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Part I: Outline          Goals

Motivation                                  [ Hardware to Software Trends ]

MAGMA – LAPACK for GPUs
Overview             [ Learn what is available, how to use it, etc. ]
Methodology            [ How to develop, e.g., hybrid algorithms ]
MAGMA with StarPU / PLASMA / Quark [ Development tools ]

MAGMA BLAS                         [ Highly optimized CUDA kernels ]  

Sparse iterative linear algebra  [ Methodology use in sparse LA ]

Current & future work directions

Conclusions 



About ICL

u Mission – provide leading edge tools, enable technologies and software for scientific 
computing, develop standards for scientific computing in general

u This includes standards and efforts such as
PVM, MPI, LAPACK, ScaLAPACK, BLAS, ATLAS, Netlib, Top 500, PAPI, NetSolve, 
and the Linpack Benchmark

u ICL continues these efforts with 
PLASMA, MAGMA, HPC Challenge, BlackJack, OpenMPI, and MuMI, 
as well as other innovative computing projects

staff of more than
40 researchers, 
students, and 
administrators

Established by 
Prof. Jack Dongarra

Last year ICL celebrated 
20 years anniversary!



Science and Engineering Drivers



Simulation enables fundamental 
advances in basic science



Hardware Trends

u Power consumption and the
move towards multicore

u Hybrid architectures
u GPU
u Hybrid GPU-based systems

– CPU and GPU to get integrated
(NVIDIA to make ARM CPU 
cores alongside GPUs) 

DMA

PCI-e 3.0
7.5 GB/s

x86 host

host
memory



Performance Development in Top500
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36rd List: The TOP10
Rank    Site Computer Country Cores Rmax

[Pflops]
% of 
Peak

Power
[MW]

Flops/
Watt

1 Nat. SuperComputer
Center in Tianjin

Tianhe-1A, NUDT 
Intel + Nvidia GPU + custom China 186,368 2.57 55 4.04 636

2 DOE / OS                 Oak 
Ridge Nat Lab

Jaguar, Cray 
AMD + custom USA 224,162 1.76 75 7.0 251

3 Nat. Supercomputer 
Center in Shenzhen

Nebulea, Dawning
Intel +  Nvidia GPU + IB China 120,640 1.27 43 2.58 493

4 GSIC Center, Tokyo 
Institute of Technology

Tusbame 2.0, HP 
Intel + Nvidia GPU + IB Japan 73,278 1.19 52 1.40 850

5
DOE / OS 

Lawrence Berkeley Nat 
Lab

Hopper, Cray
AMD + custom USA 153,408 1.054 82 2.91 362

6 Commissariat a l'Energie
Atomique (CEA)

Tera-10, Bull 
Intel + IB France 138,368 1.050 84 4.59 229

7 DOE / NNSA
Los Alamos Nat Lab

Roadrunner, IBM 
AMD + Cell GPU + IB USA 122,400 1.04 76 2.35 446

8 NSF / NICS U of 
Tennessee

Kraken, Cray 
AMD + custom USA 98,928 .831 81 3.09 269

9 Forschungszentrum
Juelich (FZJ)

Jugene, IBM
Blue Gene + custom Germany 294,912 .825 82 2.26 365

10 DOE / NNSA         LANL & 
SNL

Cielo, Cray 
AMD + custom USA 107,152 .817 79 2.95 277
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Commodity plus Accelerators
Intel Xeon

8 cores
3 GHz

8*4 ops/cycle
96 Gflop/s (DP)

NVIDIA C2050 “Fermi”
448 “CUDA cores”

1.15 GHz
448 ops/cycle

515 Gflop/s (DP)

Commodity Accelerator (GPU)

Interconnect
PCI-X 16 lane

64 Gb/s
1 GW/s 17 systems on the TOP500 use GPUs as accelerators



Future Computer Systems
• Most likely be a hybrid design

• Think standard multicore chips and 
accelerator (GPUs)

• Today accelerators are attached

• Next generation more integrated

• Intel’s MIC architecture “Knights Ferry” and 
“Knights Corner” to come.
• 48 x86 cores

• AMD’s Fusion in 2012 - 2013
• Multicore with embedded graphics ATI

• Nvidia’s Project Denver plans to develop               
an integrated chip using ARM                      
architecture in 2013.



