
Parallel Computing 36 (2010) 285–296
Contents lists available at ScienceDirect

Parallel Computing

journal homepage: www.elsevier .com/ locate/parco
Using multiple levels of parallelism to enhance the performance of
domain decomposition solvers

L. Giraud a,1, A. Haidar a,*, S. Pralet b,2

a University of Toulouse, INPT-ENSEEIHT, France
b SAMTECH, Belgium

a r t i c l e i n f o a b s t r a c t
Article history:
Received 21 November 2008
Received in revised form 3 July 2009
Accepted 9 December 2009
Available online 11 January 2010

Keywords:
Hybrid iterative/direct linear solver
Domain decomposition
Multilevel of parallel implementation
Large scale linear systems
High performance computing
0167-8191/$ - see front matter � 2009 Elsevier B.V
doi:10.1016/j.parco.2009.12.006

* Corresponding author. Current address: ICL-Uni
E-mail addresses: luc.giraud@inria.fr (L. Giraud),

1 Current address: INRIA-Bordeaux Sud-Ouest, Fran
2 Current address: Bull SAS, 1, rue de Provence, B.P
Large-scale scientific simulations are nowadays fully integrated in many scientific and
industrial applications. Many of these simulations rely on modelisations based on PDEs
that lead to the solution of huge linear or nonlinear systems of equations involving millions
of unknowns. In that context, the use of large high performance computers in conjunction
with advanced fully parallel and scalable numerical techniques is mandatory to efficiently
tackle these problems.

In this paper, we consider a parallel linear solver based on a domain decomposition
approach. Its implementation naturally exploits two levels of parallelism, that offers the
flexibility to combine the numerical and the parallel implementation scalabilities. The
combination of the two levels of parallelism enables an optimal usage of the computing
resource while preserving attractive numerical performance. Consequently, such a numer-
ical technique appears as a promising candidate for intensive simulations on massively
parallel platforms.

The robustness and parallel numerical performance of the solver is investigated on large
challenging linear systems arising from the finite element discretization in structural
mechanics applications.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Massively parallel computers promise unique power for large engineering and scientific simulations. Large parallel ma-
chines are likely to be the most widely used computers in the future. Their efficient exploitation requires a deep rethinking of
some parallel methods and algorithmic designs. It is a challenge to develop and implement efficient parallel numerical tech-
niques that fully exploit the computing power. In this paper, we focus on the solution of large sparse linear systems of equa-
tions. This ‘‘basic” numerical kernel consumes a significant part of the computing time in many intensive simulations. We
focus on a hybrid solution technique that combines direct and iterative schemes. This approach borrows ideas to domain
decomposition approaches and consequently can be easily described in a PDE framework while its extension to general
sparse linear systems is straightforward. In that latter situation, the underlying ideas are applied to the graph of the sparse
matrix and no longer to the graph of the mesh as described here.
. All rights reserved.

versity of Tennessee, USA.
haidar@cerfacs.fr (A. Haidar), stephane.pralet@samcef.com, stephane.pralet@bull.net (S. Pralet).
ce.
. 208, 38432 Echirolles Cedex, France.

http://dx.doi.org/10.1016/j.parco.2009.12.006
mailto:luc.giraud@inria.fr
mailto:haidar@cerfacs.fr
mailto:stephane.pralet@samcef.com
mailto:stephane.pralet@bull.net
http://www.sciencedirect.com/science/journal/01678191
http://www.elsevier.com/locate/parco

286 L. Giraud et al. / Parallel Computing 36 (2010) 285–296
For the solution of PDEs problems on large complex 3D geometries, the domain decomposition techniques are natural
approaches to split the problem into subproblems in order to express some parallelism. The subproblems are allocated to
the different processors in a parallel algorithm [20,21]. In the classical parallel implementations of those numerical tech-
niques, each subproblem is allocated to one processor. Numerically, for some classes of problems such as elliptic equations,
some preconditioners for Krylov methods possess optimal convergence properties that are independent from the number of
subdomains. This numerical scalability is often achieved thanks to the use of two-level preconditioners that are composed by
local and global terms as first introduced in [5]. The global term solves a coarse problem of small dimension where the num-
ber of unknowns is generally only proportional to the number of subdomains. For problems where such a two-level scheme
does not exist, a deterioration of the convergence rate is often observed when the number of subdomains is increased. Con-
sequently, when the number of processors is increased part of the computing resource is ‘‘lost” because extra iterations are
required to converge.

In order to alleviate this weakness and attempt to fully benefit from all the computer resource involved in the simula-
tions, we consider 2-level parallel implementations that enables us to express parallelism between the subproblems but also
within the treatment of each subproblem. In this paper we illustrate the benefit of such implementation in the framework of
a parallel hybrid iterative-direct numerical technique. This approach is based on an algebraic preconditioner [7,14] for the
Schur complement system that classically appears in non-overlapping domain decomposition method.

The paper is organized as follows. In Section 2 we briefly describe the basic algebraic ideas that underline the non-over-
lapping domain decomposition method that we use to design our hybrid linear solver. In that section the basic features of the
algebraic additive Schwarz preconditioner for the Schur complement and the parallel preconditioner are presented. The clas-
sical parallel domain decomposition implementation (refer to as 1-level parallel) is first introduced in Section 3 and the
implementation that exploits two levels of parallelism is detailed. For the sake of efficiency and portability our parallel
implementation is developed on top of efficient available parallel numerical linear algebra libraries such as ScaLAPACK, PBLAS,
BLAS [3] and MUMPS [1] that use MPI [15]. For the Krylov subspace solvers, we consider packages suited for parallel distributed
computing [11–13]. We notice that the same parallel design can be developed with mixed multi-threading and message
passing paradigms. It would rely on other choices of parallel libraries. We do not further investigate this possibility in this
paper but mention some ongoing work in that direction in the concluding remarks section.

