
MPI-aware Compiler Optimizations for Improving
Communication-Computation Overlap

Anthony Danalis
∗

University of Delaware
Newark, DE 19716

danalis@cis.udel.edu

Lori Pollock
University of Delaware

Newark, DE 19716
pollock@cis.udel.edu

Martin Swany
University of Delaware

Newark, DE 19716
swany@cis.udel.edu

John Cavazos
University of Delaware

Newark, DE 19716
cavazos@cis.udel.edu

ABSTRACT

Several existing compiler transformations can help improve com-
munication-computation overlap in MPI applications. However,
traditional compilers treat calls to the MPI library as a black box
with unknown side effects and thus miss potential optimizations.
This paper’s contributions enable the development of an MPI-aware
optimizing compiler that can perform transformations exploiting
knowledge of MPI call effects to increase communication-computa-
tion overlap. We formulate a set of data flow equations and rules to
describe the side effects of key MPI functions so an MPI-aware
compiler can automatically assess the safety of transformations.
After categorizing existing compiler transformations based on their
effect on the application code, we present an optimization algo-
rithm that specifies when and how to apply these optimizing trans-
formations to achieve improved communication-computation over-
lap. By manually applying the optimization algorithm to kernels
extracted from HYCOM and the NAS benchmarks, we show that
even when transforming these highly optimized codes, execution
time can be decreased by an average of over 30%.

Categories and Subject Descriptors

D.3.4 [Programming Languages]: Processors—compilers, opti-

mization; B.4.3 [Input/Output and Data Communications]: In-
terconnections (Subsystems)—Parallel I/O

General Terms

Algorithms, Theory

∗Currently with the University of Tennessee and the Oak Ridge
National Laboratory.
This research was funded by NFS grant CSR ASE 0509170.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICS’09, June 8–12, 2009, Yorktown Heights, New York, USA.
Copyright 2009 ACM 978-1-60558-498-0/09/06 ...$5.00.

1. INTRODUCTION
The use of explicitly parallel, MPI applications has been the most

popular way of harnessing high performance computing power for
over a decade. The widespread acceptance of MPI as well as the
high performance it offers, make it likely that MPI will remain
the dominant parallel programming paradigm in the near future,
despite the existence of alternative approaches such as Partitioned
Global Address Space (PGAS) languages [15, 19, 29]. However,
unlike PGAS languages, MPI offers its benefits only at the library
and system layer, without utilizing information from the applica-
tion layer. Furthermore, all MPI implementations are libraries in-
cluding binary objects. As a consequence, when a compiler trans-
lates and optimizes a parallel application with calls to MPI, it will
treat the MPI calls as a black box and avoid optimizing the calls
and in some cases the code that surrounds them.

Keeping MPI at the library and system layer simplifies the work
of MPI implementers and makes MPI compiler-independent. Un-
fortunately, many optimization opportunities are lost. Most modern
compilers can perform the necessary control and data flow analysis
to determine the earliest legal point to use or define an array, and
the latest legal point before the array is used or redefined. If the ar-
ray is a message buffer, that analysis can reveal the earliest location
the data transfer involving the message can be initialized, and the
latest location the transfer has to be finalized. PGAS languages use
this type of analysis to achieve communication-computation over-
lap and to reduce communication cost [7, 8]. However, traditional
compilers do not manipulate calls to library functions, therefore, no
such optimizations will take place in an MPI program by any main-
stream compiler, however trivial, or beneficial the optimization.
However, the behavior of MPI functions, and their effects on the
code that calls them, are well defined by the MPI standard. A wit-
ness to that is the fact that a human programmer, with knowledge of
the MPI standard, can safely transform an MPI application either by
applying traditional compiler transformations to code snippets that
include MPI calls, or by transforming the MPI calls themselves.
We argue that an MPI-aware compiler could perform safe transfor-
mations on MPI function calls and thus reduce the communication
delays by enabling communication-computation overlap.

In this paper, we examine how compiler transformations can be
applied to MPI calls in parallel application codes, as well as the
computation that includes these calls, in order to improve commu-
nication-computation overlap. Namely, the contributions of this
paper are the following:

• We categorize existing compiler transformations based on their
role towards improving communication-computation overlap in
MPI programs.

• We describe the behavior of MPI functions through a set of data
flow equations and rules that can be used as the basis for an op-
timizing compiler to automatically transform MPI programs.

• We present an optimization algorithm that specifies when and
how to apply the described program transformations within an
optimizing compiler.

• We present experimental results from manually applying the op-
timization algorithm to kernels from complex scientific codes,
and demonstrate the benefits and risks associated with the differ-
ent transformations, and their role within the chain of transfor-
mations.

2. TRANSFORMATIONS FORCOMMUNI-

CATION-COMPUTATION OVERLAP
We define the term Overlap Window to be a region of an MPI

code between a call to a communication-initiation function (i.e.,
MPI_Isend(), or MPI_Irecv()) and a call to the matching
communication-termination function (i.e., MPI_Wait()). The
overlap window defines the maximum computation that can be over-
lapped with a given MPI data transfer. If an optimizing compiler
can increase the temporal length of the overlap window, the poten-
tial for communication-computation overlap will increase. Several
different compiler transformations can be applied to MPI codes to
increase, or enable the increase of, the temporal length of the over-
lap window of different data transfers. These transformations can
be categorized into six classes based on the effect they have on the
target code. These classes are:

Transformation of Blocking MPI calls to Non-Blocking: Since
non-blocking calls do not allow for communication-computation
overlap, an early transformation to enable further optimization is
the translation of blocking operations to an equivalent pair of a non-
blocking operation and a corresponding wait.

Communication Library Specific Transformations: The com-
munication-computation overlap achieved by a data transfer can be
improved, if a compiler substitutes calls from a specialized commu-
nication library (such as Gravel [10], GASNet [4], or ARMCI [28]),
for the MPI calls that perform the data transfer.