ØMust rethink the design of our software

ØAnother disruptive technology
• Similar to what happened with cluster computing 
and message passing

ØRethink and rewrite the applications, algorithms, and           
software

Ø Numerical libraries for example will change

Ø For example, both LAPACK and ScaLAPACK will    
undergo major changes to accommodate this

Major change to Software



A New Generation of Software



A New Generation of Software



A New Generation of Software



Those new algorithms 
- have a very low granularity, they scale very well (multicore, petascale computing, … )
- removes of dependencies among the tasks, (multicore, distributed computing)
- avoid latency (distributed computing, out-of-core)
- rely on fast kernels 

Those new algorithms need new kernels and rely on efficient scheduling algorithms.

A New Generation of Software



Those new algorithms 
- have a very low granularity, they scale very well (multicore, petascale computing, … )
- removes of dependencies among the tasks, (multicore, distributed computing)
- avoid latency (distributed computing, out-of-core)
- rely on fast kernels 

Those new algorithms need new kernels and rely on efficient scheduling algorithms.

A New Generation of Software

MAGMA
Hybrid Algorithms
(heterogeneity friendly) 

Rely on
- hybrid scheduler (of DAGs)
- hybrid kernels 

(for nested parallelism)
- existing software infrastructure



Challenges of using GPUs

High levels of parallelism
Many GPU cores 
[ e.g. Tesla C2050 (Fermi) has 448 CUDA cores ]

Hybrid/heterogeneous architectures
Match algorithmic requirements to architectural 
strengths
[ e.g. small, non-parallelizable tasks to run on CPU, large and parallelizable on 
GPU ]

Compute vs communication gap
Exponentially growing gap; persistent challenge
[ Processor speed improves 59%, memory bandwidth 23%, latency 5.5% ]
[ on all levels, e.g. a GPU Tesla C1070 (4 x C1060) has compute power of

O(1,000) Gflop/s but GPUs communicate through the CPU using
O(1) GB/s connection ] 



Matrix Algebra on GPU and Multicore Architectures 
(MAGMA)

MAGMA: a new generation linear algebra (LA) libraries to achieve the fastest possible
time to  an accurate solution on hybrid/heterogeneous architectures

Homepage: http://icl.cs.utk.edu/magma/

MAGMA & LAPACK

- MAGMA uses LAPACK and extends its functionality to hybrid systems (w/ GPUs); 

- MAGMA is designed to be similar to LAPACK in
functionality, data storage and interface

- MAGMA leverages years of experience in developing open source LA software 
packages like LAPACK, ScaLAPACK, BLAS, ATLAS, and PLASMA

MAGMA developers/collaborators

- U of Tennessee, Knoxville;  U of California, Berkeley;  U of Colorado, Denver

- INRIA Bordeaux - Sud Ouest & INRIA Paris – Saclay, France; KAUST, Saudi Arabia

- Community effort [similarly to the development of LAPACK / ScaLAPACK]

http://icl.cs.utk.edu/magma/


PLASMA
Parallel Linear Algebra Software for Multicore Architectures 



• Asychronicity
• Avoid fork-join (Bulk sync design)

• Dynamic Scheduling
• Out of order execution

• Fine Granularity
• Independent block operations

• Locality of Reference
• Data storage – Block Data Layout

PLASMA
Parallel Linear Algebra Software for Multicore Architectures 



LAPACK  LU 

Ø fork join
Ø bulk synchronous processing



Parallel tasks in LU 

Ø Idea: break into smaller tasks and remove dependencies

Ø Objectives: high utilization of each core, scaling to large number of cores

Ø Methodology: Arbitrary DAG scheduling, Fine granularity / block data layout



PLASMA Scheduling
Dynamic Scheduling: Tile LU Trace

8-socket, 6-core (48 cores total) AMD Istanbul 2.8 GHz

l Regular trace

l Factorization steps pipelined

l Stalling only due to natural load 

imbalance

quad-socket quad-core Intel Xeon 2.4 GHz



Pipelining: Cholesky Inversion

27

48 cores
POTRF, TRTRI and LAUUM.
The matrix is 4000 x 4000,tile size is 200 x 200,



Big DAGs: No Global Critical Path

• DAGs get very big, very fast
• So windows of active tasks are used; this means no 

global critical path 

• Matrix of NBxNB tiles; NB3 operation
• NB=100 gives 1 million tasks 



PLASMA Performance (QR, 48 cores)
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MAGMA
Matrix Algebra on GPU and Multicore Architectures 



MAGNUM / Rectangular / PLASMA Tile Algorithms

MAGMA Software Stack

single

multi

distr.