2. A brief overview of non-overlapping domain decomposition

In this section, methods based on non-overlapping regions are described. Such domain decomposition algorithms are of-
ten referred to as substructuring schemes. This terminology comes from the structural mechanics discipline where non-
overlapping ideas were first developed.

Let us now further describe this technique and let Ax ¼ b be the linear problem arising from the discretization where the
matrix A is referred to as the stiffness matrix. We assume that the domain X is partitioned into N non-overlapping subdo-
mains X1, . . . ,XN with boundaries @X1, . . . ,@XN. The governing idea behind substructuring or Schur complement methods is
to split the unknowns in two subsets. This induces the following block reordered linear system:
A II A IC

ACI ACC

� �
xI

xC

� �
¼

bI

bC

� �
; ð1Þ
where xC contains all unknowns associated with subdomain interfaces and xI contains the remaining unknowns associated
with subdomain interiors. Because the interior points are only connected to either interior points in the same subdomain or
with points on the boundary of the subdomains, the matrix A II has a block diagonal structure, where each diagonal block
corresponds to one subdomain. Eliminating xI from the second block row of Eq. (1) leads to the reduced system
SxC ¼ f ; ð2Þ
where
S ¼ ACC �ACIA
�1
II A IC and f ¼ bC �ACIA

�1
II bI: ð3Þ
The matrix S is referred to as the Schur complement matrix. This reformulation leads to a general strategy for solving (1).
Specifically, an iterative method can be applied to (2). Once xC is known, xI can be computed with one additional solve on the
subdomain interiors.

Not surprisingly, the structural analysis finite element community has been heavily involved in the designs and develop-
ments of these techniques. Not only is their definition fairly natural in a finite element framework but their implementation
can preserve data structures and concepts already present in large engineering software packages.

Let C denote the entire interface defined by C = [Ci where Ci = @Xin@X; we notice that if two subdmains Xi and Xj share
an interface then Ci

T
Cj – ;. As interior unknowns are no longer considered, new restriction operators must be defined as

follows. Let RCi
: C! Ci be the canonical point-wise restriction which maps full vectors defined on C into vectors defined on

Ci. Thus, in the case of many subdomains, the fully assembled global Schur S is obtained by summing the contributions over
the substructures/subdomains. The global Schur complement matrix (3) can be written as the sum of elementary matrices

L. Giraud et al. / Parallel Computing 36 (2010) 285–296 287
S ¼
XN

i¼1

RT
Ci
SiRCi

; ð4Þ
where
Si ¼ ACiCi
�ACiI i

A�1
I iI i

AI iCi
ð5Þ
is a local Schur complement associated with Xi. It can be defined in terms of sub-matrices from the local Neumann matrix A i

defined by
A i ¼
AI iI i

AI iCi

ACiI i
ACiCi

� �
: ð6Þ
While the Schur complement system is significantly better conditioned than the original matrix A, it is important to con-
sider further preconditioning when employing a Krylov method. It is well-known, for example, that jðAÞ ¼ Oðh�2Þ when A

corresponds to a standard discretization (e.g. piecewise linear finite elements) of the Laplace operator on a mesh with spac-
ing h between the grid points. Using two non-overlapping subdomains effectively reduces the condition number of the Schur
complement matrix to jðSÞ ¼ Oðh�1Þ. While improved, preconditioning can significantly lower this condition number
further.
2.1. The algebraic additive Schwarz preconditioner

In this section we introduce the general form of the preconditioner considered in this work. The preconditioner presented
below was originally proposed in [7] in two dimensions and successfully applied to large three dimensional problems and
real life applications in [14,16]. To describe this preconditioner we define the local assembled Schur complement,
�Si ¼RCi

SRT
Ci

, that corresponds to the restriction of the Schur complement to the interface Ci. This local assembled precon-
ditioner can be built from the local Schur complements Si by assembling their diagonal blocks.

With these notations the preconditioner reads
Md ¼
XN

i¼1

RT
Ci

�S�1
i RCi

: ð7Þ
If we considered the unit square partitioned into horizontal strips (1D decomposition), the resulting Schur complement
matrix has a block tridiagonal structure as depicted in (8)
ð8Þ
For that particular structure of S the submatrices in boxes correspond to the �Si. Such diagonal blocks, that overlap, are
similar to the classical block overlap of the Schwarz method when writing in a matrix form for 1D decomposition. Similar
ideas have been developed in a pure algebraic context in earlier papers [6,19] for the solution of general sparse linear sys-
tems. Because of this link, the preconditioner defined by (7) is referred to as algebraic additive Schwarz for the Schur
complement.

One advantage of using the assembled local Schur complements instead of the local Schur complements (like in the Neu-
mann-Neumann [4,8]) is that in the SPD case the assembled Schur complements cannot be singular (as S is SPD [7]).
2.2. Sparse algebraic additive Schwarz preconditioner

The construction of the proposed local preconditioners can be computationally expensive because the dense matrices Si

should be factorized. We intend to reduce the storage and the computational cost to form and apply the preconditioner by
using sparse approximation of �Si in Md following the strategy described by (9). The approximation Ŝi can be constructed by
dropping the elements of Si that are smaller than a given threshold. More precisely, the following symmetric dropping for-
mula can be applied:
ŝ‘j ¼
0; if j�s‘jj 6 nðj�s‘‘j þ j�sjjjÞ;
�s‘j; otherwise;

�
ð9Þ
where �s‘j denotes the entries of �Si. The resulting preconditioner based on these sparse approximations reads

288 L. Giraud et al. / Parallel Computing 36 (2010) 285–296
Msp ¼
XN

i¼1

RT
Ci
Ŝ�1

i RCi
:

We notice that such a dropping strategy preserves the symmetry in the symmetric case but it requires to first assemble Si

before sparsifying it. From a computing view point, the assembling and the sparsification are cheap compared to the calcu-
lation of Si
3. Mixing 2-levels of parallelism and domain decomposition techniques