MPI Collective Call Decomposition: In a system where the net-
work does not support native collective operations, such as all-to-
all and gather, in hardware, the communication library must in-
ternally implement each collective data exchange pattern through
a sequence of point-to-point communication operations. If this
sequence of point-to-point operations is inlined into the program
and thus exposed to the application layer, the compiler can re-
structure the code, optimizing the individual transfers by overlap-
ping them with computation. In systems were collective operations
are not equivalent to a sequence of point-to-point operations, non-
blocking collectives [22] can be used to leverage communication-
computation overlap.

CodeMotion for OverlapWindowExpansion: The most straight-
forward transformation for creating or increasing communication-
computation overlap is code motion. This class includes transfor-
mations that hoist non-blocking, data transfer initiation calls (such
as mpi_isend() and mpi_irecv()) earlier in the execution
path of the application and sink transfer termination calls (such as
mpi_wait()) later in the execution path.

Variable Cloning: Data dependencies between different commu-
nication operations can limit or prevent code motion. However, in

some cases, these data dependencies can by removed via transfor-
mations that create one or more clones of the variables involved in
these dependencies (similar to register renaming).

Loop Nest Optimizations (LNO) to create Independent Code

Blocks: Data dependencies between the communication calls and
the computation intensive parts of an application might be such that
no code motion can be performed to expand the overlap window.
However, LNO can create additional opportunities for expanding
the overlap window, by creating communication independent com-
putation. That can be achieved by separating a computation loop
with dependencies on the communication into multiple loops such
that at least one of the resulting loops includes only computation
with no dependencies on the communication.

Additional overlapping can be achieved via Communication and
Computation Tiling & Pipelining (CCTP). If a data exchange oper-
ation is partitioned into several smaller transfers (i.e., communica-
tion tiling) and pipelined with the computation, after the computa-
tion is also partitioned into corresponding smaller units of computa-
tion (i.e., computation tiling), the data exchange will be overlapped
with computation.

3. EXAMPLE AND CHALLENGES
Consider the loop of Figure 1(a). A compiler can easily deter-

mine that it is safe to perform loop fission. Consider now that the
original loop also includes a call to function F() between the two
stores, as in Figure 1(b). The compiler would have to examine the
body of function F() to assess if it is still legal to perform loop fis-
sion. However, if the body of F() is not available to the compiler,
the compiler must conservatively estimate the effects of function
F(). Compilers typically avoid transforming code that includes
calls to unknown library functions, unless special analysis of the
library has taken place, as in telescoping languages [25].

In contrast, a human programmer can safely transform a pro-
gram with calls to functions of a well-defined library such as MPI.
Regardless of the MPI implementation, the behavior of each MPI
function is well-defined with respect to how the arguments are used
or manipulated by the function body and the side effects to the call-
ing code. Consider the loop mentioned previously, replacing the
call to function F() by a call to function MPI_Isend() followed
by a call to MPI_Wait(), as shown in Figure 1(c). A human de-
veloper can easily deduce that loop fission can safely separate the
assignment to B[] into a loop of its own, as in Figure 1(d), and
then the MPI_Wait() into a loop of its own, as in Figure 1(e).
Finally, a human knows that code motion can safely move the loop
with the wait operation to the point after the loop that assigns into
array B[], as in Figure 1(f).

Performing this series of transformations can have a positive ef-
fect on performance by enabling communication-computation over-
lap. Furthermore, all the transformations are widely available com-
piler transformations, as is the data flow analysis required to guar-
antee their safety in sequential programs. Nevertheless, no tradi-
tional compiler would perform these transformations, because it
requires knowing about MPI_Isend() and MPI_Wait() side
effects.

4. SAFETYANALYSIS FORMPI PROGRAM

TRANSFORMATION
Enabling a compiler to optimize MPI applications is achievable

if we can enable the compiler to recognize the semantics of MPI
functions that a human developer uses to assess which transforma-
tions are safe. We argue that if a compiler respects all the rules
outlined in this section, the transformations described earlier can

do j =1 ,10
A[j] = j
B[j] = 2∗ j

enddo

(a) Simple loop

do j =1 ,10
A[j] = j
F (j)
B[j] = 2∗ j

enddo

(b) Loop with function call

do j =1 ,10
A[j] = j
MPI_Isend (A[j] , 1 , r e q [j] , . . .)
MPI_Wait (r e q [j] , . . .)
B[j] = 2∗ j

enddo

(c) Loop with MPI function calls

do j =1 ,10
A[j] = j
MPI_Isend (A[j] , 1 , r e q [j] , . . .)
MPI_Wait (r e q [j] , . . .)

enddo

do j =1 ,10
B[j] = 2∗ j

enddo

(d) After loop fission

do j =1 ,10
A[j] = j
MPI_Isend (A[j] , 1 , r e q [j] , . . .)

enddo

do j =1 ,10
MPI_Wait (r e q [j] , . . .)

enddo

do j =1 ,10
B[j] = 2∗ j

enddo

(e) After 2nd loop fission

do j =1 ,10
A[j] = j
MPI_Isend (A[j] , 1 , r e q [j] , . . .)

enddo

do j =1 ,10
B[j] = 2∗ j

enddo

do j =1 ,10
MPI_Wait (r e q [j] , . . .)

enddo

(f) Loops after code motion

Figure 1: Potential transformations with knowledge of MPI call side effects

be automatically applied by a compiler on an MPI application and
the transformed code will be semantically equivalent to the orig-
inal MPI code. The following analysis focuses on MPI calls that
exchange primitive types, or derived data types that are contiguous
in memory.

MPI function equivalence rules: A call to a blocking MPI func-
tion (e.g. MPI_Send() or MPI_Recv()) is equivalent to a call
to the corresponding non-blocking function (e.g. MPI_Isend()
or MPI_Irecv()), immediately followed by MPI_Wait(). The
arguments passed to the non-blocking function must be the same
as those passed to the original blocking function with the addi-
tional argument, request. The new argument, request, must also
be passed to the matching MPI_Wait() function. In the case
of MPI_Recv(), the last argument, status, is not passed to the
MPI_Irecv() function, but rather to the matching MPI_Wait()
function.