C P U G P UH Y B R I D

BLAS

BLAS

MAGMA BLAS

LAPACK

CUDA

Linux, Windows, Mac OS X |   C/C++, Fortran |  Matlab, Python

MAGMA SPARSE

MAGMA 1.0

StarPUPLASMA / Quark

LAPACK Algorithms and Tile Kernels 

Tile & LAPACK Algorithms with DAGuE



u 32 algorithms are developed (total – 122 routines)
u Every algorithm is in 4 precisions

(s/c/d/z, denoted by X)

u There are 3 mixed precision algorithms
(zc & ds, denoted by XX)

u These are hybrid algorithms

– Expressed in terms of BLAS

u Support is for single CUDA-enabled NVIDIA GPU, 
either Tesla or Fermi

u MAGMA BLAS 
u A subset of GPU BLAS, optimized for Tesla and Fermi GPUs

MAGMA 1.0



1.   Xgetrf LU factorization; CPU interface
2.   Xgetrf_gpu LU factorization; GPU interface
3.   Xgetrf_mc LU factorization on multicore (no GPUs) 
4.   Xpotrf Cholesky factorization; CPU interface
5.   Xpotrf_gpu Cholesky factorization; GPU interface
6.   Xpotrf_mc Cholesky factorization on multicore (no GPUs) 
7.   Xgeqrf QR factorization; CPU interface
8.   Xgeqrf_gpu QR factorization; GPU interface; with T 

matrices stored
9.   Xgeqrf2_gpu QR factorization; GPU interface; without T 

matrices
10. Xgeqrf_mc QR factorization on multicore (no GPUs)
11. Xgeqrf2 QR factorization; CPU interface
12. Xgeqlf QL factorization; CPU interface
13. Xgelqf LQ factorization; CPU interface

One-sided factorizations

MAGMA 1.0



14. Xgetrs_gpu Work precision; using LU factorization; GPU interface

15. Xpotrs_gpu Work precision; using Cholesky factorization; GPU 
interface

16. Xgels_gpu Work precision LS; GPU interface 

17. XXgetrs_gpu Mixed precision iterative refinement solver; 
Using LU factorization; GPU interface

18. XXpotrs_gpu Mixed precision iterative refinement solver;
Using Cholesky factorization; GPU interface

19. XXgeqrsv_gpu Mixed precision iterative refinement solver;
Using QR on square matrix; GPU interface

Linear solvers

MAGMA 1.0



20. Xgehrd Reduction to upper Hessenberg form; 
with T matrices stored; CPU interface

21. Xgehrd2 Reduction to upper Hessenberg form; 
Without the T matrices stored; CPU interface

22. Xhetrd Reduction to tridiagonal form; CPU interface

23. Xgebrd Reduction to bidiagonal form; CPU interface

Two-sided factorizations

MAGMA 1.0



24. Xungqr Generates Q with orthogonal columns as the product of 
elementary reflectors (from Xgeqrf); CPU interface

25. Xungqr_gpu Generates Q with orthogonal columns as the product of 
elementary reflectors (from Xgeqrf_gpu); GPU interface

26. Xunmtr Multiplication with the orthogonal matrix, product of 
elementary reflectors from  Xhetrd; CPU interface

27. Xunmqr Multiplication with orthogonal matrix, product of 
elementary reflectors from Xgeqrf; CPU interface

28. Xunmqr_gpu Multiplication with orthogonal matrix, product of 
elementary reflectors from Xgeqrf_gpu; GPU interface

29. Xunghr Generates Q with orthogonal columns as the product of 
elementary reflectors (from Xgehrd); CPU interface

Generating/applying orthogonal matrices

MAGMA 1.0



30. Xgeev Solves the non-symmetric eigenvalue problem;
CPU interface

31. Xheevd Solves the Hermitian eigenvalue problem; 
Uses devide and conquer; CPU interface

32. Xgesvd SVD; CPU interface

Eigen/singular-value solvers

• Currently, these routines have 
GPU-acceleration for the

- two-sided factorizations used and the
- Orthogonal transformation related to them 

(matrix generation/application from the  
previous slide)