The original idea of non-overlapping domain decomposition method consists into subdividing the mesh into subdomains
that are individually mapped to one processor. With this data distribution, each processor Pi can concurrently form the local
stiffness matrix (6) and partially factorize it to compute its local Schur complement Si. This is the first computational phase
(Phase1) that is performed concurrently and independently by all the processors. The second step (Phase2) corresponds to the
construction of the preconditioner. Each processor communicates with its neighbors (in the mesh partitioning sense) to
assemble its local Schur complement �Si, possibly sparsifies it and performs its factorization. This step only requires a few
point-to-point communications. Finally, the last step (Phase3) is the iterative solution of the interface problem (2). For that
purpose, parallel matrix–vector product involving S, the preconditioner Mq and dot-product calculation must be performed.
For the matrix–vector product each processor Pi performs its local matrix–vector product involving its local Schur comple-
ment and communicates with its neighbors to assemble the computed vector to comply with Eq. (4). Because the precon-
ditioner (7) has a similar form as the Schur complement (4), its parallel application to a vector is implemented similarly.
Finally, the dot products are performed as follows: each processor Pi performs its local dot-product and a global reduction
is used to assemble the result. In this way, the hybrid implementation can be summarized by the above main three phases.
They are further detailed in the 2-level parallel framework in Section 3.2.
3.1. Motivations for multiple levels of parallelism

Classical parallel implementations (1-level parallel) of domain decomposition techniques assign one subdomain per pro-
cessor. We believe that applying only this paradigm to very large applications has some drawbacks and limitations:

� For many applications, increasing the number of subdomains leads to increasing the number of iterations to converge. If
no efficient numerical mechanism, such as coarse space correction for elliptic problems [2,20], is available the conver-
gence rate might be significantly deteriorated and the solution process becomes ineffective. In order to alleviate the
numerical growth of the iterations, when the number of subdomains is increased to feed each processor, we might keep
the number of subdomains small while handling each subdomain by more than one processor introducing 2-levels of par-
allelism. The benefit introduced by the 2-level parallel implementation is referred to as the ‘‘the numerical improvement”.

� Large 3D systems often require a huge amount of data storage so that the memory required to handle each subdomain is
not available for each individual processor. On SMP (Symmetric Multi-Processors) node this constraint can be overcome as
we might only use a subset of the available processors to allow the exploited processors to access more memory. Although
such a solution enables large simulations to be performed, some processors are ‘‘wasted”, as they are ‘‘idle” during the
computation. In that context, the simulation executes at an unsatisfying percentage of per-node peak floating-point oper-
ation rates. The ‘‘idle” processors might contribute to the treatment of the data stored into the memory of the node. This
takes advantage of the ‘‘idle” processors and runs closer to the peak of per-node performance. We call this ‘‘the parallel
performance improvement” of the 2-level parallel method.

The main goal of the development of the 2-levels of parallelism approach is the investigation of numerical methods for the
efficient use of parallel modern computers.
3.2. Two-level parallelization strategy

We focus here on the description of the 2-level parallel algorithm. The first level of parallelism relies on the natural dis-
tribution of the subdmains. The second level of parallelism exploits sub-data distribution, where the data structures associ-
ated with each subdomain Xi are mapped on a subset of processors (groups Gi). In that context, the ‘‘local” Schur
complement matrices Si and �Si are distributed using a 2D block cyclic fashion to comply with the API of the numerical ker-
nels we used, namely SCALAPACK and MUMPS. Such a data distribution is illustrated in Fig. 1.

The 2-level parallel implementation will be effective for our hybrid solver if its main three phases can be efficiently per-
formed in parallel. The parallel implementation becomes more complex and requires a few MPI communicators to efficiently
implement some of the numerical kernels. Let us quickly recall the main numerical kernels of our algorithm and for each of
them describe the 2-level parallel strategy.

Fig. 1. Multi-level of data and task distribution.

L. Giraud et al. / Parallel Computing 36 (2010) 285–296 289
3.2.1. Initialization Phase1
The idea of the 2-level parallel method is to take advantage of the features of a parallel sparse direct solver by using a

group of processors on each subdomain. Initially the mesh is partitioned into N subdomains, so that we define as many
groups/subsets as the number of subdomains. We create one MPI communicator per group. Each group Gi is logically orga-
nized as a 2D grid of processors. The ‘‘local” Neumann matrix (6) is first distributed among the processors of the group Gi and
a parallel instance of the multifrontal sparse direct solver MUMPS [1] is called by the processors of each of the Gi’s. Thanks to its
multifrontal approach [10], this solver offers the possibility of computing the Schur complement matrices S(i) that is returned
in a 2D block cyclic distribution over the processor grid defined on each Gi. During this first phase, N groups of processors
operate concurrently the parallel sparse factorizations.
3.2.2. Preconditioner setup Phase 2
This phase consists into two steps: assembling the local Schur complement Si to form the �Si, and factorizing the �Si. No-

tice that for the sparse variant we should sparsify the assembled local Schur �Si before factorizing them.
The local Schur complements are dense and distributed in 2D block cyclic arrays spread on the grid of processor defined

on Gi. This means that each processor of each Gi only stores blocks of rows and columns of the ‘‘local” Schur complement. For
the sake of efficiency we do not want to centralize Si to perform the assembling. For this purpose, each processor of the
group that stores part of the ‘‘local” Schur complement, should know the identifier of the processors handling the corre-
sponding part of the neighboring subdomains. In that respect a particular data structure is initialized in a preprocessing step.
It enables each processor of a group Gi to know the identifier of the processors in a neighboring group Gj with which it shares
common blocks of its local Schur complement Si. For example, if we have a subdomain Xi that shares an interface with a
subdomain Xj, the group Gi is a neighbor of the group Gj. As the Schur complement is 2D block cyclically distributed over
Gi a processor p‘i of Gi holds a part of the local Schur complement. The data structure enables the processor p‘i belonging
to the group Gi, to know the processors identifier list of Gj that share this part of the interface with it. In this way, each pro-
cessor can directly communicate (point-to-point) with its neighboring processors and assemble its own parts of the ‘‘local”
Schur complement. We notice that, for the large simulations, the local Schur matrices are large, thus the amount of data to be
exchanged can be very large. Using this fully distributed algorithm to assemble in parallel the ‘‘local” Schur complement is
critical to get fast executions.