Application-layer data flow effects: We use two commonly de-
fined sets [27] to describe the side effects of each function F in
terms of data flow. Namely:

• DEF: the set of all variables that must be modified by F.

• USE: the set of all variables that may be referenced by F

without being defined by F, or may be referenced by F before
being defined by F.

In addition to the sets shown in Table 1, the FORTRAN bindings
for MPI specify one additional argument, err, for every MPI func-
tion (subroutine in FORTRAN parlance), except MPI_Wtime()
and MPI_Wtick(). This additional argument is in the DEF set
only of all MPI functions. MPI specifies named constants such as
MPI_ANY_TAG, MPI_ANY_SOURCE, MPI_STATUS_IGNORE,
etc., that can be passed to MPI functions as parameters. These
named constants are not defined (modified) by parallel applications
or MPI library functions. Therefore named constants are not in-
volved in data dependencies and are thus excluded from the corre-
sponding USE or DEF sets of Table 1.

Library-layer data flow effects: The data flow rules outlined in
Table 1 place some limitations on compiler transformations applied
to an MPI program, but are not sufficient to guarantee correctness
upon transformation of MPI programs. This is true because the data
flow side effects described in Table 1 do not capture side effects of

the MPI functions that are internal to the library and are not visi-
ble to the application layer. Consider the following example. Each
(blocking or non blocking) receive operation writes N elements
into the receive buffer.1 Thus, two consecutive receive operations
that receive into different receive buffers do not seem to have any
data dependence with one another (provided that the status and/or
request arguments differ). Therefore, a (human or compiler) op-
timizer should be allowed to swap the execution order of the two
receive operations according to the side effect sets. However, this
is not a safe transformation and would lead to incorrect code in the
general case.

Since each incoming message is uniquely identified using the
sender, tag and communicator information (src, tag and comm),
an MPI receive operation conceptually includes the array-to-array
copy operation:
buf[0:N-1] = inMesg[src][tag][comm][0:N-1]

that copies the N elements of the incoming message into the N

elements of the receive buffer. Note that inMesg is an artificial
array introduced by this analysis, to represent the incoming mes-
sages and does not exist in the original program. In this abstraction
inMesg is four dimensional to allow for messages coming from
different sources, or having different tags, or communicators to be
treated as independent from each other, and the FORTRAN nota-
tion 0:N-1 signifies the first N consecutive elements of an array.
An MPI message can be received only once. Therefore, for this ar-
ray copy analogy to be correct, the message has to be deleted from
inMesg after it has been received. This is satisfied, if we introduce
the following artificial redefinition of the incoming message array:
inMesg[src][tag][comm][0:N-1] = artificialVar,
immediately after the aforementioned copy. Note, that these arti-
ficial assignments do not exist in the code and are not subject to
compiler transformations such as code motion, copy propagation,
etc. These assignments serve only as an analogy so that the safety
analysis phase can limit the transformations that are considered safe
to only those that lead to code semantically equivalent to the origi-
nal code. A summary of the assignment perspective for all the MPI
calls that we consider in this paper is provided in Table 2.

1The size, N , of the message is not specified by the count argu-
ment of the receive function, but rather the count argument of the
matching send function on the sender’s side.

Function prototype Interprocedural data flow sets

MPI_Send(buf, count, datatype, dst, tag, comm)
DEF: ∅
USE: {all arguments}

MPI_Recv(buf, count, datatype, src, tag, comm, status)
DEF: {buf, status}
USE: {count, datatype, src, tag, comm}

MPI_Isend(buf, count, datatype, dst, tag, comm, request)
DEF: {request}
USE: {all arguments except request}

MPI_Irecv(buf, count, datatype, src, tag, comm, request)
DEF: {buf, request}
USE: {count, datatype, src, tag, comm}

MPI_Wait(request, status)
DEF: {request, status}
USE: {request}

Table 1: Sets of uses and definitions for key MPI functions

Function prototype Intra-library data flow effects

MPI_Send(buf, count, datatype, dst, tag, comm) outMesg[dst][tag][comm][0:count-1] = buf[0:count-1]

MPI_Recv(buf, count, datatype, src, tag, comm, status)
buf[0:N-1] = inMesg[src][tag][comm][0:N-1]
inMesg[src][tag][comm][0:N-1] = artificialVar

MPI_Isend(buf, count, datatype, dst, tag, comm, request)

outMesg[dst][tag][comm][0:count-1] = buf[0:count-1]
buf[0:count-1] += artificialVar
whichbuf[request] = buf

MPI_Irecv(buf, count, datatype, src, tag, comm, request)

buf[0:N-1] = inMesg[src][tag][comm][0:N-1] + artificialVar
whichbuf[request] = buf
inMesg[src][tag][comm][0:N-1] = artificialVar

MPI_Wait(request, status) whichbuf[request][0:N-1] -= artificialVar

Table 2: Array-to-array copying analogy for MPI functions

A non blocking MPI data transfer is only guaranteed to be fin-
ished after the corresponding MPI_Wait() has returned. There-
fore, in terms of side effects, MPI_Wait() behaves as if it may
use and define the message buffer. However, the message buffer is
not passed to MPI_Wait() as an argument. Rather, MPI_Wait()
can infer the message buffer through the request argument and li-
brary internal side effects caused by the function that set the request
variable (i.e., MPI_Isend() or MPI_Irecv()). This behavior
is captured in our analogy by the artificial array whichbuf[].

As we can see in Table 2, in addition to MPI_Irecv(), calls
to MPI_Isend() and MPI_Wait() are also equivalent to a use
and a definition of the elements of the message buffer, buf. This
is because earlier versions of the MPI standard specified that the
buffer of a message that is in transit, may not even be accessed
during the duration of the transfer. Starting with version 2.1 of the
MPI standard the restriction on the send buffer access was removed.
This enables us to relax the data dependencies of MPI_Isend by
removing the send buffer definition from the data flow effects of
MPI_Isend() (buf[0:count-1]+=artificialVar). In
addition, we must specialize the data flow effect of MPI_Wait()
such that when it waits for a send operation to complete it only
uses the message buffer and does not define it. Adding these artifi-
cial uses and definitions in the data flow effects of these functions,
will guarantee that the safety analysis will prevent any uses or def-
initions of the message buffer from being inserted between a call
to MPI_Isend() (or MPI_Irecv()) and the matching call to
MPI_Wait().