MAGMA 1.0



MAGMA BLAS

l Subset of BLAS for a single NVIDIA GPU
l Optimized for MAGMA specific 

algorithms
l To complement CUBLAS on special 

cases



1. Xgemv_tesla General matrix-vector product for Tesla

2. Xgemv_fermi General matrix-vector product for Fermi

3. Xsymv_ tesla Symmetric matrix-vector product for Tesla

4. Xsymv_fermi Symmetric matrix-vector product for Fermi

Level 2 BLAS

MAGMA BLAS



5.   Xgemm_tesla General matrix-matrix product for Tesla

6.   Xgemm_fermi General matrix-matrix product for Fermi

7.   Xtrsm_ tesla Solves a triangular matrix problem on Tesla

8.   Xtrsm_fermi Solves a triangular matrix problem on Fermi

9.   Xsyrk_tesla Symmetric rank  k update for Tesla

10. Xsyr2k_tesla Symmetric rank 2k  update for Tesla

Level 3 BLAS

u CUBLAS GEMMs for Fermi are based on the 
MAGMA implementation

u Further improvements
– BACUGen - Autotuned GEMM for Fermi (J.Kurzak)
– ZGEMM from 308 Gflop/s is now 341 Gflop/s

MAGMA BLAS



Other routines
11.   Xswap LU factorization; CPU interface

12.   Xlacpy LU factorization; GPU interface

13.   Xlange LU factorization on multicore (no GPUs) 

14.   Xlanhe Cholesky factorization; CPU interface

15.   Xtranspose Cholesky factorization; GPU interface

16.   Xinplace_transpose Cholesky factorization on multicore (no GPUs) 

17.   Xpermute QR factorization; CPU interface

18.   Xauxiliary QR factorization; GPU interface; with T matrices stored

MAGMA BLAS



Methodology overview 



Methodology overview 

u MAGMA uses HYBRIDIZATION methodology based on
– Representing linear algebra algorithms as collections 

of TASKS and DATA DEPENDENCIES among them
– Properly SCHEDULING tasks' execution over 

multicore and GPU hardware components

u Successfully applied to fundamental
linear algebra algorithms
– One and two-sided factorizations and solvers
– Iterative linear and eigen-solvers

u Productivity
– High-level
– Leveraging prior developments
– Exceeding in performance homogeneous solutions

Hybrid CPU+GPU algorithms
(small tasks for multicores and large 

tasks for GPUs)



Statically Scheduled One-Sided Factorizations
(LU, QR, and Cholesky)

u Hybridization
– Panels (Level 2 BLAS) are factored on CPU using LAPACK
– Trailing matrix updates (Level 3 BLAS) are done on the 

GPU using “look-ahead”

u Note
– Panels are memory bound but are only O(N2) flops and can be overlapped 

with the O(N3) flops of the updates
– In effect, the GPU is used only for the high-performance Level 3 BLAS 

updates, 
i.e., no low performance Level 2 BLAS is scheduled on the GPU



A hybrid algorithm example 

u Left-looking hybrid Cholesky factorization in MAGMA 1.0

u The difference with LAPACK – the 3 additional lines in red

u Line 10 (done on CPU) is overlapped with work on the GPU (line 7) 



Hybrid algorithms
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QR factorization in single precision arithmetic, CPU interface
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[ for more performance data, see http://icl.cs.utk.edu/magma ]
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http://icl.cs.utk.edu/magma


Results – one sided factorizations

FERMI Tesla C2050: 448 CUDA cores @ 1.15GHz
SP/DP peak is 1030 / 515 GFlop/s

ISTANBUL AMD 8 socket 6 core (48 cores) @2.8GHz
SP/DP peak is 1075 / 538 GFlop/s

LU Factorization in double precision

Similar results for Cholesky & QR
Fast solvers (several innovations)
- in working precision, and
- mixed-precision iter. refinement
based on the one-sided factor.1024 3072 5184 7040 9088

0

40

80

120

160

200

240 FERMI MAGMA
ISTANBUL:          
     PLASMA
    MKL 11.0
    LAPACK

Matrix Size

G
Fl

op
/s



48/28



Mixed Precision Methods



Mixed Precision Methods

• Mixed precision, use the lowest 
precision required to achieve a given 
accuracy outcome
§ Improves runtime, reduce power 

consumption, lower data movement

§ Reformulate to find correction to 
solution, rather than solution
[ Δx rather than x ].