Once the ‘‘local” Schur complement are assembled in a 2D block cyclic array similar to the one used for Si, each group Gi

can concurrently perform in parallel the factorization using the ScaLAPACK kernels for the dense variant of the preconditioner.
For the sparse preconditioner, the sparsification is performed in parallel; each processor sparsifies its own part of the local
Schur complements. The sparse preconditioner is then factorized in parallel by Gi.
3.2.3. Iterative loop Phase 3
This phase involves three numerical kernels that are: the matrix–vector product, the preconditioner application and fi-

nally the dot product. Each local Schur matrix is distributed over the group so that both PBLAS and SCALAPACK can be used easily.
For the matrix–vector product, the implementation is performed using the PBLAS routines to multiply the distributed local

Schur complement with the distributed vector. The resulting distributed vector is updated directly between neighboring
subdomains as each processor of a group knows with whom it should communicate.

290 L. Giraud et al. / Parallel Computing 36 (2010) 285–296
The preconditioner application relies either on SCALAPACK kernels for the dense Md preconditioner or on sparse direct solve
MUMPS for the sparse Msp preconditioner. The resulting distributed vector, is updated as for the matrix–vector product.

For the dot product calculation, each processor owning the distributed vectors performs its local dot product then the
results are summed using a simple global reduction.

Because each step can be parallelized, the iterative loop calculation greatly benefits from the 2-level parallel implemen-
tation. The complexity of the actual code is of course by no means reflected by the simplicity of the above exposure.

4. Experimental framework

In this section, we first introduce in Section 4.1 the computational framework considered for our parallel numerical
experiments. In Section 4.2 we describe our model problems. We consider classes of problems related to the solution of
the linear elasticity equations with constraints such as rigid bodies and cyclic conditions. These constraints are handled
using Lagrange multipliers, that give rise to symmetric indefinite augmented systems. Such linear systems are preferably
solved using the MINRES [18] Krylov subspace method, that can be implemented using only a few vectors thanks to the sym-
metry property that enables the use of short recurrences. In our study, because we intend to perform comparisons in term of
computing performance and also in term of accuracy, we better use GMRES that is proved backward stable [9,17]. All the
problems presented in this paper have been generated using the Samcef V12.1-02 finite element software for nonlinear anal-
ysis, Mecano developed by Samtech http://www.samcef.com/.

4.1. Parallel platforms

Our target parallel machine is an IBM JS21 supercomputer installed at CERFACS to address diverse applications in science
and engineering. It works currently with a peak computing performance of 2.2 TeraFlops. This is a 4-core blade server for
applications requiring 64-bit computation.

This paragraph provides more detailed information about the IBM PowerPC 970MP microprocessor, that is the processor
of the BladeCenter JS21.

� The BladeCenter JS21 leverages the high-performance, low-power 64-bit IBM PowerPC 970MP microprocessor.
� The 4-core configuration comprises two dual-core PowerPC 970MP processors running at 2.5 GHz.
� Each processor core includes 32/64 KB L1 (data/instruction) and 1 MB (non-shared) L2 cache.
� Each node is equipped with 8 GBytes of main memory.
� The AltiVec is an extension to the IBM PowerPC Architecture. It defines additional registers and instructions to support

single-instruction multiple-data (SIMD) operations that accelerate data-intensive tasks.

The BladeCenter JS21 is supported by the AIX 5L, Red Hat Enterprise Linux, and SUSE Linux Enterprise Server (SLES) oper-
ating systems. This latter is installed on our experimental JS21. The communication is supported through the use of Myri-
net2000 network offering a bandwidth of 838 MBytes/s between nodes and a latency of 3.2 ls.

4.2. Model problems

In this paper, we focus on a specific engineering area, the structural mechanics. Those simulations often involve the dis-
cretization of linear or nonlinear 3D PDE on very large meshes leading to systems of equations with millions of unknowns.
The use of large high performance computers is mandatory to solve these problems. They can benefit from such 2-level par-
allel implementation of domain decomposition solver. We notice that such an approach can be appropriated also for some
simulations in the context of seismic wave propagation. For more details and experiments on this subject, we refer the read-
er to [16].

We consider here a few real life problems from structural mechanics applications. Those examples are generated using
Samcef-Mecano V12.1-02. Samcef-Mecano is a general purpose finite element software that solves nonlinear structural
and mechanical problems. It minimizes the potential energy using the displacement (translations and/or rotations) as un-
knowns. For each kinematic constraint (linear constraint or kinematic joint), a Lagrange multiplier is automatically gener-
ated. In order to have a good numerical behaviour, an augmented Lagrangian method is used. The modified problem
consists in finding the minimum of the potential F*:
F�ðqÞ ¼ FðqÞ þ kk/þ p
2

UTU;
where q is the degrees of freedom vector (translations and/or rotations), k is the kinematic constraint scaling factor, p is the
kinematic constraint penalty factor, / is the kinematic constraint vector and k is the Lagrange multiplier vector.

The equations of motion of the structure discretized by finite elements take the general form
M€qþ f int ¼ f ext;

http://www.samcef.com/

L. Giraud et al. / Parallel Computing 36 (2010) 285–296 291
where the notation is simplified by including in the internal forces fint the contribution of the kinematic constraints and that
of the elastic, plastic, damping, friction, . . . forces. Three types of analysis can be performed:

1. Static analysis.
2. Kinematic or quasi-static analysis.
3. Dynamic analysis.

At each time step, a set of nonlinear equations has to be solved and a Newton–Raphson scheme is used in order to solve
this nonlinear problem. These equations express the equilibrium of the system at a given time. In a static analysis, these
equations take stiffness effects (linear or not) into account. In a kinematic analysis, the effects due to the kinematic velocities
are added to the effects taken into account by the static analysis. Finally, the dynamic analysis takes all the effects of the
kinematic analysis into account including also inertia effects, that do not appear in the static and the kinematic analysis.