The use of wildcards affects the safety analysis since wildcards
affect the message matching. In particular, no message source can
be safely considered different from MPI_ANY_SOURCE, and no
message tag can be safely considered different from MPI_ANY_TAG.

Control flow related rules for code motion: For safety of code
motion, there are some additional limitations, since MPI calls can
have side effects beyond those captured by the data flow analysis.

In particular, a call to an MPI function cannot be introduced into
execution paths that do not include the original location of the call,
cannot be removed from execution paths that include the original
location, and cannot be introduced into any locations that would
cause more than one call to the MPI function during the execution
of a path that included only one call originally.

More formally, in terms of dominator [27] and post-dominator [27]
control flow information, a call to an MPI function can be moved
from location LA to location LB only 2 if: a) LB dominates LA

and LA post-dominates LB , or b) LA dominates LB and LB post-
dominates LA.

MPI function segmentation rules: As shown in Table 2, a call
to MPI_Send() (or MPI_Recv()) with a count argument of N

corresponds to an array-to-array copy of N elements (based on the
count argument of MPI_Send() and not MPI_Recv()). Thus
the call achieves the same data transfer as M calls to MPI_Send()
(MPI_Recv()) with a count of N

M
(for M ≤ N and N%M = 0).

However, handshake and synchronization requirements between the
sender and the receiver demand the number of calls to MPI_Send()
to equal the number of calls to the matching MPI_Recv(). Here-
after, we will refer to the process of replacing a send-receive pair
with M send-receive pairs as segmentation. Segmentation can also
be applied to non-blocking send and receive operations, as long as
the corresponding MPI_Wait() operation is also called M times
such that each resulting non-blocking transfer is waited for. Fur-
thermore, to promote further optimizations, the arguments of the
segmented calls that belong to the DEF set of the segmented call
(i.e. request and status), should be vectorized by a factor of M to
avoid output dependencies between the M resulting calls.

2These limitations can be relaxed by copying the MPI call across
N unique execution paths that are all dominated by LA and “col-
lectively” post-dominate LA, or N unique execution paths that are
all post-dominated by LA and “collectively” dominate LA.

Figure 2: Overall Optimization Algorithm

5. OPTIMIZATION ALGORITHM

Overview

Figure 2 shows an optimization algorithm for ordering the trans-
formations outlined in Section 2 within an MPI-aware optimizer.
The optimizer will operate on one function of the source program
at a time. We use the term data transfer to collectively designate
the calls to the send, receive and potentially wait operations that
need to execute for a single message to be transferred between two
peers.

The main goal of the algorithm is to order the compiler transfor-
mations such that the overlap window is increased as much as pos-
sible. After some initial transformations that enable more overlap,
the algorithm enters a loop that attempts to maximize the overlap
window. This increase in overlap window is achieved by repeat-
edly applying transformations to the code that enable additional
code motion by relaxing data dependencies and then attempting to
expand the overlap window as much as is safe given the new data
dependencies.

The algorithm is a fixpoint algorithm and will always terminate
for the following reason. There are no antithetical transformations
in the loops. That is, no transformation reverses the results of some
other transformation, so the overlap window always expands mono-

tonically. Since the algorithm operates on functions of finite size,
the overlap window has an upper size limit; namely, the size of
the function that is being processed. Therefore, the algorithm will
perform a finite number of transformations, and when the overlap
window can not be further extended, the algorithm will terminate.

Input

In this paper, we assume that the problem of matching send, re-
ceive and wait operations has been addressed before executing this
algorithm, either by some external automatic tool, or via informa-
tion provided by a human programmer. Therefore, the set of data
transfers (i.e., matched send-recv pairs and the corresponding wait
operations) is provided as input. A solution to the matching prob-
lem is complementary and orthogonal to the work presented in this
paper. That is, if a tool able to match send and receive operations
is developed, it can be used prior to the optimizations described in
this paper regardless of the approach used by the tool to provide
the matching. In the absence of a tool, a human developer can pro-
vide the matching through manual annotations of MPI send/receive
calls. For this reason, as well as the complexity of providing an
automatic matching of send and receive operations, we did not at-
tempt to solve the matching problem as part of this work, but rather
assumed that the matching is provided either by a human developer,
or an external tool through annotations.

MPI_Irecv (rB [1] ,N , . . . , rReq)
do i =1 ,N

sB [i] = . . .
enddo

MPI_Isend (sB [1] ,N , . . . , sReq)
MPI_Wait (sReq)
MPI_Wait (rReq)

(a) Before CCTP

do T=1 ,N,K
MPI_Irecv (rB [T] ,K , . . . , rReq [T])

enddo

do T=1 ,N,K
do i =T , T+K−1

sB [i] = . . .
enddo

enddo

do T=1 ,N,K
MPI_Isend (sB [T] ,K , . . . , sReq [T])

enddo

do T=1 ,N,K
MPI_Wait (sReq [T])
MPI_Wait (rReq [T])

enddo

(b) Comp Tiling & Comm Segmentation

do T=1 ,N,K
MPI_Irecv (rB [T] ,K , . . . , rReq [T])
do i =T , T+K−1

sB [i] = . . .
enddo

MPI_Isend (sB [T] ,K , . . . , sReq [T])
i f (T > 1)

MPI_Wait (sReq [T−K])
MPI_Wait (rReq [T−K])

end i f

enddo

MPI_Wait (sReq [N−K])
MPI_Wait (rReq [N−K])

(c) Loop fusion, alignment & peeling

Figure 3: Example effect of CCTP on MPI code

Additionally, the algorithm expects summarized interprocedural
information regarding the arrays that are local in each function and
the formal and actual arguments passed to each function in the pro-
gram. This information is only used for the communication library
related transformations and will not be further described in this pa-
per. More information on the collection and use of interprocedural
information regarding the message buffers can be found in [13].

