Dense Linear Algebra Solvers
for Multicore with GPU Accelerators

Stanimire Tomov, Rajib Nath, Hatem Ltaief, and Jack Dongarra
Innovative Computing Laboratory
University of Tennessee, Knoxville

IEEE IPDPS 2010
High-level Parallel Programming Models and Supportive Environments (HIPS)
April 19-23, 2010, Atlanta, GA

ICL (‘ 1/24
"-’

Outline

» Introduction
- Hardware to Software Trends

- The MAGMA library

- Challenges and approach
- One-sided factorizations and solvers
- Two-sided factorizations

- Conclusions

2/24

Speeding up Computer Simulations

Uniform ve Locally Adapted
- E:{Z:ance Approximation of a Singular Function
Better numerical "= . . .

methods

uniform approximation
locally adapted approximation
[N

e.g. a posteriori error analysis:
0,25 F

solving for much less DOF but

5 achieving the same accuracy

0,15 F
01l

0,05

E4 256 1024

4036 16384 ERGIE 262144

Degrees of freedom (log scale)

http://www.cs.utk.edu/~tomov/cflow/

Performance Development in Top500
Exploit advances mm

in hardware

1 Eflop/s *
100 Pflop/s _ =
10 Pflop/s = - T
» Manage to use hardware
1 Pflop/s [l .
- efficiently for real-world
[ordon . .
100 Tflop/s Bl HPC applications
10 Tflop/s Winners ——— | * Match LU benchmark in
erformance !
1 Tflop/s | /ﬁ P

1006flopf?l#'*f
10flop!} -
+- 1£lopis ,,,,.‘......................?.hfy.l.aet?p.....u..........
ooMlopss | S 2 2 8 8 I 8 2
o

\

© &N <t 0w ®© O 3/24
o o6 ©6 6 & 6 6 o o o o o o
— — (o] ™ (o] ™ (o] ™ (o] ™ (o] ™ (o]

http://www.cs.utk.edu/~tomov/cflow/

Clock Frequency Scaling
Replaced by Scaling Cores/Chip

1.E+07
Power is the root cause of all this
L

1.E+06 - i

¢ Transistors (in Thousands)
1.E+05 ® Frequency (MHz)

Power (W)

1.E+04

® Cores

A hardware issue just became a
software problem

1.E+01

1.E+00 -

1-E01 1 1 1 1 1 1
1970 1975 1980 1985 1990 1995 2000 2005 2010

Data from Kunle Olukotun, Lance Hammond, Herb Sutter,
Burton Smith, Chris Batten, and Krste Asanovig
Slide from Kathy Yelick

4/24

Why GPU-based Computing

» Hardware Trends

Hardware

INCREASE IN
PARALLELISM

INCREASE IN
COMMUNICATION
COST (vs COMPUTATION)

Processor speed improves 59% / year
but memory bandwidth only by 23%
latency by 5.5%

Hybrid / Heterogeneous Designs

Multicore + GPUs

5/24

Matrix Algebra on GPU and Multicore Architectures
(MAGMA)

» MAGMA: a new generation linear algebra (LA) libraries to achieve the fastest possible time to an
accurate solution on hybrid/heterogeneous architectures, starting with current multicore+MultiGPU systems
Homepage: http://icl.cs.utk.edu/magma/

» MAGMA & LAPACK

- MAGMA - based on LAPACK and extended for hybrid systems (multi-GPUs + multicore systems);

- MAGMA - designed to be similar to LAPACK in functionality, data storage and interface, in order to allow
scientists to effortlessly port any of their LAPACK-relying software components to take advantage of the
new architectures

- MAGMA - to leverage years of experience in developing open source LA software packages and systems
like LAPACK, ScaLAPACK, BLAS, ATLAS as well as the newest LA developments (e.g. communication
avoiding algorithms) and experiences on homogeneous multicores (e.g. PLASMA)

» Support
- NSF, Microsoft, NVIDIA [now CUDA Center of Excellence at UTK on the development of
Linear Algebra Libraries for CUDA-based Hybrid Architectures]

» MAGMA developers

- University of Tennessee, Knoxville; University of California, Berkeley; University of Colorado, Denver

6/24

L

L

L

MAGMA 0.2

LU, QR, Cholesky (S, C, D, 2)

Linear solvers

* In working precision, based on LU, QR, and Cholesky

* Mixed-precision iterative refinement

CPU and GPU interfaces

Two-sided factorizations

+ Reduction to upper Hessenberg form
(bi/tri-diagonalization developed)

MAGMA BLAS
» Routines critical for MAGMA (GEMM, SYRK, TRSM, GEMV, SYMV, etc.)