For the numerical examples considered here, a static computation is performed. The materials are elastic: the relation
between the stress r and the strain � is given by r = H�, where H is the Hooks matrix. For each test case we run our solver
on the matrix generated during the first iteration of the first time step.

The geometry of the examples are displayed in Fig. 2. The first problem is displayed in Fig. 2(a), corresponds to an impel-
ler. This case represents a 90� sector of an impeller. It is composed of 3D volume elements. Cyclic conditions are added using
elements that link displacements of the slaves nodes on one side of the sector, to master facets on the other side of the sector.
These conditions are taking into account using elements with three Lagrange multipliers. Angular velocities are introduced
on the complete structure and centrifugal loads are computed on the basis of the angular velocities and of the mass repre-
sentation. This example is called Rouet in the sequel, the associated linear system is symmetric indefinite.

Secondly, a parameterized barrel (section of a fuselage) is depicted in Fig. 2(b). It is composed of its skin, stringers (lon-
gitudinal) and frames (circumferential, in light blue in Fig. 2 (b)). Midlinn shell elements are used: each node has 6 unknowns
(3 translations and 3 rotations). On one extremity of the fuselage all the degrees of freedom are fixed. On the other extremity
a rigid body element is added: all the degrees of freedom of the nodes are linked to the displacement of the master node of
the element. In order to represent this dependency Lagrange multipliers are added. A force perpendicular to the axis of the
fuselage is applied on the master node. This last test example is referred to as Fuselage and the associated linear system is
also symmetric indefinite.

In Table 1 we display for the different mesh geometries the various sizes of the problems we have experimented. For each
problem, we give the number of finite elements and the number of degrees of freedom.
Fig. 2. Various structural mechanics meshes.

Table 1
Characteristics of the various structural mechanics problems.

Elements # Degrees of freedoms

Rouet example
337,000 1.3 � 106

Fuselage example
500,000 3.3 � 106

750,000 4.8 � 106

1,000,000 6.5 � 106

292 L. Giraud et al. / Parallel Computing 36 (2010) 285–296
5. Parallel performance studies

This section is the core of the parallel study where we illustrate through a set of experiments the advantage of the 2-level
parallel method. This subsection is devoted to the presentation and analysis of the parallel performance of both precondition-
ers. It is believed that parallel performance is the most important means of reducing turn around time and computational
cost of real applications. In this context, we consider experiments where we increase the number of processors while the
size of the initial linear system (i.e., mesh size) is kept constant. Such experiments mainly emphasize the interest of parallel
computation in reducing the elapsed time to solve a problem of a prescribed size. For those indefinite systems we choose
full-GMRES as Krylov solver and consider the ICGS (Iterative Classical Gram-Schmidt) orthogonalization variant that pro-
vides us with the best trade-off between numerical orthogonality and parallel performance (as the dot-product are merged).
The initial guess is always the zero vector and convergence is detected when the relative residual kSxC�fk

kfk less than 10�8 or
when 300 steps have been unsuccessfully performed. We mention that only right preconditioner is considered so that the
stopping criterion is independent from the preconditioner which enables us to make fair comparisons between the various
approaches.

In the next sections we study the numerical benefits and parallel performance advantages of the 2-level parallel approach.
We draw the attention of the reader on the fact that, in those sections, the number of processors and the number of subdo-
mains are most of the time different.
5.1. Numerical benefits

The numerical attractive features of the 2-level parallel approach is that increasing the number of processors to speedup
the solution of large linear systems does not imply increasing the number of iterations to converge as it is often the case with
the 1-level parallel approach.

This strategy is very attractive in the case where we have a system with many right hand side to solve. In this case we
have interest to keep the number of iterations as small as possible. We report in Table 2 both the number of iterations
and the parallel computing time spent in the iterative loop, for the problems depicted in Section 4.2. For each problem,
Table 2
Numerical performance and advantage of the 2-level parallel method compared to the standard 1-level parallel method for the Fuselage and Rouet problems and
for different decomposition proposed.

Total processors Algo # Subdomains # Processors/subdomain # Iter Iterative loop time

Fuselage 1 million elements with 6.5�106 dof
16 processors 1-level parallel 16 1 147 77.9

2-level parallel 8 2 98 51.4

32 processors 1-level parallel 32 1 176 58.1
2-level parallel 16 2 147 44.8
2-level parallel 8 4 98 32.5

64 processors 1-level parallel 64 1 226 54.2
2-level parallel 32 2 176 40.1
2-level parallel 16 4 147 31.3
2-level parallel 8 8 98 27.4

Fuselage 0.5 million elements with 3.3�106 dof
8 processors 1-level parallel 8 1 92 46.2

2-level parallel 4 2 38 18.6

16 processors 1-level parallel 16 1 124 37.2
2-level parallel 8 2 92 25.9
2-level parallel 4 4 38 10.1

32 processors 1-level parallel 32 1 169 32.3
2-level parallel 16 2 124 22.1
2-level parallel 8 4 92 14.3
2-level parallel 4 8 38 11.8

Rouet 0.33 million elements with 1.3�106 dof
16 processors 1-level parallel 16 1 79 60.8

2-level parallel 8 2 59 34.1

32 processors 1-level parallel 32 1 106 44.5
2-level parallel 16 2 79 38.6
2-level parallel 8 4 59 21.1

64 processors 1-level parallel 64 1 156 42.1
2-level parallel 32 2 106 22.4
2-level parallel 16 4 79 26.2
2-level parallel 8 8 59 25.5

L. Giraud et al. / Parallel Computing 36 (2010) 285–296 293
we choose a fixed number of processors and vary the number of subdomains that are allocated to different number of
processors.