Preliminary Transformations

Some parallel programs, that exchange data between multiple
neighbor tasks, invoke the communication functions inside loops
that execute just these communication functions. Despite the bene-
fits of this coding style in reducing the source code size, it makes it
more difficult for a compiler to differentiate between different data
transfers and therefore optimize the code. Thus, we fully unroll all
communication-only loops that have a small, statically known it-
eration space. However, unrolling such loops can lead to multiple
copies of if-then-else branches that depend on the induction vari-
able of the original loop. To eliminate the dead branches, we apply
transformations such as constant folding and constant propagation,
followed by dead code elimination. Finally, there exist parallel pro-
grams that store a value into the receive buffer, and then call the
receive operation without first using the elements of the buffer that
were just defined. Since the receive operation defines the receive
buffer, the earlier assignment constitutes a redundant store. Redun-
dant store elimination can eliminate the extra stores.

Communication Library Specific Transformations

Previous work, as well as the experiments in this paper, show that
when possible, it is profitable to replace the MPI calls that perform
a data transfer with the corresponding calls to libraries specialized
for communication-computation overlap [10]. Furthermore, easy to
use one-sided communication found in such libraries can simplify
transformations such as tiling and pipelining (CCTP). Details on
such a transformation between MPI and a specialized library are
outside the scope of this paper, but can be found in [13].

Overlap Window Expansion

Each data transfer has two overlap windows, the code between
the call to MPI_Isend() and the corresponding MPI_Wait(),
and the code between the call to MPI_Irecv() and the corre-
sponding MPI_Wait(). To overlap communication with compu-
tation as efficiently as possible, both overlap windows should be
expanded, temporally, as much as possible. To expand an overlap
window, the optimizer must first identify code that lies outside the
window, and has such data flow that it can be brought safely into the
window respecting all the rules discussed in Section 4. Such code

will perform computation independent to the particular data trans-
fer. Then, that “communication-independent” code can be moved
into the window to increase the overlap window size.3

Variable Cloning

Expanding the overlap window is limited by data dependencies.
However, in some cases an optimizer can remove dependencies.
Some data dependencies occur when memory regions (with one or
more elements) are reused to store unrelated values. As an exam-
ple, consider a case where two calls to MPI_Wait() are passed
the same status variable that is not used in between the calls. Data
flow analysis will conclude that there is an output dependence be-
tween the two calls. However, such a dependence can be easily
removed by scalar renaming [27]. In addition to such trivial cases
involving scalars, array expansion [16] or array renaming [27] can
be used to address cases where the receive buffer is used, or de-
fined, in the code preceding a receive operation. We refer to all
these transformations collectively as “variable cloning” since they
all start with one variable, scalar or array, and result in one or more
additional “clones” of that variable.

Loop Fission

When the overlap window has been expanded as much as pos-
sible through code motion and variable cloning, the optimizer can
attempt to use loop nest optimizations to relax data dependencies
between communication calls and computation loops that reside
outside the overlap window. In particular, a computation loop can
be split into two computation loops such that one has data depen-
dencies with the communication calls and the other is independent
of the communication. Traditional loop fission (also known as loop
distribution [27]) can achieve this result in a safe way.

CCTP

Communication and Computation Tiling & Pipelining is a com-
bination of several compiler transformations; namely, loop tiling,
communication call segmentation, loop fusion, loop alignment and
loop peeling [27]. CCTP is similar to the transformation discussed
in [11], only it is applied to point-to-point data transfers rather than
collective operations. It is also similar to message strip mining [23,
33], but CCTP is applicable to MPI programs with explicit message

3This approach is more general than hoisting the communication
initiation calls and sinking the wait calls. A data dependence be-
tween MPI function F and a statement, S1, can prevent F from be-
ing hoisted (or sunk). However, other statements, {Sj |2 ≤ j < n},
independent of both S1 and F may exist beyond S1. In this case,
F cannot be hoisted (or sunk) further, but the statements {Sj} can
be moved into the overlap window of F .

passing, rather than HPF [18], or UPC [15] programs. An example
of CCTP is shown in Figures 3(a) to 3(c).

The correctness of CCTP depends on the legality of fusion, since
the other transformations are always safe. Indeed, loop tiling of a
single computation loop, or of the outer most loop of a loop nest,
is always safe (and is sometimes referred to as strip mining). Seg-
menting the communication calls that constitute a data transfer is
also safe, so long as details, such as expansion of the variables that
are defined by the calls, are handled correctly. Loop alignment, to
delay the calls to MPI_Wait() by one iteration is trivial and al-
ways safe, as is peeling of the last iteration (of the aligned loop)
that brings the last calls to MPI_Wait() outside the loop.

For CCTP to be profitable, the send buffer must be defined by the
computation loop in such a way that after CCTP is applied, differ-
ent computation tiles define equally sized regions of the send buffer.
As a counter-example, a computation loop (nest) that defines the
whole send buffer in the first iteration is not a good candidate for
CCTP.

Loop Peeling

A computation loop (nest) that defines the whole send buffer in
the first few iterations is the ideal candidate for loop peeling. Com-
putation loops that behave as such are commonly found in codes
that communicate with their neighbors in a stencil or wavefront
pattern, operate on multi-dimensional arrays, and exchange only
boundary data. If the send buffer is defined in the last few iter-
ations, peeling can not help improve communication-computation
overlap. However, loop reversal (if legal) can address this issue.

Transformation Ordering

The ordering of the transformations was chosen such that early
transformations enable later transformations. Furthermore, vari-
able cloning and loop fission can both relax data dependencies be-
tween computation and communication calls enabling additional
code motion for expanding the overlap window, if needed. We
chose to attempt peeling only after CCTP is finished, because of
the interaction of the two transformations. Namely, it is easy to
peel a tiled loop, but it is significantly more complicated to apply
CCTP after peeling.