7124

Challenges

- Massive parallelism

Many GPU cores, serial kernel execution
[e.g. 240 in the GTX280; up to 512 in Fermi — to have concurrent kernel execution]

- Hybrid/heterogeneous architectures

Match algorithmic requirements to architectural strengths
[e.g. small, non-parallelizable tasks to run on CPU, large and parallelizable on GPU]

- Compute vs communication gap

Exponentially growing gap; persistent challenge

[on all levels, e.g. a GPU Tesla C1070 (4 x C1060) has compute power of O(1,000)
Gflop/s but GPUs communicate through the CPU using O(1) GB/s connection]

8/24

How to Code for GPUs?

GPU vs CPU GEMM

400
. 350 40" ' : ' I
» Complex question 200 S
o5() " GPU DGEMM
_ : i & CPU SGEMM
Language, programming model, user productivity, etc é 200 * oL DB
L
¢ 150

» Recommendations a——a—a—s—s—=n

A A

5oV VY v

— Use CUDA / OpenCL 2000 2000 3000 4000 5000 6000 7000

[already demonstrated benefits in many areas; Matrix size
data-based parallelism; move to support task-based]
GPU vs CPU GEMV

- Use GPU BLAS 70

[high level; available after introduction of shared memory —

==GPU SGEMV

can do data reuse; leverage existing developments] 50 N

GPU DGEMV

. . o 40 “® CPU SGEMV

- Use Hybrid Algorithms g 5

[currently GPUs — massive parallelism but serial kernel execution; © 20 A AN A
hybrid approach — small non-parallelizable tasks on the CPU, /

large parallelizable tasks on the GPU] 10
oz . y; Y 37 MM

1000 2000 3000 4000 5000 6000 7000

GPU: GTX280 (240 cores @ 1.30GHz, 141 GB/s)
CPU: 2 x 4 cores Intel Xeon @ 2.33GHz, 10.4 GB/s) 9/24

LAPACK to Multicore

£ A New Generation of Software:

Parallel Linear Algebra Software for Multicore Architectures (PLASMA)

| Software/Algorithms follow hardware evolution in time

LINPACK (70's) | Rely on

(Vector operations) - Level-1 BLAS
operations

LAPACK (80's) Rely on

(Blocking, cache - Level-3 BLAS

friendly) operations

ScalLAPACK (90's) Rely on
(Distributed Memory) - PBLAS Mess Passing

PLASMA (00's) Rely on

New Algorithms - a DAG/scheduler
(many-core friendly) - block data layout

- some extra kernels
Those new algorithms

- have a very low granularity, they scale very well (multicore, petascale computing, ...)
- removes a lots of dependencies among the tasks, (multicore, distributed computing)
- avoid latency (distributed computing, out-of-core)
- rely on fast kernels

Those new algorithms need new kernels and rely on efficient scheduling algorithms.

“‘delayed update” to organize
successive Level 2 BLAS as
a single Level 3 BLAS

Split BLAS into tasks and represent
algorithms as DAGs; new algorithms
where panel factorizations use
localized (over tiles) elementary
transformations

10/24

LAPACK to MAGMA

(multicore with GPU accelerators)

1) Development of NEW LGORITHMS (parallelism, hybrid, optimized communication)
2) HYBRIDIZATION of linear algebra algorithms

@ Represent the algorithms as a collection of TASKS and DEPENDANCIES among them
@ Properly SCHEDULE the tasks' execution over the multicore and the GPU

3) Development of GPU BLAS KERNELS
4) AUTO-TUNED implementations

homogeneous multicore) l EEEEN tasks for GPUs)

GPU

i YTT '®<
%\ﬁi\. L
LI \%

; 11/24

T woom Algorithms as DAGs Hybrid CPU+GPU algorithms
n (small tasks/tiles for K (small tasks for multicores and large

One-Sided Dense Matrix Factorizations

(LU, QR, and Cholesky)

