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Speeding up Computer Simulations
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Clock Frequency Scaling
Replaced by Scaling Cores/Chip
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Why GPU-based Computing

» Hardware Trends

Hardware

INCREASE IN
PARALLELISM

INCREASE IN
COMMUNICATION
COST (vs COMPUTATION)

Processor speed improves 59% / year
but memory bandwidth only by 23%
latency by 5.5%

Hybrid / Heterogeneous Designs

Multicore + GPUs
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Matrix Algebra on GPU and Multicore Architectures
(MAGMA)

» MAGMA: a new generation linear algebra (LA) libraries to achieve the fastest possible time to an
accurate solution on hybrid/heterogeneous architectures, starting with current multicore+MultiGPU systems
Homepage: http://icl.cs.utk.edu/magma/

» MAGMA & LAPACK

- MAGMA - based on LAPACK and extended for hybrid systems (multi-GPUs + multicore systems);

-  MAGMA - designed to be similar to LAPACK in functionality, data storage and interface, in order to allow
scientists to effortlessly port any of their LAPACK-relying software components to take advantage of the
new architectures

- MAGMA - to leverage years of experience in developing open source LA software packages and systems
like LAPACK, ScaLAPACK, BLAS, ATLAS as well as the newest LA developments (e.g. communication
avoiding algorithms) and experiences on homogeneous multicores (e.g. PLASMA)

» Support
- NSF, Microsoft, NVIDIA [ now CUDA Center of Excellence at UTK on the development of
Linear Algebra Libraries for CUDA-based Hybrid Architectures ]

» MAGMA developers

- University of Tennessee, Knoxville; University of California, Berkeley; University of Colorado, Denver
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MAGMA 0.2

LU, QR, Cholesky (S, C, D, 2)

Linear solvers

* In working precision, based on LU, QR, and Cholesky

* Mixed-precision iterative refinement

CPU and GPU interfaces

Two-sided factorizations

+ Reduction to upper Hessenberg form
(bi/tri-diagonalization developed)

MAGMA BLAS
» Routines critical for MAGMA (GEMM, SYRK, TRSM, GEMV, SYMV, etc.)
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Challenges

- Massive parallelism

Many GPU cores, serial kernel execution
[ e.g. 240 in the GTX280; up to 512 in Fermi — to have concurrent kernel execution ]

- Hybrid/heterogeneous architectures

Match algorithmic requirements to architectural strengths
[ e.g. small, non-parallelizable tasks to run on CPU, large and parallelizable on GPU ]

- Compute vs communication gap

Exponentially growing gap; persistent challenge

[ on all levels, e.g. a GPU Tesla C1070 (4 x C1060) has compute power of O(1,000)
Gflop/s but GPUs communicate through the CPU using O(1) GB/s connection ]
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How to Code for GPUs?

GPU vs CPU GEMM
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[already demonstrated benefits in many areas; Matrix size
data-based parallelism; move to support task-based]
GPU vs CPU GEMV

- Use GPU BLAS 70

[high level; available after introduction of shared memory —

==GPU SGEMV

can do data reuse; leverage existing developments ] 50 N

GPU DGEMV

. . o 40 “® CPU SGEMV

- Use Hybrid Algorithms g 5

[currently GPUs — massive parallelism but serial kernel execution; © 20 A AN A
hybrid approach — small non-parallelizable tasks on the CPU, /

large parallelizable tasks on the GPU ] 10
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GPU: GTX280 (240 cores @ 1.30GHz, 141 GB/s)
CPU: 2 x 4 cores Intel Xeon @ 2.33GHz, 10.4 GB/s) 9/24




LAPACK to Multicore

£ A New Generation of Software:

Parallel Linear Algebra Software for Multicore Architectures (PLASMA)

| Software/Algorithms follow hardware evolution in time

LINPACK (70's) | Rely on

(Vector operations) - Level-1 BLAS
operations

LAPACK (80's) Rely on

(Blocking, cache - Level-3 BLAS

friendly) operations

ScalLAPACK (90's) Rely on
(Distributed Memory) - PBLAS Mess Passing

PLASMA (00's) Rely on

New Algorithms - a DAG/scheduler
(many-core friendly) - block data layout

- some extra kernels
Those new algorithms

- have a very low granularity, they scale very well (multicore, petascale computing, ... )
- removes a lots of dependencies among the tasks, (multicore, distributed computing)
- avoid latency (distributed computing, out-of-core)
- rely on fast kernels

Those new algorithms need new kernels and rely on efficient scheduling algorithms.

