total overhead (%) for fault tolerance
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6 DISCUSSION

The idea of tolerating failures by modifying applications to operate on encoded data

comes from the algorithm-based fault tolerance [19]. While Huang and Abraham proved

in [19] that the checksum relationship of the input checksum matrices is preserved in

the final computation results at the end of computation, in this paper, we demonstrated

that for many matrix matrix multiplication algorithms the checksum relationship in the

input checksum matrices does not preserve in the middle of the computation. We further

proved that, for the outer product version matrix matrix multiplcation algorithm, it is

possible to maintain the checksum relationship in the input checksum matrices in the

middle of the computation. Based on our checksum relationship in the middle of the

computation, we demonstrate that fail-stop process failures (which are often tolerated

by checkpointing or message logging) in ScaLAPACK matrix-matrix multiplcation can

be tolerated without checkpointing or message logging.

The algorithm-based checkpoint-free fault tolerance technique presented in this paper

involves solving system of linear equations to recover multiple simultaneous process

failures. Therefore, the practical numerical issues involved in recovering multiple si-

multaneous process failures have to be addressed. Techniques proposed in [7], [8], [11]

addressed part of this issue.

Compared with the typical checkpoint/restart approaches, the algorithm-based checkpoint-

free fault tolerance in this paper can only tolerate partial process failures. It needs

the support from programming environments to detect and locate failures. It requires

the programming environments to be robust enough to survive node failures without

suffering complete system failure. Both the overhead of and the additional effort to

maintain a coded global consistent state of the critical application data in algorithm-

based checkpoint-free fault tolerance is usually highly dependent on the specific char-

acteristic of the application.

Unlike in typical checkpoint/restart approaches which involve periodical checkpoint,

there is no checkpoint involved in this approach. Furthermore, in the algorithm-based

checkpoint-free fault tolerance in this paper, whenever process failures occur, it is only

necessary to recover the lost data on the failed processes. Therefore, for many applica-
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tions, it is possible for this approach to achieve a much lower fault tolerant overhead

than typical checkpoint/restart approaches. As shown in Section 4 and Section 5, for

matrix matrix multiplication, which is one of the most fundamental operations for

computational science and engineering, as the size N of the matrix increases, the fault

tolerance overhead decreases toward zero with the speed of 1
N

.

7 CONCLUSION AND FUTURE WORK

In this paper, we presented a checkpoint-free approach for fault tolerant matrix ma-

trix multiplication in which, instead of taking checkpoint periodically, a coded global

consistent state of the critical application data is maintained in memory by modifying

applications to operate on encoded data. Because no periodical checkpoint or rollback-

recovery is involved in this approach, process failures can often be tolerated with a

surprisingly low overhead. We showed the practicality of this technique by applying

it to the ScaLAPACK matrix-matrix multiplication kernel which is one of the most

important kernels for ScaLAPACK library to achieve high performance and scalability.

Experimental results demonstrated that the proposed checkpoint-free approach is able

to survive process failures with a very low performance overhead.

There are many directions in which this work could be extended. The first direction is

to extend this checkpoint-free approach to more applications. The second direction is to

extend this technique to tolerate multiple simutaneous failures. Furthermore, it is also

interesting to extend the approach to tolerate failures occured during synchronization

and recovery.
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