In this table it can be seen that decreasing the number of subdomains reduces the number of iterations. The parallel
implementations of the numerical kernels involved in the iterative loop is efficient enough to speedup the solution time.
On the largest Fuselage example, when we have 32 processors, standard (1-level parallel) implementation partitions the
mesh into 32 subdomains; it requires 176 iterations to convergence and get the solution in 58.1 s. With the 2-level parallel
implementation, either 16 or 8 subdomains can be used. The 16 subdomain partition requires 147 iterations performed in
44.8 s and the 8 subdomain calculation needs 98 iterations performed in 32.5 s. This example illustrates the advantage of the
2-level parallel implementation from a numerical viewpoint. The main goal of this section was to highlight the numerical and
computational assets of the 2-level parallel implementation to enhance the parallel performance of the iterative solution. The
other components of the solvers, setup time of the preconditioner and overall computing time are detailed in the tables de-
picted in the next section.
5.2. Parallel performance benefits

When running large simulations with a few sub-domains, the memory required by each sub-domain is so large than only
one sub-domain can fit into the memory of one SMP node. If standard parallel approach is considered (1-level parallel), only
one processor of each SMP node is used to perform the simulation, thus leaving the remaining processors idle. In this context,
the goal of the 2-level parallel method, is to exploit the computing facilities of the remaining processors and allow them to
contribute to the computation.

In Tables 3–5, for the various test problems, we depict the performance of each step of the solver as well as the overall
computing time when the number of domains and number of processors per domain is varied. In these tables, the ‘‘Time in
iterative loop” corresponds to the elapsed time spent in the preconditioned Krylov solver, ‘‘Preconditioner setup time” is the
computing time to factorize the local assembled, possibly sparsified, Schur complement matrices and finally ‘‘Initialization
time” corresponds to the time used by the parallel sparse direct solver to factorize the local interior matrices and compute
the local Schur complement.

We report in Table 3, the performance results of the 2-level parallel method for the Fuselage with 6.5 million degrees of
freedom. We use the 2-level parallel algorithm only for simulations that leave idle processors when the standard (1-level par-
allel) algorithm is run due to memory constraints. In that case, the 8 or 16 subdomain decompositions require respectively
7 GBytes and 5 GBytes of memory; so that the 1-level parallel implementation can only exploit one of the four SMP proces-
sors. That means that the 8 subdomain simulation using the 1-level parallel approach requires the use of 8 SMP nodes, where
only one processor per node is used; which leaves 24 idle processors. Even worse, the 16 subdomain simulation leaves 48
idle processors. In such a context the benefit of the 2-level parallel approach is clear. The parallel performance of the Md and
Msp are reported in this table and similar results are given for the other test problems (Table 4 for the Fuselage with 3.3 mil-
lions degrees of freedom and Table 5 for the Rouet with 1.3 million degrees of freedom)
Table 3
Detailed parallel performance of the 2-level parallel method for the Fuselage problem with about one million elements and 6.5 Mdof when the number of
subdomains is varied, for the various variants of the preconditioner.

Subdomains or SMP-nodes 8 16 32 64
Size of the Schur 40,200 61,251 87,294 122,190

Processors per subdomain 1-level parallel 2-levels
parallel

1-level parallel 2-levels
parallel

1-level parallel 2-levels
parallel

1-level parallel

1 2 4 1 2 4 1 2 4 1

Total solution time
Md 525.1 354.1 254.4 217.2 140.8 101.0 124.1 91.2 65.7 83.0
Msp 322.8 234.4 188.3 120.1 88.3 73.0 87.9 73.7 54.1 65.1

Time in the iterative loop
Md 94.1 51.5 32.5 77.9 44.8 31.3 58.1 40.8 22.7 54.2
Msp 57.6 34.3 19.9 50.3 29.6 21.6 38.9 31.2 18.2 40.7

Iterations
Md 98 147 176 226
Msp 101 148 177 226

Time per iteration
Md 0.96 0.53 0.33 0.53 0.30 0.21 0.33 0.23 0.13 0.24
Msp 0.57 0.34 0.20 0.34 0.20 0.15 0.22 0.18 0.10 0.18

Preconditioner setup time
Md 208.0 124.6 70.8 89.0 52.7 30.4 30.0 20.4 13.0 15.0
Msp 42.2 22.1 17.4 19.5 15.4 12.1 13.0 12.6 7.9 11.4

Initialization time
All precond. 223 178 151 50 43 39 36 30 24 13.1

Table 4
Detailed parallel performance of the 2-level parallel method for the Fuselage problem with about 0.5 million elements and 3.3 Mdof when the number of
subdomains is varied, for the various variants of the preconditioner.

Subdomains or SMP-nodes 4 8 16 32
Size of the Schur 17,568 28,644 43,914 62,928

Processors per subdomain 1-level parallel 2-levels
parallel

1-level parallel 2-levels
parallel

1-level parallel 2-levels
parallel

1-level parallel

1 2 4 1 2 4 1 2 4 1

Total solution time
Md 411.1 278.6 203.0 199.4 132.0 91.7 107.7 72.3 48.4 59.3
Msp 311.6 210.8 175.3 125.1 91.5 72.0 72.9 52.3 40.3 45.9

Time in the iterative loop
Md 32.5 18.6 10.1 46.2 25.9 14.3 37.2 22.1 13.4 32.2
Msp 22.5 14.0 9.4 30.3 18.1 10.7 25.9 16.2 12.2 23.3

Iterations
Md 38 92 124 169
Msp 40 92 124 169

Time per iteration
Md 0.85 0.49 0.27 0.50 0.28 0.15 0.30 0.18 0.11 0.19
Msp 0.56 0.35 0.23 0.33 0.20 0.12 0.21 0.13 0.10 0.14

Preconditioner setup time
Md 182.0 100.0 55.8 79.1 46.0 26.4 37.9 24.3 15.0 13.7
Msp 92.5 36.9 28.9 20.8 13.3 10.3 14.4 10.1 8.2 9.3

Initialization time
All precond. 196.7 160 137 74 60 51 32.7 26 20 13.2

Table 5
Detailed parallel performance of the 2-level parallel method for the Rouet problem with about 0.33 million elements and 1.3 Mdof when the number of
subdomains is varied, for the various variants of the preconditioner.