Idea Goes Something Like This…
• Exploit 32 bit floating point as much as 

possible.
§ Especially for the bulk of the computation

• Correct or update the solution with selective 
use of 64 bit floating point to provide a 
refined results

• Intuitively: 
§ Compute a 32 bit result, 

§ Calculate a correction to 32 bit result using 
selected higher precision and,

§ Perform the update of the 32 bit results with the 
correction using high precision. 



L U = lu(A) SINGLE O(n3)
x = L\(U\b) SINGLE O(n2)
r = b – Ax DOUBLE O(n2)
WHILE || r || not small enough

z = L\(U\r) SINGLE O(n2)
x = x + z DOUBLE O(n1)
r = b – Ax DOUBLE O(n2)

END

Mixed-Precision Iterative Refinement
• Iterative refinement for dense systems,   Ax = b, can work this 

way.

§ Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt 
results when using DP fl pt.



L U = lu(A) SINGLE O(n3)
x = L\(U\b) SINGLE O(n2)
r = b – Ax DOUBLE O(n2)
WHILE || r || not small enough

z = L\(U\r) SINGLE O(n2)
x = x + z DOUBLE O(n1)
r = b – Ax DOUBLE O(n2)

END

• Iterative refinement for dense systems,   Ax = b, can work this 
way.

§ Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt 
results when using DP fl pt.

§ It can be shown that using this approach we can compute the solution 
to 64-bit floating point precision.

• Requires extra storage, total is 1.5 times normal;
• O(n3) work is done in lower precision
• O(n2) work is done in high precision
• Problems if the matrix is ill-conditioned in sp; O(108)

Mixed-Precision Iterative Refinement



Results – linear solvers

FERMI Tesla C2050: 448 CUDA cores @ 1.15GHz
SP/DP peak is 1030 / 515 GFlop/s

MAGMA LU-based solvers on Fermi (C2050)
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Similar results for Cholesky & QR
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Two-sided matrix factorizations

Used in singular-value and eigen-value problems

LAPACK-based two-sided factorizations are rich in Level 2 BLAS and 
therefore can not be properly accelerated on multicore CPUs

We developed hybrid algorithms exploring GPUs' high bandwidth
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GPU:  GTX280  (240 cores   @ 1.30GHz, 141    GB/s)
CPU:  2 x 4 cores Intel Xeon @ 2.33GHz,  10.4 GB/s)

High-performance CUDA kernels were developed 
for various matrix-vector products
[ e.g., ssymv reaching up to 102 Gflop/s for the
symmetric eigenvalue problem ]



Statically Scheduled Two-Sided Factorizations
[ Hessenber, tridiagonal, and bidiagonal reductions ]

u Hybridization
– Trailing matrix updates (Level 3 BLAS) are done on the GPU

(similar to the one-sided factorizations)
– Panels (Level 2 BLAS) are hybrid

– operations with memory footprint restricted to the panel are done on CPU
– The time consuming matrix-vector products involving the entire trailing 

matrix are done on the GPU

u Note
– CPU-to-GPU communications and subsequent computations always stay in 

surface-to-volume ratio
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Results – two sided factorizations

FERMI Tesla C2050: 448 CUDA cores @ 1.15GHz
SP/DP peak is 1030 / 515 Gflop/s
[ system cost ~ $3,000 ] 

ISTANBUL AMD 8 socket 6 core (48 cores) @2.8GHz
SP/DP peak is 1075 / 538 Gflop/s
[ system cost ~ $30,000 ]   

Hessenberg Factorization in double precision
[ for the general eigenvalue problem ]

Similar accelerations for the
bidiagonal factorization [for SVD] & 
tridiagonal factorization [for the
symmetric eigenvalue problem]

Similar acceleration (exceeding 10x)
compared to other top-of-the-line
multicore systems (including 
Nehalem-based) and libraries
(including MKL, ACML)
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MAGMA BLAS



MAGMA BLAS

• Performance critically depend on 
BLAS

• How to develop fast CUDA BLAS?
• GEMM and SYMV examples
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GEMM for Fermi

63% of peak

CUBLAS 3.2 GEMM are based on these kernels  
TRSM and other Level 3 BLAS based on GEMM
Auto-tuning has become more important