6. EXPERIMENTAL EVALUATION
Setup

This section summarizes our study of the performance effects
of manually applying the optimization algorithm presented in Sec-
tion 5 to evaluate the impacts of different transformations, using
an MPI-aware approach with this optimization ordering. We ex-
tracted kernels from the NAS benchmarks [2], and the scientific
application HYCOM [6]. Each kernel is an actual segment of the
original program, with the communication calls inlined at the same
level with the computation. We invoke each kernel from a custom
driver, rather than the original application driver, so that we can
execute each kernel multiple times (over 100) to amortize random
noise effects. By doing so the observed noise in our measurements
turned out to be insignificant and therefore it is not depicted in the
graphs. All experiments were performed on an infiniband cluster
with 24 Dual Core AMD Opteron 2.4GHz nodes running Linux
2.6.18. The infiniband cards have a rate of 20 Gbps (4X DDR).
We used the MPI library mvapich-1.0 built on top of the infiniband
layer provided by the OpenFabrics Alliance’s OFED-1.3.

In the graphs seen in Figures 4 to 8, the Y axis depicts kernel ex-

ecution time speedup S =
Toriginal

Toptimized
. Each bar shows the speedup

of a kernel after a particular transformation has been applied to the
kernel, in addition to all the previously applied transformations.
Two sets of bars are depicted in each graph, shaded and white.

The white bars show the version of the code that uses only MPI
(when the “communication library specific transformations” phase
was bypassed), and the shaded bars show the version of the code
that utilizes the specialized library Gravel [10] (when this optimiza-
tion phase was included). We chose to show both the white and the
shaded bars, (MPI/Gravel) to demonstrate that the library specific
transformations are beneficial but not a prerequisite for the follow-
ing transformations.

Non Blocking

Recv Buf Clon
Recv Hoist

Send Buf Clon

Send Wait Sink
CCTP

Cloning + Fission

Recv Wait Sink

Transformed Code Versions

0.9

1.0

1.1

1.2

1.3

1.4

S
p
ee

d
u
p

MPI
Gravel

Figure 4: Kernel from NAS LU btls() (NP=16)

Non Blocking

Recv Buf Cloning

Recv Hoisting

Cloning + Fission

Recv Wait Sink

Transformed Code Versions

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

S
p

ee
d

u
p

MPI
Gravel

Figure 5: Kernel from NAS LU btls() precondition loop

(NP=16)

Results and Analysis

The graphs in Figures 4 to 8 demonstrate that applying the pro-
posed optimization algorithm on complex scientific codes is bene-
ficial, since for all kernels the transformed codes exhibit speedup.
The experiments also show that aggressive optimizations, such as
buffer cloning, that enable further transformations, such as loop fis-
sion, can ultimately result to improved performance, even if buffer
cloning itself has a negative effect on performance. Finally, the
experiments show that communication library specific transforma-
tions, can lead to further performance improvements.

Non Blocking Recv Buffer Cloning Fission Recv Hoisting CCTP

Transformed Code Versions

0.9

1.0

1.1

1.2

1.3

1.4

1.5
S

p
ee

d
u

p
MPI
Gravel

Figure 6: Kernel from HYCOM xcaget() (NP=20)

Non Blocking Recv Buffer Cloning Fission Recv Hoisting

Transformed Code Versions

1.0

1.1

1.2

1.3

1.4

1.5

1.6

S
p

ee
d

u
p

MPI
Gravel

Figure 7: Kernel from HYCOM xcsum() (NP=20)

Non Blocking

Unroll C
om Loop

Redun Store Elim

Recv Hoise

Recv Buf Clone

Recv Hoist

Send Buf Clone

Send Wait Sink

Transformed Code Versions

1

1.02

1.04

1.06

1.08

1.1

1.12

S
p

ee
d

u
p

MPI
Gravel

Figure 8: Kernel from NAS MG psinv() (NP=16)

An interesting result is that different kernels are affected by dif-
ferent optimizations and to different extents. This maps wells to
the greedy design of the optimization algorithm. That is, the algo-
rithm keeps attempting different transformations in a greedy loop
that only terminates if no additional transformations can be applied.

LU blts is a wavefront kernel. That is, every MPI task waits (in
a blocking receive) for the tasks on the “north” and “west”. The
transformations that lead to performance improvement split part of
the computation (the preconditioning loop) into a communication
dependent and a communication independent loop and overlap the
independent computation with the communication (after converting
the blocking receive into non-blocking). By doing so, part of the
useful computation is performed during the time that the original
application would wait for its neighbors to complete. Therefore,
in addition to the communication overhead, the overhead of syn-
chronization and filling the wavefront pipeline is reduced. In other
words the optimized code executes a much more efficient pipeline
and that is why the benefits can be large. To emphasize this behav-
ior, we created the kernel shown in graph 5, where only the precon-
ditioning loop of the blts operation is executed as computation. As
shown in graph 5, having a small computation kernel emphasizes
the importance of the synchronization and communication costs.

On the other hand, the kernels from xcaget() and xcsum() receive
data into a temporary 1-D array and store it into a larger 2-D array
and do that several times in a loop. The main benefit comes from
cloning the receive buffer and distributing (fissioning) the loop in
two, so that the first loop posts all the (non-blocking) receives and
the second loop performs all the array-to-array copying. Hoisting
the receive loop above some additional independent computation
that exists in the kernels provides further benefits.

Finally, the kernel from the MG benchmark was optimized by
hoisting the send and receive operations and sinking the corre-
sponding wait operations. Interestingly, part of the optimization
process, namely the second hoisting of the receive operations and
the cloning of the receive buffers that enabled the hoisting, hurt
performance and did not enable further optimizations that could
compensate for it (the send buffer cloning and send wait sinking
that follows, is orthogonal to the optimization of the receive opera-
tion). This behavior constitutes a weakness of the greedy nature of
the optimization algorithm. Modeling the code can enable the opti-
mization process to predict if a particular step would be beneficial,
or not, and better guide the algorithm. In the absence of a model,
the optimized code can be profiled after each optimization step so
that detrimental steps are not included.