Subdomains 8 16 32 64
Size of the Schur 31,535 49,572 73,146 112,000

Processors per subdomain 1-level parallel 2-levels
parallel

1-level parallel 2-levels
parallel

1-level parallel 2-levels
parallel

1-level parallel

1 2 4 1 2 4 1 2 4 1

Total solution time
Md 453.7 303.7 226.9 264.6 174.7 126.8 110.9 69.4 59.0 70.1
Msp 277.5 219.6 184.8 151.7 124.8 101.6 86.5 70.0 59.8 51.4

Time in the iterative loop
Md 57.2 34.3 21.1 60.8 38.7 26.2 44.5 22.4 25.1 42.1
Msp 42.0 26.8 18.8 47.9 28.8 20.3 37.6 27.4 26.1 35.6

Iterations
Md 59 79 106 156
Msp 60 87 114 162

Time per iteration
Md 0.97 0.58 0.36 0.77 0.49 0.33 0.42 0.21 0.24 0.27
Msp 0.70 0.45 0.31 0.55 0.33 0.23 0.33 0.24 0.23 0.22

Preconditioner setup time
Md 235.0 127.1 75.0 137.0 74.8 43.9 43.5 27.7 17.2 19.0
Msp 74.0 50.5 35.2 37.0 34.8 24.6 26.0 23.3 16.9 6.8

Initialization time
All precond. 161.5 142.3 130.8 66.8 61.2 56.7 22.8 19.3 16.7 9.0

294 L. Giraud et al. / Parallel Computing 36 (2010) 285–296
To study the parallel behaviour of the 2-level parallel implementation we discuss the efficiency of the three main steps of
the algorithm.

� The initialization Phase 1: this step mainly consists in calling the parallel version of the sparse direct solver as ‘‘black-box”
with the best found sets of parameters to get the highest performance.

� Preconditioner setup Phase 2: This phase includes two steps, assembling the local Schur complement, and the factorization
of either Md or Msp depending on the selected variant. The factorization of Md is performed using ScaLAPACK, while Msp is
factorize using a parallel instance of MUMPS.The results reported in Tables 3–5 highlight the advantages of the 2-level par-

L. Giraud et al. / Parallel Computing 36 (2010) 285–296 295
allel algorithm. For the dense preconditioner Md, we can observe that even if we not take advantage of all the working
nodes and use only 2 of the 4 available processors to perform the preconditioner setup phase, the benefit is considerable.
The computing time is divided by around 1.8 for all test cases. For the sparse preconditioner, the gain is also important, it
varies between 1.5 and 2.The objective of the 2-level parallel method is to take advantage of all the available resources to
complete the simulation. If the four processors were used, the performance is even higher. For the dense Md precondition-
er, the calculation is performed around 3 times faster thanks to the efficiency of the parallel dense linear algebra kernels of
ScaLAPACK. For the sparse preconditioner, the speedups vary between 1.5 and 3. This speedup is also significant for the
sparse preconditioner Msp.
Finally, it can be noticed that, the best execution times are obtained using the 2-level parallel method for all test problems.
The 2-level parallel method is needed to attain the best parallel performance.

� The Phase 3 of the method is the iterative loop, that mainly involves three numerical kernels that are: the matrix–vector
product implemented using PBLAS routines; the preconditioner application that relies either on SCALAPACK kernels for Md or
MUMPS for Msp and a global reduction for the dot-product calculation. The results reported in these tables, show similar
speedups as the ones observed for Phase 2 (preconditioner setup). For the dense preconditioner the execution of the iter-
ative loop is 2–3 times faster than for the 1-level parallel algorithm. Also, for the sparse preconditioner, the convergence is
achieved 1.7–3 times faster.

As a general comment, it can be seen in all the tables that most of the numerical kernels greatly benefit from the two
levels of parallelism. In those experiments the initialization is the computing part that does not scale well; on that compu-
tational kernel we do hope to benefit from new progresses in parallel sparse direct packages.
8 16 32
0

50

100

150

200

250

300

350

400

450

500

proc

Ti
m

e(
se

c)

Fuselage of 6.5 Mdof

1−level algorithm
2−level algorithm

8 16 32

50

100

150

200

250

300

350

proc

Ti
m

e(
se

c)
Fuselage 4.8 Mdof

1−level algorithm
2−level algorithm

4 8 16
0

50

100

150

200

250

300

350

400

proc

Ti
m

e(
se

c)

Fuselage of 3.3 Mdof

1−level algorithm
2−level algorithm

8 16 32
0

50

100

150

200

250

300

350

400

450

proc

Ti
m

e(
se

c)

Rouet of 1.3 Mdof

1−level algorithm
2−level algorithm

Fig. 3. Parallel performance of the total time of the 2-level parallel method for the Fuselage and the Rouet test cases, when consuming the same number of
SMP nodes as the 1-level parallel method.

296 L. Giraud et al. / Parallel Computing 36 (2010) 285–296
Finally, to summarize the time saving enabled by the 2-level parallel implementation we display in Fig. 3 the global com-
puting time for the different decompositions. For the sake of readability, we only display the results for the dense precon-
ditioner. Those curves illustrate the benefit of the 2-level parallel implementation that enables us to get much better
computing throughput out of the SMP nodes. In addition, the larger the problem size, the larger the benefit/gain.

6. Concluding remarks

In this paper, we have investigated the numerical behaviour of our preconditioner and the benefit of multiple levels of
parallelism for the solution of linear systems arising in three dimensional structural mechanics problems representative
of difficulties encountered in this application area. We have demonstrated on 3D real life applications the attractive features
of our approach.