- e.g., for BLAS, for higher-level hybrid algorithms, and for an OpenCL port
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Autotuning



BACUGen – autotuning of GEMM 

C = α A B + β C

u Two levels of parallelism
u Grid of thread blocks

[coarse-level data parallelism]
u Thread block

[fine-level parallelism within 
a block]

u Parameterized template to 
generate many versions

u including shared memory 
and register blocking  

u Empirically find the “best” version

Top-level view of the algorithm

(J. Kurzak, UTK)



BACUGen – autotuning of GEMM 

u Parallelism in a thread block
[ blockDim.x x blockDim.y threads ]

u A thread in this example computes
6 elements

u Register blocking
u In this example: 

2 + 3 elements are loaded in 
registers (from shared memory) 
and reused in 
2 x 3 multiply-adds

Thread-level view of the algorithm



BACUGen – autotuning of GEMM 

u Number of variants 
generated and tested



BACUGen – autotuning of GEMM 

u Performance on Fermi
(C2050) in Gflop/s

u ZGEMM improved significantly
compared to CUBLAS

u from 308 to 341 Gflop/s

u Improvement up to 2x on
some specific matrices
(e.g., of “rectangular” shape)



SYMV example

• Memory bound kernel
n2 sizeof(data_type) B -> 2 n2 flops
=> theoretical SSYMV peak on a 142 GB/s bus (e.g., in GTX280)

is 142 Gflop/s

• “Irregular” data accesses

• O(1) Gflop/s with CUBLAS
§ What can be done?

y = α A x + β y,    where A is a symmetric matrix



SYMV example

• Explore the symmetry
N2 / NB work space

=

A x y

1      2      3       4      5      6

=+ + + + +

1     2      3     4      5      6

x1

x3A31 A31 x1

A’31x3

NB



SYMV example
Performance of SSYMV on GTX280

Matrix size



Multicore + multi-GPU algorithms



Multicore + multi-GPU algorithms

• Reuse already developed kernels
§ Hybrid MAGMA 1.0 for single GPU
§ PLASMA for multticore

• Use run time system to schedule 
(dynamically) the kernels’ execution
§ StarPU
§ QUARK (from PLASMA)
§ …



Parallel
Compilers

HPC Applications

Runtime system

Operating System

CPU

Parallel Librariesl do dynamically what
would be difficult to do 
statically

l Library that provides
- Task scheduling
- Memory management

The need for runtime systems

GPU …

The StarPU runtime system

http://runtime.bordeaux.inria.fr/StarPU/

http://runtime.bordeaux.inria.fr/StarPU/


Productivity

// Sequential Tile Cholesky

FOR k = 0..TILES-1

DPOTRF(A[k][k])

FOR m = k+1..TILES-1

DTRSM(A[k][k], A[m][k])       

FOR n = k+1..TILES-1

DSYRK(A[n][k], A[n][n])

FOR m = n+1..TILES-1

DGEMM(A[m][k], A[n][k], A[m][n])

// Hybrid Tile Cholesky

FOR k = 0..TILES-1

starpu_Insert_Task(DPOTRF, …)
FOR m = k+1..TILES-1

starpu_Insert_Task(DTRSM, …)
FOR n = k+1..TILES-1

starpu_Insert_Task(DSYRK, …)
FOR m = n+1..TILES-1

starpu_Insert_Task(DGEMM, …)

u Develop parallel multicore + multiGPU algorithms from 
sequential algorithms

u Example to be given w/ QUARK scheduler (in PART II)



Performance scalability
Statistics for codelet spotrf

CUDA 0 (Quadro FX 5800) -> 3 / 36 (8.33 %)
CUDA 1 (Quadro FX 5800) -> 1 / 36 (2.78 %)
CUDA 2 (Quadro FX 5800) -> 3 / 36 (8.33 %)
CPU 0 -> 6 / 36 (16.67 %)
CPU 1 -> 9 / 36 (25.00 %)
CPU 2 -> 4 / 36 (11.11 %)
CPU 3 -> 6 / 36 (16.67 %)
CPU 4 -> 4 / 36 (11.11 %)

