
Matrix Algebra on GPU and
Multicore Architectures

Stan Tomov
Research Director
Innovative Computing Laboratory
Department of Computer Science
University of Tennessee, Knoxville

Workshop on GPU-enabled Numerical Libraries
University of Basel, Switzerland

May 11-13, 2011

Outline

PART I
- Introduction to MAGMA
- Methodology
- Performance

PART II
- Hands-on training
- Using and contributing to MAGMA
- Examples

Part I: Outline

Motivation
MAGMA – LAPACK for GPUs

Overview
Methodology
MAGMA with StarPU / PLASMA / Quark

MAGMA BLAS
Sparse iterative linear algebra
Current & future work directions

Conclusions

Part I: Outline Goals

Motivation [Hardware to Software Trends]

MAGMA – LAPACK for GPUs
Overview [Learn what is available, how to use it, etc.]
Methodology [How to develop, e.g., hybrid algorithms]
MAGMA with StarPU / PLASMA / Quark [Development tools]

MAGMA BLAS [Highly optimized CUDA kernels]

Sparse iterative linear algebra [Methodology use in sparse LA]

Current & future work directions

Conclusions

About ICL

u Mission – provide leading edge tools, enable technologies and software for scientific
computing, develop standards for scientific computing in general

u This includes standards and efforts such as
PVM, MPI, LAPACK, ScaLAPACK, BLAS, ATLAS, Netlib, Top 500, PAPI, NetSolve,
and the Linpack Benchmark

u ICL continues these efforts with
PLASMA, MAGMA, HPC Challenge, BlackJack, OpenMPI, and MuMI,
as well as other innovative computing projects

staff of more than
40 researchers,
students, and
administrators

Established by
Prof. Jack Dongarra

Last year ICL celebrated
20 years anniversary!

Science and Engineering Drivers

Simulation enables fundamental
advances in basic science

Hardware Trends

u Power consumption and the
move towards multicore

u Hybrid architectures
u GPU
u Hybrid GPU-based systems

– CPU and GPU to get integrated
(NVIDIA to make ARM CPU
cores alongside GPUs)

DMA

PCI-e 3.0
7.5 GB/s

x86 host

host
memory

Performance Development in Top500

0.1

1

10

100

1000

10000

100000

1000000

10000000

100000000

1E+09

1E+10

1E+11

1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

1 Eflop/s

1 Gflop/s

1 Tflop/s

100 Mflop/s

100 Gflop/s

100 Tflop/s

10 Gflop/s

10 Tflop/s

1 Pflop/s

100 Pflop/s

10 Pflop/s

N=1

N=500

Gordon
Bell

Winners

36rd List: The TOP10
Rank Site Computer Country Cores Rmax

[Pflops]
% of
Peak

Power
[MW]

Flops/
Watt

1 Nat. SuperComputer
Center in Tianjin

Tianhe-1A, NUDT
Intel + Nvidia GPU + custom China 186,368 2.57 55 4.04 636

2 DOE / OS Oak
Ridge Nat Lab

Jaguar, Cray
AMD + custom USA 224,162 1.76 75 7.0 251

3 Nat. Supercomputer
Center in Shenzhen

Nebulea, Dawning
Intel + Nvidia GPU + IB China 120,640 1.27 43 2.58 493

4 GSIC Center, Tokyo
Institute of Technology

Tusbame 2.0, HP
Intel + Nvidia GPU + IB Japan 73,278 1.19 52 1.40 850

5
DOE / OS

Lawrence Berkeley Nat
Lab

Hopper, Cray
AMD + custom USA 153,408 1.054 82 2.91 362

6 Commissariat a l'Energie
Atomique (CEA)

Tera-10, Bull
Intel + IB France 138,368 1.050 84 4.59 229

7 DOE / NNSA
Los Alamos Nat Lab

Roadrunner, IBM
AMD + Cell GPU + IB USA 122,400 1.04 76 2.35 446

8 NSF / NICS U of
Tennessee

Kraken, Cray
AMD + custom USA 98,928 .831 81 3.09 269

9 Forschungszentrum
Juelich (FZJ)

Jugene, IBM
Blue Gene + custom Germany 294,912 .825 82 2.26 365

10 DOE / NNSA LANL &
SNL

Cielo, Cray
AMD + custom USA 107,152 .817 79 2.95 277

36rd List: The TOP10
Rank Site Computer Country Cores Rmax

[Pflops]
% of
Peak

Power
[MW]