Such an implementation is attractive in situation where the increase of the number of iterations is significant when the
number of domains is increased. In the context of parallel SMP platforms, we have illustrated the benefit of a 2-level parallel
implementation when the memory storage is the main bottleneck. In this case, the 2-level parallel algorithm can be of great
interest. We believe that this implementation could also be very suited for large calculations in many applications.

For clusters of SMP, both message passing and multithreading can be combined. Mixing threads within node and MPI
communication between the nodes appears natural. Several researchers have used this mixed model with reasonable suc-
cess. Future work will address such implementations for hybrid linear solvers.

References

[1] P.R. Amestoy, I.S. Duff, J. Koster, J.-Y. L’Excellent, A fully asynchronous multifrontal solver using distributed dynamic scheduling, SIAM Journal on
Matrix Analysis and Applications 23 (1) (2001) 15–41.

[2] P.E. Bjørstad, O.B. Widlund, Iterative methods for the solution of elliptic problems on regions partitioned into substructures, SIAM Journal of Numerical
Analysis 23 (6) (1986) 1093–1120.

[3] L.S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, R.C. Whaley,
ScaLAPACK Users’ Guide, SIAM Press, 1997.

[4] J.-F. Bourgat, R. Glowinski, P. Le Tallec, M. Vidrascu, Variational formulation and algorithm for trace operator in domain decomposition calculations, in:
Tony Chan, Roland Glowinski, Jacques Périaux, Olof Widlund (Eds.), Domain Decomposition Methods, SIAM, Philadelphia, PA, 1989, pp. 3–16.

[5] J.H. Bramble, J.E. Pasciak, A.H. Schatz, The construction of preconditioners for elliptic problems by substructuring I, Mathematical Computation 47
(175) (1986) 103–134.

[6] X.-C. Cai, Y. Saad, Overlapping domain decomposition algorithms for general sparse matrices, Numerical Linear Algebra with Applications 3 (1996)
221–237.

[7] L.M. Carvalho, L. Giraud, G. Meurant, Local preconditioners for two-level non-overlapping domain decomposition methods, Numerical Linear Algebra
with Applications 8 (4) (2001) 207–227.

[8] Y.-H. De Roeck, P. Le Tallec, Analysis and test of a local domain decomposition preconditioner. in: Roland Glowinski, Yuri Kuznetsov, Gérard Meurant,
Jacques Périaux, Olof Widlund, (Eds.), Fourth International Symposium on Domain Decomposition Methods for Partial Differential Equations, SIAM,
Philadelphia, PA, 1991, pp. 112–128.

[9] J. Drkošová, M. Rozložnı́k, Z. Strakoš, A. Greenbaum, Numerical stability of the GMRES method, BIT 35 (1995) 309–330.
[10] I.S. Duff, J.K. Reid, The multifrontal solution of indefinite sparse symmetric linear systems, ACM Transactions on Mathematical Software 9 (1983) 302–

325.
[11] V. Frayssé, L. Giraud, A set of conjugate gradient routines for real and complex arithmetics. Technical Report TR/PA/00/47, CERFACS, Toulouse, France,

2000. Public domain software availabe on http://www.cerfacs.fr/algor/Softs.
[12] V. Frayssé, L. Giraud, S. Gratton, A set of flexible GMRES routines for real and complex arithmetics on high performance computers. Technical Report

TR/PA/06/09, CERFACS, Toulouse, France, 2006. This report supersedes TR/PA/98/07.
[13] V. Frayssé, L. Giraud, S. Gratton, J. Langou, Algorithm 842 a set of GMRES routines for real complex arithmetics on high performance computers, ACM

Transactions on Mathematical Software 31 (2) (2005) 228–238. Preliminary version available as CERFACS TR/PA/03/3, Public domain software
Availabe on http://www.cerfacs.fr/algor/Softs..

[14] L. Giraud, A. Haidar, L.T. Watson, Parallel scalability study of hybrid preconditioners in three dimensions, Parallel Computing 34 (2008) 363–379.
[15] W.D. Gropp, E. Lusk, N. Doss, A. Skjellum, A high-performance, portable implementation of MPI message passing interface standard, Parallel Computing

22 (6) (1996).
[16] A. Haidar, On the parallel scalability of hybrid solvers for large 3D problems. Ph.D. dissertation, INPT, June 2008, TH/PA/08/57.
[17] C. Paige, M. Rozložnı́k, Z. Strakoš, Modified Gram-Schmidt (MGS), least-squares, and backward stability of MGS-GMRES, SIAM Journal on Matrix

Analysis and Applications 28 (1) (2006) 264–284.
[18] C.C. Paige, M.A. Saunders, Solution of sparse indefinite systems of linear equations, SIAM Journal on Numerical Analysis 12 (1975) 617–629.
[19] G. Radicati, Y. Robert, Parallel conjugate gradient-like algorithms for solving nonsymmetric linear systems on a vector multiprocessor, Parallel

Computing 11 (1989) 223–239.
[20] B.F. Smith, P. Bjørstad, W. Gropp, Domain Decomposition, first ed., Parallel Multilevel Methods for Elliptic Partial Differential Equations, Cambridge

University Press, New York, 1996.
[21] Mathew T. Domain, Decomposition Methods for the Numerical Solution of Partial Differential Equations, Springer Lecture Notes in Computational

Science and Engineering, Springer, 2008.

http://www.cerfacs.fr/algor/Softs
http://www.cerfacs.fr/algor/Softs

	Using multiple levels of parallelism to enhance the performance of domain decomposition solvers
	Introduction
	A brief overview of non-overlapping domain decomposition
	The algebraic additive Schwarz preconditioner
	Sparse algebraic additive Schwarz preconditioner

	Mixing 2-levels of parallelism and domain decomposition techniques
	Motivations for multiple levels of parallelism
	Two-level parallelization strategy
	Initialization Phase1
	Preconditioner setup Phase 2
	Iterative loop Phase 3

	Experimental framework
	Parallel platforms
	Model problems

	Parallel performance studies
	Numerical benefits
	Parallel performance benefits

	Concluding remarks
	References