@ Panels (Level 2 BLAS) are factored on CPU using LAPACK

@ Trailing matrix updates (Level 3 BLAS) are done on the GPU using “look-ahead”
(to overlap CPUs work on the critical path with the GPUs large updates)

MATLAB code

[1]B=B-A*x

[2] B =chol[B, "lower’]
(3]0 =D - C*A'

[4] O =D\B

Example: Left-Looking Hybrid
Cholesky factorization

LAPACK code Hybrid code

yrk_["L", "N°, Bmb, &j, Bmone, hA[},0], ...] cublas3=yrk['L’, 'N°, nb, j. mone, dA[LO], ...]

cublasGetMatris[nb, nb, 4, dA[], j]. *Ida, work, nh]
spotrf ["L", Bnb, h&[] j]. Id=, info]

spoirf_[L°, Bnb, hwork, Bnb, info]

cublasSetMatrin[nb, nb, 4, hwork, nb, da[j, j], "ida]

e e 12/24
trsm_["R", "L", "T", "N", B ...] cublasStrsm['R’ LY, T, "N j....]

One-sided hybrid factorizations

QR factorization in single precision arithmetic, CPU interface

Performance of MAGMA vs MKL MAGMA QR time breakdown

100%
320
90%
280 M Overhead
80% [cPU
240 - MAGMA 70% [J CPU+GPU
N GPU
. 200 = MKL 8 cores 60%
E. 160 V' MKL 1 core qE) 50%
© = 40%
L 120 = Y7
(5 i A A A 30%
80
20%
40
10%
v v v VvV VvV VvV Vv V V¥V
0’ 0%
T2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Matrix size x 1000 Matrix size x 1000
GPU : NVIDIA GeForce GTX 280 (240 cores @ 1.30GHz) GPU BLAS : CUBLAS 2.2, sgemm peak: 375 GFlop/s
CPU : Intel Xeon dual socket quad-core (8 cores @2.33 GHz) CPUBLAS : MKL 10.0 , sgemm peak: 128 GFlop/s

[for more performance data, see http://icl.cs.utk.edu/magma | 13/24

http://icl.cs.utk.edu/magma

Linear Solvers

Solving Ax = b using LU factorization

Intel(R) Xeon(R)E541@2.34GHz / 8 Cores + GTX 280 @1.30GHz / 240 Cores
350

@ Direct solvers
300 - Factor and do triangular solves
in the same, working precision

250 @ Mixed Precision lterative Refinement
- Factor in single (i.e. the bulk of the computation
o 0 — 5P Factorization in fast arithmetic) and use it as preconditioner
g —SP Solve in simple double1 precision iteration, e.g.
(LB 150 == MP Solve Xi+1 = Xi + (LUSP) P (b -A Xi)

== DP Factorization

100 DP Solve

50

0
0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Matrix Size

14/24

Extension to Multicore and Multi GPUs

MAGNUM tile algorithms

for multiGPUs

T,

Hybrid (CPU and GPU) operations
on MAGNUM tiles

15/24

Performance using MultiGPUs

Cholesky factorization in SP

Strong Scalability

Gflop/s

1200 r

000 f

BDD

OO T

qoo -

200 r

< |4 CPUs - 4GPUs

0o | 3CPUs - 3GPUs

1CPUs - 1GPUs

5000 10000 15000

Matrix Size

20000

25000

HOST: 4x AMD Opteron core @1.8GHz
GPUs: 4x C1060 (240 cores each @1.44GHz)

2 level nested parallelism
coarse: PLASMA tiled algorithm and
static scheduling
fine :tasks/tiles are redefined for
hybrid 1 core+GPU computing
- Defining a “Magnum tiles approach’

16/24

Two-sided matrix factorizations

Two-sided factorizations

QAQ'=H
H — upper Hessenberg / bidiagonal / tridiagonal,
Q — orthogonal similarity transformation

Importance

One-sided factorizations | Two-sided factorizations
- bases for linear solvers - bases for eigen-solvers

Block algorithm

Q — a product of n-1 elementary reflectors
Q=H H,.H , H=l-7vV

I

H ..H =I1-VTV' (WY transform;the bases for delayed update or block algorithm)

Can we accelerate it ?
[similarly to the one-sided using hybrid GPU-based computing]
[to see much higher acceleration due to a removed bottleneck | .,

Homogeneous multicore acceleration?