“‘delayed update” to organize
successive Level 2 BLAS as
a single Level 3 BLAS

Split BLAS into tasks and represent
algorithms as DAGs; new algorithms
where panel factorizations use
localized (over tiles) elementary
transformations
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LAPACK to MAGMA

(multicore with GPU accelerators)

1) Development of NEW LGORITHMS (parallelism, hybrid, optimized communication)
2) HYBRIDIZATION of linear algebra algorithms

@ Represent the algorithms as a collection of TASKS and DEPENDANCIES among them
@ Properly SCHEDULE the tasks' execution over the multicore and the GPU

3) Development of GPU BLAS KERNELS
4) AUTO-TUNED implementations

homogeneous multicore) l EEEEN tasks for GPUs)

GPU

i YTT '®<
%\ﬁi\. L
LI \%
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T woom Algorithms as DAGs Hybrid CPU+GPU algorithms
n (small tasks/tiles for K (small tasks for multicores and large




One-Sided Dense Matrix Factorizations

(LU, QR, and Cholesky)

@ Panels (Level 2 BLAS) are factored on CPU using LAPACK

@ Trailing matrix updates (Level 3 BLAS) are done on the GPU using “look-ahead”
(to overlap CPUs work on the critical path with the GPUs large updates)

MATLAB code

[1]B=B-A*x

[2] B =chol[B, "lower’]
(3]0 =D - C*A'

[4] O =D\B

Example: Left-Looking Hybrid
Cholesky factorization

LAPACK code Hybrid code

yrk_["L", "N°, Bmb, &j, Bmone, hA[},0], ... ] cublas3=yrk['L’, 'N°, nb, j. mone, dA[LO], ... ]

cublasGetMatris[nb, nb, 4, dA[ ], j]. *Ida, work, nh]
spotrf ["L", Bnb, h&[] j]. Id=, info]

spoirf_[L°, Bnb, hwork, Bnb, info]

cublasSetMatrin[nb, nb, 4, hwork, nb, da[j, j], "ida]

e e 12/24
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One-sided hybrid factorizations

QR factorization in single precision arithmetic, CPU interface

Performance of MAGMA vs MKL MAGMA QR time breakdown
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Matrix size x 1000 Matrix size x 1000
GPU : NVIDIA GeForce GTX 280 (240 cores @ 1.30GHz) GPU BLAS : CUBLAS 2.2, sgemm peak: 375 GFlop/s
CPU : Intel Xeon dual socket quad-core (8 cores @2.33 GHz) CPUBLAS : MKL 10.0 , sgemm peak: 128 GFlop/s

[ for more performance data, see http://icl.cs.utk.edu/magma | 13/24


http://icl.cs.utk.edu/magma

Linear Solvers

Solving Ax = b using LU factorization

Intel(R) Xeon(R)E541@2.34GHz / 8 Cores + GTX 280 @1.30GHz / 240 Cores
350

@ Direct solvers
300 - Factor and do triangular solves
in the same, working precision

250 @ Mixed Precision lterative Refinement
- Factor in single (i.e. the bulk of the computation
o 0 — 5P Factorization in fast arithmetic) and use it as preconditioner
g —SP Solve in simple double1 precision iteration, e.g.
(LB 150 == MP Solve Xi+1 = Xi + (LUSP) P (b -A Xi)

== DP Factorization

100 DP Solve

50

0
0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Matrix Size
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Extension to Multicore and Multi GPUs

MAGNUM tile algorithms

for multiGPUs

T,

Hybrid (CPU and GPU) operations
on MAGNUM tiles
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Performance using MultiGPUs

Cholesky factorization in SP

Strong Scalability

Gflop/s

1200 r

000 f

BDD

OO T

qoo -

200 r

< |4 CPUs - 4GPUs

0o | 3CPUs - 3GPUs

1CPUs - 1GPUs

5000 10000 15000

Matrix Size

20000

25000

HOST: 4x AMD Opteron core @1.8GHz
GPUs: 4x C1060 (240 cores each @1.44GHz)

2 level nested parallelism
coarse: PLASMA tiled algorithm and
static scheduling
fine :tasks/tiles are redefined for
hybrid 1 core+GPU computing
- Defining a “Magnum tiles approach’
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Two-sided matrix factorizations