GFlops/
Watt

1 Nat. SuperComputer
Center in Tianjin

Tianhe-1A, NUDT
Intel + Nvidia GPU + custom China 186,368 2.57 55 4.04 636

2 DOE / OS Oak
Ridge Nat Lab

Jaguar, Cray
AMD + custom USA 224,162 1.76 75 7.0 251

3 Nat. Supercomputer
Center in Shenzhen

Nebulea, Dawning
Intel + Nvidia GPU + IB China 120,640 1.27 43 2.58 493

4 GSIC Center, Tokyo
Institute of Technology

Tusbame 2.0, HP
Intel + Nvidia GPU + IB Japan 73,278 1.19 52 1.40 850

5
DOE / OS

Lawrence Berkeley Nat
Lab

Hopper, Cray
AMD + custom USA 153,408 1.054 82 2.91 362

6 Commissariat a l'Energie
Atomique (CEA)

Tera-10, Bull
Intel + IB France 138,368 1.050 84 4.59 229

7 DOE / NNSA
Los Alamos Nat Lab

Roadrunner, IBM
AMD + Cell GPU + IB USA 122,400 1.04 76 2.35 446

8 NSF / NICS U of
Tennessee

Kraken, Cray
AMD + custom USA 98,928 .831 81 3.09 269

9 Forschungszentrum
Juelich (FZJ)

Jugene, IBM
Blue Gene + custom Germany 294,912 .825 82 2.26 365

10 DOE / NNSA LANL &
SNL

Cielo, Cray
AMD + custom USA 107,152 .817 79 2.95 277

Commodity plus Accelerators
Intel Xeon

8 cores
3 GHz

8*4 ops/cycle
96 Gflop/s (DP)

NVIDIA C2050 “Fermi”
448 “CUDA cores”

1.15 GHz
448 ops/cycle

515 Gflop/s (DP)

Commodity Accelerator (GPU)

Interconnect
PCI-X 16 lane

64 Gb/s
1 GW/s 17 systems on the TOP500 use GPUs as accelerators

Future Computer Systems
• Most likely be a hybrid design

• Think standard multicore chips and
accelerator (GPUs)

• Today accelerators are attached

• Next generation more integrated

• Intel’s MIC architecture “Knights Ferry” and
“Knights Corner” to come.
• 48 x86 cores

• AMD’s Fusion in 2012 - 2013
• Multicore with embedded graphics ATI

• Nvidia’s Project Denver plans to develop
an integrated chip using ARM
architecture in 2013.

ØMust rethink the design of our software

ØAnother disruptive technology
• Similar to what happened with cluster computing
and message passing

ØRethink and rewrite the applications, algorithms, and
software

Ø Numerical libraries for example will change

Ø For example, both LAPACK and ScaLAPACK will
undergo major changes to accommodate this

Major change to Software

A New Generation of Software

A New Generation of Software

A New Generation of Software

Those new algorithms
- have a very low granularity, they scale very well (multicore, petascale computing, …)
- removes of dependencies among the tasks, (multicore, distributed computing)
- avoid latency (distributed computing, out-of-core)
- rely on fast kernels

Those new algorithms need new kernels and rely on efficient scheduling algorithms.

A New Generation of Software

Those new algorithms
- have a very low granularity, they scale very well (multicore, petascale computing, …)
- removes of dependencies among the tasks, (multicore, distributed computing)
- avoid latency (distributed computing, out-of-core)
- rely on fast kernels

Those new algorithms need new kernels and rely on efficient scheduling algorithms.

A New Generation of Software

MAGMA
Hybrid Algorithms
(heterogeneity friendly)

Rely on
- hybrid scheduler (of DAGs)
- hybrid kernels

(for nested parallelism)
- existing software infrastructure

Challenges of using GPUs

High levels of parallelism
Many GPU cores
[e.g. Tesla C2050 (Fermi) has 448 CUDA cores]

Hybrid/heterogeneous architectures
Match algorithmic requirements to architectural
strengths
[e.g. small, non-parallelizable tasks to run on CPU, large and parallelizable on
GPU]

Compute vs communication gap
Exponentially growing gap; persistent challenge
[Processor speed improves 59%, memory bandwidth 23%, latency 5.5%]
[on all levels, e.g. a GPU Tesla C1070 (4 x C1060) has compute power of

O(1,000) Gflop/s but GPUs communicate through the CPU using
O(1) GB/s connection]