Hessenberg factorization in double precision arithmetic, CPU interface

Performance of MAGMA vs MKL

6
5 = MKL 8 cores
V'MKL 1 core
4
0 v
8— 8 A A A
(E.'J v v v v v v v
2
1
0
1 2 3 4) 6 7 8
Matrix size x 1000
CPU : Intel Xeon dual socket quad-core (8 cores @2.33 GHz) CPUBLAS : MKL 10.0 , dgemm peak: 65 GFlop/s

@ There have been difficulties in accelerating it on homogeneous multicores 18/24

The Bottleneck

Hessenberg factorization

m 1 Level 3 BLAS update

80% flops; ~30% of the run time]

B B Level 2 BLAS update

[20% flops; ~70% of the run time]

my =Av.
?il. R

bidiagonalization & tridiagonalization
have even more Level 2 BLAS (50%)

Reduction times in seconds for N = 4,000
cores 1 8 1+GPU 8+GPU

Level 3 BLAS| 25 30%)/ 4 3.5 (60%) / 2.7

Level 2 BLAS (5\o%) f59) 2.3 (40%) / 2.3
_\y 19/24

No improvement

Hybrid computing acceleration?

* Intuitively, yes, as matrix-vector product is fast on GPUs
(e.g., sgemv up to 66 Gflop/s, ssymv up to 102 GFlop/s)

* How to organize a hybrid computation ?

DGEMYV Performance

Achieved > 100 GB/s

W MAGMA BLAS
== CUBLAS 2.3
V- Multicore

')

S

(=) GPU : GeForce GTX 280

(“5 (240 Cores @ 1.30 GHz)

Bandwidth:
5 GPU : 141 GB/s
CPU : 10.4 GB/s

Y Vv % % % % %
1 2 3 4 5 6 7 8

Matrix size x 1,000
20/24

Task Splitting & Task Scheduling

, N

i= 1 2 Task scheduling:
B Multicore+GPU
O GPU
B Multicore
Gi
critical
path
CPU Work GPU dWork
0
dVv

21/24

1. Copy dP.to CPU

2. Copy v.to GPU

Performance

Hessenberg factorization in double precision arithmetic, CPU interface
Performance of MAGMA vs MKL

(/2]
S~
o
O 30 Y = Upper bound
W ¢ ¢t /B == MJAGMA
O]
20 O MAGMA 0.2
== MKL 8 cores
15 v MKL 1 core
10
O A "
0

1 2 3 4 5 6 7 8
Matrix size x 1000

GPU : NVIDIA GeForce GTX 280 (240 cores @ 1.30GHz) GPU BLAS : CUBLAS 2.3, dgemm peak: 75 GFlop/s
CPU : Intel Xeon dual socket quad-core (8 cores @2.33 GHz) CPUBLAS : MKL 10.0 , dgemm peak: 65 GFlop/s

[for more performance data, see http://icl.cs.utk.edu/magma] 22/24

http://icl.cs.utk.edu/magma

Two-sided factorizations

(performance in single precision arithmetic)

GPU Performance Multicore Performance
26 X
50
160
140)
120 12x »
35 M Hessenberg

1 OO o 30 = Tridiagonalization

= V' Bidiagonalization
s 80 s
5 60 Gy G2
\VARV 15

40 v - HR
20 == Tridiag. 10
V. V' Bidiag. 57/
vov VoV VYV
0 0
1024 5184 9088 13024 1024 2048 3072 4032 5184 6016 7040 8064 908810112
Matrix size Matrix size
GPU : NVIDIA GeForce GTX 280 (240 cores @ 1.30GHz) GPU BLAS : CUBLAS 2.3, dgemm peak: 75 GFlop/s
CPU : Intel Xeon dual socket quad-core (8 cores @2.33 GHz) CPUBLAS : MKL 10.0 , dgemm peak: 65 GFlop/s

23/24

Conclusions

Linear algebra can be significantly accelerated using GPUs

Described a hybridization methodology to achieve this
acceleration

» high level model
» Leverage prior developments

Hybridization can be used for a wide set of fundamental
linear algebra algorithms

» Linear and eigen/singular-value solvers

» Incorporated in the MAGMA library
http://icl.cs.utk.edu/magma/

24/24

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