Two-sided factorizations

QAQ'=H
H — upper Hessenberg / bidiagonal / tridiagonal,
Q — orthogonal similarity transformation

Importance

One-sided factorizations | Two-sided factorizations
- bases for linear solvers - bases for eigen-solvers

Block algorithm

Q — a product of n-1 elementary reflectors
Q=H H,.H , H=l-7vV

I

H ..H =I1-VTV' (WY transform;the bases for delayed update or block algorithm)

Can we accelerate it ?
[similarly to the one-sided using hybrid GPU-based computing]
[ to see much higher acceleration due to a removed bottleneck | .,



Homogeneous multicore acceleration?

Hessenberg factorization in double precision arithmetic, CPU interface

Performance of MAGMA vs MKL

6
5 = MKL 8 cores
V'MKL 1 core
4
0 v
8— 8 A A A
(E.'J v v v v v v v
2
1
0
1 2 3 4 ) 6 7 8
Matrix size x 1000
CPU : Intel Xeon dual socket quad-core (8 cores @2.33 GHz) CPUBLAS : MKL 10.0 , dgemm peak: 65 GFlop/s

@ There have been difficulties in accelerating it on homogeneous multicores 18/24



The Bottleneck

Hessenberg factorization

m 1 Level 3 BLAS update

80% flops; ~30% of the run time]

B B Level 2 BLAS update

[20% flops; ~70% of the run time]

my =Av.
?il. R

bidiagonalization & tridiagonalization
have even more Level 2 BLAS ( 50% )

Reduction times in seconds for N = 4,000
# cores 1 8 1+GPU  8+GPU

Level 3 BLAS| 25 30%)/ 4 3.5 (60%) / 2.7

Level 2 BLAS (5\o%) f59) 2.3 (40%) / 2.3
\_\y 19/24
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Hybrid computing acceleration?

* Intuitively, yes, as matrix-vector product is fast on GPUs
(e.g., sgemv up to 66 Gflop/s, ssymv up to 102 GFlop/s)

* How to organize a hybrid computation ?

DGEMYV Performance

Achieved > 100 GB/s

W MAGMA BLAS
== CUBLAS 2.3
V- Multicore

')

S

(=) GPU : GeForce GTX 280

(“5 (240 Cores @ 1.30 GHz)

Bandwidth:
5 GPU : 141 GB/s
CPU : 10.4 GB/s

Y Vv % % % % %
1 2 3 4 5 6 7 8

Matrix size x 1,000
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Task Splitting & Task Scheduling

, N

i= 1 2 Task scheduling:
B Multicore+GPU
O GPU
B Multicore
Gi
critical
path
CPU Work GPU dWork
0
dVv
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Performance

Hessenberg factorization in double precision arithmetic, CPU interface
Performance of MAGMA vs MKL

(/2]
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W ¢ ¢t /B == MJAGMA
O]
20 O MAGMA 0.2
== MKL 8 cores
15 v MKL 1 core
10
O A "
0

1 2 3 4 5 6 7 8
Matrix size x 1000

GPU : NVIDIA GeForce GTX 280 (240 cores @ 1.30GHz) GPU BLAS : CUBLAS 2.3, dgemm peak: 75 GFlop/s
CPU : Intel Xeon dual socket quad-core (8 cores @2.33 GHz) CPUBLAS : MKL 10.0 , dgemm peak: 65 GFlop/s

[ for more performance data, see http://icl.cs.utk.edu/magma ] 22/24


http://icl.cs.utk.edu/magma

Two-sided factorizations

(performance in single precision arithmetic)

GPU Performance Multicore Performance
26 X
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120 12x »
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Matrix size Matrix size
GPU : NVIDIA GeForce GTX 280 (240 cores @ 1.30GHz) GPU BLAS : CUBLAS 2.3, dgemm peak: 75 GFlop/s
CPU : Intel Xeon dual socket quad-core (8 cores @2.33 GHz) CPUBLAS : MKL 10.0 , dgemm peak: 65 GFlop/s
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Conclusions

Linear algebra can be significantly accelerated using GPUs

Described a hybridization methodology to achieve this
acceleration

» high level model
» Leverage prior developments

Hybridization can be used for a wide set of fundamental
linear algebra algorithms

» Linear and eigen/singular-value solvers

» Incorporated in the MAGMA library
http://icl.cs.utk.edu/magma/

24/24



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