The different ways these kernels are optimized demonstrate that
the optimization process described in this paper is not limited to a
strict class of applications. The optimization process is designed to
aggressively generate communication-computation overlap in MPI
codes. Any application that experiences significant communica-
tion overhead and can be statically analyzed and transformed to
achieve communication computation overlapping, can benefit from
the optimization process described in this paper. Applications with
significant communication independent computation, applications
that generate messages in big computation loops that can be par-
titioned (tilled) into smaller loops independent from one another,
loops that generate messages in only the first iterations of the loop,
all can benefit from this optimization scheme.

Overall, our experiments demonstrate that compiler optimiza-
tions can be applied to MPI codes in a systematic way, and lead
to significant reduction in execution time even when the original
scientific kernels are already highly optimized.

7. RELATEDWORK
Several studies have demonstrated the performance benefits of

communication-computation overlap through manual transforma-
tion of codes [3, 11, 23, 31]. Achieving overlap by automati-
cally manipulating communication has also been studied and im-
plemented in optimizing compilers for data parallel languages such
as Fortran D and High Performance Fortran (HPF) [5, 17, 20], as
well as PGAS languages such as UPC [7, 8].

Regarding MPI applications, Hoefler et al. [21] have implemented
a generic library function template that utilizes non-blocking col-
lective operations. While this is not a compiler optimization, it
reduces the manual development effort required to achieve over-
lap. CC-MPI [24] is an effort to extend MPI in order to provide
more information about the communication to the application com-
piler, enabling it to optimize the communication. However, CC-
MPI is limited to Ethernet clusters, and focuses on static, collective
communications. Compiler optimization of MPI applications has
been shown to have the potential to improve performance through
communication-computation overlap [30]. Furthermore, the ef-
fects of focused compiler optimizations, such as code motion ap-
plied on MPI_Wait() operations [14], tiling and pipelining ap-
plied to MPI_Alltoall() [12], and library specific optimiza-
tions [13] have been demonstrated through proof-of-concept im-
plementations.

The work presented in this paper is different from existing work,
in that it is applicable to MPI programs and is neither limited to a
specific type of communication pattern or function, nor a specific
computing environment. Rather, this paper identifies and classifies
several compiler transformations that can increase communication-
computation overlap MPI programs, describes a systematic safety
analysis that a compiler can use to assess the safety of these trans-
formations, presents an algorithm that can group and order the
transformations, and finally demonstrates, through experiments on
complex scientific codes, the performance benefits that can result
from applying these transformations.

Data flow analysis of MPI programs has been the focus of pre-
vious studies [26, 9]. However, those studies aim to extend data
flow analysis to capture the SPMD semantics of MPI programs. In
contrast, this paper aims to systematically describe the effects of
MPI function calls in traditional data flow. Extending flow analysis
to model the semantics of SPMD programs is crucial for nonsep-
arable data-flow analyses such as reaching constants. However,
none of the compiler transformations identified in this paper re-
quire nonseparable data-flow analysis. Rather, to perform the iden-
tified transformations a compiler must know how the different MPI
function calls interact with each other and with the memory of the
calling application.

8. CONCLUSIONS & FUTUREWORK
In this paper we have identified and categorized existing com-

piler transformations that can be applied to MPI programs in order
to improve communication-computation overlap. We have also de-
scribed the behavior and side effects of key point-to-point data ex-
change MPI functions through a set of data flow equations and rules
that can be used by a compiler to automatically assess the safety of
different transformations. We have described an optimization al-
gorithm for applying the described program transformations within
an optimizing compiler, and finally we have presented experimen-
tal results, from manually applying the optimization algorithm to
scientific kernels, that demonstrate that the execution time of real,
scientific kernels can be decreased by over 30%, on average, by
using our algorithm.

We are currently working on extending the safety analysis and

the algorithm to include collective communication operations, as
well as non-blocking collective operations [22]. We are also study-
ing the performance impact on whole applications. Finally, we have
been implementing this algorithm within Open64 [1] and with the
use of OpenAnalysis [32], so that the optimizations can be per-
formed automatically. The current state of the implementation is
promising regarding what can be implemented utilizing existing
compiler infrastructure, but is outside the scope of this paper.

9. REFERENCES
[1] Open64. http://open64.sourceforge.net.

[2] D. Bailey, T. Harris, W. Saphir, R. van der Wijngaart,
A. Woo, and M. Yarrow. The NAS parallel benchmarks 2.0.
Technical Report NAS-95-020, NASA Ames Research
Center, December 1995.

[3] C. Bell, D. Bonachea, R. Nishtala, and K. Yelick. Optimizing
Bandwidth Limited Problems Using One-Sided
Communication and Overlap. In 20th International Parallel

& Distributed Processing Symposium (IPDPS), 2006.

[4] D. Bonachea. GASNet specification. Technical Report
CSD-02-1207, University of California, Berkeley, October
2002.

[5] Z. Bozkus, A. Choudhary, G. Fox, T. Haupt, and S. Ranka. A
compilation approach for Fortran 90D/HPF compilers on
distributed memory MIMD computers. In Sixth Annual

Workshop on Languages and Compilers for Parallel

Computing, pages 200–215, 1993.

[6] E. P. Chassignet, L. T. Smith, G. R. Halliwell, and R. Bleck.
North Atlantic simulation with the HYbrid Coordinate
Ocean Model (HYCOM): Impact of the vertical coordinate
choice, reference density, and thermobaricity. Journal of
Physical Oceanography, 32:2504–2526, 2003.

[7] W.-Y. Chen, D. Bonachea, C. Iancu, and K. Yelick.
Automatic Nonblocking Communication for Partitioned
Global Address Space Programs. In ICS ’07: Proceedings of

the 21st annual International Conference on

Supercomputing, pages 158–167, 2007.

[8] W.-Y. Chen, C. Iancu, and K. Yelick. Communication
optimizations for fine-grained upc applications. In PACT ’05:

Proceedings of the 14th International Conference on Parallel

Architectures and Compilation Techniques, pages 267–278,
2005.

[9] Dale Shires and Lori Pollock and Sara Sprenkle. Program
Flow Graph Construction for Static Analysis of MPI
Programs. In Parallel and Distributed Processing Techniques

and Applications (PDPTA ’99), pages 1847–1853, June
1999.