Statistics for codelet ssyrk
CUDA 0 (Quadro FX 5800) -> 41 / 630 (6.51 %)
CUDA 1 (Quadro FX 5800) -> 40 / 630 (6.35 %)
CUDA 2 (Quadro FX 5800) -> 49 / 630 (7.78 %)
CPU 0 -> 105 / 630 (16.67 %)
CPU 1 -> 85 / 630 (13.49 %)
CPU 2 -> 105 / 630 (16.67 %)
CPU 3 -> 102 / 630 (16.19 %)
CPU 4 -> 103 / 630 (16.35 %)

Statistics for codelet strsm
CUDA 0 (Quadro FX 5800) -> 125 / 630 (19.84 %)
CUDA 1 (Quadro FX 5800) -> 127 / 630 (20.16 %)
CUDA 2 (Quadro FX 5800) -> 122 / 630 (19.37 %)
CPU 0 -> 50 / 630 (7.94 %)
CPU 1 -> 52 / 630 (8.25 %)
CPU 2 -> 52 / 630 (8.25 %)
CPU 3 -> 54 / 630 (8.57 %)
CPU 4 -> 48 / 630 (7.62 %)

Statistics for codelet sgemm
CUDA 0 (Quadro FX 5800) -> 2258 / 7140 (31.62 %)
CUDA 1 (Quadro FX 5800) -> 2182 / 7140 (30.56 %)
CUDA 2 (Quadro FX 5800) -> 2261 / 7140 (31.67 %)
CPU 0 -> 87 / 7140 (1.22 %)
CPU 1 -> 94 / 7140 (1.32 %)
CPU 2 -> 85 / 7140 (1.19 %)
CPU 3 -> 85 / 7140 (1.19 %)
CPU 4 -> 88 / 7140 (1.23 %)

Performance of Cholesky factorization in SP

SGEMM
gpu : 333.04 GFlop/s
cpu :  20.06 GFlop/s
STRSM

gpu :  59.46 GFlop/s
cpu :  18.96 GFlop/s
SSYRK

gpu : 298.74 GFlop/s
cpu :  19.50 GFlop/s
SPOTRF

gpu :  57.51 GFlop/s
cpu :  17.45 GFlop/s

- 5 CPUs (Nehalem) 
+ 3 GPUs (FX5800)

- Efficiency > 100%



l QR factorization

- System: 16 CPUs (AMD) + 4 GPUs (C1060)

PLASMA & MAGMA with StarPU
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Scheduling using QUARK
u Register tasks & dependencies in 

QUARK (similar to StarPU) 

u Need a layer/mechanism to handle 
CPU-GPU communications 

u Use MAGMA and LAPACK/ScaLAPACK



A QR for GPU + Multicore

Hybrid QR factorization trace for matrix of size 3360 x 3360

u Parallel, dynamically scheduled panel 
factorizations (w/ QUARK) on multicore

u Parallel updates on multicore

u Parallel updates on GPU



A QR for GPU + Multicore



Current and future work



Sparse iterative solvers

u The hybridization approach naturally 
works
[e.g., Richardson iteration in mixed-
precision
iterative refinement solvers, Krylov space
iterative solvers and eigen-solvers ]

u Fast sparse matrix-vector product on 
Fermi

u Explore ideas to reduce communication
[ e.g., mixed precision, reduced storage 
for integers for the indexing, etc. ]

u Need high bandwidth



Current and future work

u Hybrid algorithms
- Further expend functionality
- New highly parallel algorithms of optimized communication 

and synchronization

u OpenCL support
- To be derived from OpenCL BLAS

u Autotuning framework
- On both high level algorithms & BLAS

u Multi-GPU algorithms
- StarPU scheduling



DPLASMA (Work in progress)
• Provide a framework for distributed execution 

of a DAG

§ Taking in account the properties of the 
hardware and the network (cores and 
accelerators)

§ Minimizing the impact on the system (CPU 
and memory waste)

• Let the user describe the algorithms based on 
data dependencies between tasks

§ Language to be defined



DPLASMA

• Distribute the DAG analysis
§ The DAG is never completely unrolled
§ Each node only unrolls it’s own portion 

of the DAG

• Minimize the data transfers
• Overlap communication and 

computations
• Many possible extensions on the 

scheduling



Conclusions

u Linear and eigenvalue solvers can be significantly 
accelerated on systems of multicore and GPU 
architectures

u Many-core architectures with accelerators (e.g., GPUs) 
are the future of high performance scientific computing

u Challenge: Fundamental libraries will need to be 
redesigned/rewritten to take advantage of the emerging 
many-core architectures
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