Matrix Algebra on GPU and Multicore Architectures
(MAGMA)

MAGMA: a new generation linear algebra (LA) libraries to achieve the fastest possible
time to an accurate solution on hybrid/heterogeneous architectures

Homepage: http://icl.cs.utk.edu/magma/

MAGMA & LAPACK

- MAGMA uses LAPACK and extends its functionality to hybrid systems (w/ GPUs);

- MAGMA is designed to be similar to LAPACK in
functionality, data storage and interface

- MAGMA leverages years of experience in developing open source LA software
packages like LAPACK, ScaLAPACK, BLAS, ATLAS, and PLASMA

MAGMA developers/collaborators

- U of Tennessee, Knoxville; U of California, Berkeley; U of Colorado, Denver

- INRIA Bordeaux - Sud Ouest & INRIA Paris – Saclay, France; KAUST, Saudi Arabia

- Community effort [similarly to the development of LAPACK / ScaLAPACK]

http://icl.cs.utk.edu/magma/

PLASMA
Parallel Linear Algebra Software for Multicore Architectures

• Asychronicity
• Avoid fork-join (Bulk sync design)

• Dynamic Scheduling
• Out of order execution

• Fine Granularity
• Independent block operations

• Locality of Reference
• Data storage – Block Data Layout

PLASMA
Parallel Linear Algebra Software for Multicore Architectures

LAPACK LU

Ø fork join
Ø bulk synchronous processing

Parallel tasks in LU

Ø Idea: break into smaller tasks and remove dependencies

Ø Objectives: high utilization of each core, scaling to large number of cores

Ø Methodology: Arbitrary DAG scheduling, Fine granularity / block data layout

PLASMA Scheduling
Dynamic Scheduling: Tile LU Trace

8-socket, 6-core (48 cores total) AMD Istanbul 2.8 GHz

l Regular trace

l Factorization steps pipelined

l Stalling only due to natural load

imbalance

quad-socket quad-core Intel Xeon 2.4 GHz

Pipelining: Cholesky Inversion

27

48 cores
POTRF, TRTRI and LAUUM.
The matrix is 4000 x 4000,tile size is 200 x 200,

Big DAGs: No Global Critical Path

• DAGs get very big, very fast
• So windows of active tasks are used; this means no

global critical path

• Matrix of NBxNB tiles; NB3 operation
• NB=100 gives 1 million tasks

PLASMA Performance (QR, 48 cores)

0

50

100

150

200

250

300

0 2000 4000 6000 8000 10000 12000

G
flo

p/
s

Size

QR Performance (double prec.)

PLASMA

MKL 11.0

LAPACK

MAGMA
Matrix Algebra on GPU and Multicore Architectures

MAGNUM / Rectangular / PLASMA Tile Algorithms

MAGMA Software Stack

single

multi

distr.

C P U G P UH Y B R I D

BLAS

BLAS

MAGMA BLAS

LAPACK

CUDA

Linux, Windows, Mac OS X | C/C++, Fortran | Matlab, Python

MAGMA SPARSE

MAGMA 1.0

StarPUPLASMA / Quark

LAPACK Algorithms and Tile Kernels

Tile & LAPACK Algorithms with DAGuE

u 32 algorithms are developed (total – 122 routines)
u Every algorithm is in 4 precisions

(s/c/d/z, denoted by X)

u There are 3 mixed precision algorithms
(zc & ds, denoted by XX)

u These are hybrid algorithms

– Expressed in terms of BLAS

u Support is for single CUDA-enabled NVIDIA GPU,
either Tesla or Fermi

u MAGMA BLAS
u A subset of GPU BLAS, optimized for Tesla and Fermi GPUs

MAGMA 1.0

1. Xgetrf LU factorization; CPU interface
2. Xgetrf_gpu LU factorization; GPU interface
3. Xgetrf_mc LU factorization on multicore (no GPUs)
4. Xpotrf Cholesky factorization; CPU interface
5. Xpotrf_gpu Cholesky factorization; GPU interface
6. Xpotrf_mc Cholesky factorization on multicore (no GPUs)
7. Xgeqrf QR factorization; CPU interface
8. Xgeqrf_gpu QR factorization; GPU interface; with T

matrices stored
9. Xgeqrf2_gpu QR factorization; GPU interface; without T

matrices
10. Xgeqrf_mc QR factorization on multicore (no GPUs)
11. Xgeqrf2 QR factorization; CPU interface
12. Xgeqlf QL factorization; CPU interface
13. Xgelqf LQ factorization; CPU interface