[10] A. Danalis, A. Brown, L. Pollock, M. Swany, and J. Cavazos.
Gravel: a communication library to fast path MPI. In
EuroPVM/MPI, Sep 2008.

[11] A. Danalis, K. Kim, L. Pollock, and M. Swany.
Transformations to Parallel Codes for
Communication-Computation Overlap. In SC ’05:

Proceedings of the 2005 ACM/IEEE conference on

Supercomputing, 2005.

[12] A. Danalis, L. Pollock, and M. Swany. Automatic MPI
application transformation with ASPhALT. In Workshop on

Performance Optimization for High-Level Languages and

Libraries (POHLL 2007), in conjunction with IPDPS 2007,
2007.

[13] A. Danalis, L. Pollock, M. Swany, and J. Cavazos.
Implementing an Open64-based Tool for Improving the

Performance of MPI Programs. In The Open64 Workshop, in

conjunction with IEEE/ACM International Symposium on

Code Generation and Optimization (CGO) 2008, Apr 2008.

[14] D. Das, M. Gupta, R. Ravindran, W. Shivani, P. Sivakeshava,
and R. Uppal. Compiler-Controlled Extraction of
Computation-Communication Overlap in MPI Applications.
In HIPS-POHLL joint Workshop on High-Level Parallel

Programming Models and Supportive Environments and

Performance Optimization for High-Level Languages and

Libraries held in conjunction with the 22nd IEEE

International Parallel & Distributed Processing Symposium

(IPDPS 2008), April 2008.

[15] T. A. El-Ghazawi, W. W. Carlson, and J. M. Draper. UPC
specification v. 1.1.
http://upc.gwu.edu/documentation, 2003.

[16] P. Feautrier. Array expansion. In ICS ’88: Proceedings of the

2nd International Conference on Supercomputing, pages
429–441, 1988.

[17] M. Gupta, S. Midkiff, E. Schonberg, V. Seshadri, D. Shields,
K.-Y. Wang, W.-M. Ching, and T. Ngo. An HPF compiler for
the IBM SP2. In Supercomputing ’95: Proceedings of the

1995 ACM/IEEE conference on Supercomputing, page 71,
New York, NY, USA, 1995. ACM.

[18] High Performance Fortran Forum. High Performance Fortran
language specification, version 1.0. CRPC-TR92225, Rice
University, Houston, TX, 1993.

[19] P. Hilfinger, D. Bonachea, D. Gay, S. Graham, B. Liblit,
G. Pike, and K. Yelick. Titanium language reference manual.
Tech Report UCB/CSD-01-1163, U.C. Berkeley, November
2001.

[20] S. Hiranandani, K. Kennedy, and C.-W. Tseng. Compiling
Fortran D for MIMD distributed-memory machines.
Multiprocessor performance measurement and evaluation,
pages 57–71, 1995.

[21] T. Hoefler, P. Gottschling, and A. Lumsdaine. Leveraging
non-blocking Collective Communication in
high-performance Applications. In SPAA ’08: Proceedings

of the twentieth annual symposium on Parallelism in

algorithms and architectures, pages 113–115, 2008.

[22] T. Hoefler, A. Lumsdaine, and W. Rehm. Implementation
and Performance Analysis of Non-Blocking Collective
Operations for MPI. In SC ’07: Proceedings of the 2007

ACM/IEEE conference on Supercomputing, pages 1–10,
2007.

[23] C. Iancu, P. Husbands, and W. Chen. Message Strip Mining
Heuristics for High Speed Networks. In VECPAR, 2004.

[24] A. Karwande, X. Yuan, and D. K. Lowenthal. CC-MPI: A
Compiled Communication Capable MPI Prototype for
Ethernet Switched Clusters. In ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming

(PPoPP), 2003.

[25] K. Kennedy, B. Broom, K. Cooper, J. Dongarra, R. Fowler,
D. Gannon, L. Johnsson, J. Mellor-Crummey, and
L. Torczon. Telescoping Languages: A Strategy for
Automatic Generation of Scientific Problem-Solving
Systems from Annotated Libraries. Journal of Parallel and
Distributed Computing, 61(12):1803–1826, 2001.

[26] Michelle Mills Strout and Barbara Kreaseck and Paul D.
Hovland. Data-Flow Analysis for MPI Programs. In
International Conference on Parallel Processing (ICPP

2006), pages 175–184, Aug 2006.

[27] S. S. Muchnick. Advanced Compiler Design and

Implementation. Morgan Kaufmann Publishers, 1997.

[28] J. Nieplocha and B. Carpenter. ARMCI: A portable remote
memory copy library for distributed array libraries and
compiler run-time systems. In RTSPP IPPS/SDP’99, 1999.

[29] R. W. Numrich and J. K. Reid. Co-Array Fortran for parallel
programming. ACM Fortran Forum 17, 2, 1-31, 1998.

[30] J. C. Sancho, K. J. Barker, D. J. Kerbyson, and K. Davis.
Quantifying the potential benefit of overlapping
communication and computation in large-scale scientific
applications. In SC ’06: Proceedings of the 2006 ACM/IEEE

conference on Supercomputing, page 125, New York, NY,
USA, 2006. ACM Press.

[31] J. C. Sancho and D. J. Kerbyson. Improving the Performance
of Multiple Conjugate Gradient Solvers by Exploiting
Overlap. In Euro-Par ’08: Proceedings of the 14th

international Euro-Par Conference on Parallel Processing,
pages 688–697, Berlin, Heidelberg, 2008. Springer-Verlag.

[32] M. M. Strout, J. Mellor-Crummey, and P. D. Hovland.
Representation-Independent Program Analysis. In the Sixth

ACM SIGPLAN-SIGSOFT Workshop on Program Analysis

for Software Tools and Engineering, September 2005.

[33] A. Wakatani and M. Wolfe. A New Approach to Array
Redistribution: Strip Mining Redistribution. In PARLE’94,
Athens, Greece, Jul 1994.