One-sided factorizations

MAGMA 1.0

14. Xgetrs_gpu Work precision; using LU factorization; GPU interface

15. Xpotrs_gpu Work precision; using Cholesky factorization; GPU
interface

16. Xgels_gpu Work precision LS; GPU interface

17. XXgetrs_gpu Mixed precision iterative refinement solver;
Using LU factorization; GPU interface

18. XXpotrs_gpu Mixed precision iterative refinement solver;
Using Cholesky factorization; GPU interface

19. XXgeqrsv_gpu Mixed precision iterative refinement solver;
Using QR on square matrix; GPU interface

Linear solvers

MAGMA 1.0

20. Xgehrd Reduction to upper Hessenberg form;
with T matrices stored; CPU interface

21. Xgehrd2 Reduction to upper Hessenberg form;
Without the T matrices stored; CPU interface

22. Xhetrd Reduction to tridiagonal form; CPU interface

23. Xgebrd Reduction to bidiagonal form; CPU interface

Two-sided factorizations

MAGMA 1.0

24. Xungqr Generates Q with orthogonal columns as the product of
elementary reflectors (from Xgeqrf); CPU interface

25. Xungqr_gpu Generates Q with orthogonal columns as the product of
elementary reflectors (from Xgeqrf_gpu); GPU interface

26. Xunmtr Multiplication with the orthogonal matrix, product of
elementary reflectors from Xhetrd; CPU interface

27. Xunmqr Multiplication with orthogonal matrix, product of
elementary reflectors from Xgeqrf; CPU interface

28. Xunmqr_gpu Multiplication with orthogonal matrix, product of
elementary reflectors from Xgeqrf_gpu; GPU interface

29. Xunghr Generates Q with orthogonal columns as the product of
elementary reflectors (from Xgehrd); CPU interface

Generating/applying orthogonal matrices

MAGMA 1.0

30. Xgeev Solves the non-symmetric eigenvalue problem;
CPU interface

31. Xheevd Solves the Hermitian eigenvalue problem;
Uses devide and conquer; CPU interface

32. Xgesvd SVD; CPU interface

Eigen/singular-value solvers

• Currently, these routines have
GPU-acceleration for the

- two-sided factorizations used and the
- Orthogonal transformation related to them

(matrix generation/application from the
previous slide)

MAGMA 1.0

MAGMA BLAS

l Subset of BLAS for a single NVIDIA GPU
l Optimized for MAGMA specific

algorithms
l To complement CUBLAS on special

cases

1. Xgemv_tesla General matrix-vector product for Tesla

2. Xgemv_fermi General matrix-vector product for Fermi

3. Xsymv_ tesla Symmetric matrix-vector product for Tesla

4. Xsymv_fermi Symmetric matrix-vector product for Fermi

Level 2 BLAS

MAGMA BLAS

5. Xgemm_tesla General matrix-matrix product for Tesla

6. Xgemm_fermi General matrix-matrix product for Fermi

7. Xtrsm_ tesla Solves a triangular matrix problem on Tesla

8. Xtrsm_fermi Solves a triangular matrix problem on Fermi

9. Xsyrk_tesla Symmetric rank k update for Tesla

10. Xsyr2k_tesla Symmetric rank 2k update for Tesla

Level 3 BLAS

u CUBLAS GEMMs for Fermi are based on the
MAGMA implementation

u Further improvements
– BACUGen - Autotuned GEMM for Fermi (J.Kurzak)
– ZGEMM from 308 Gflop/s is now 341 Gflop/s

MAGMA BLAS

Other routines
11. Xswap LU factorization; CPU interface

12. Xlacpy LU factorization; GPU interface

13. Xlange LU factorization on multicore (no GPUs)

14. Xlanhe Cholesky factorization; CPU interface

15. Xtranspose Cholesky factorization; GPU interface

16. Xinplace_transpose Cholesky factorization on multicore (no GPUs)

17. Xpermute QR factorization; CPU interface

18. Xauxiliary QR factorization; GPU interface; with T matrices stored

MAGMA BLAS

Methodology overview

Methodology overview

u MAGMA uses HYBRIDIZATION methodology based on
– Representing linear algebra algorithms as collections

of TASKS and DATA DEPENDENCIES among them
– Properly SCHEDULING tasks' execution over

multicore and GPU hardware components

u Successfully applied to fundamental
linear algebra algorithms
– One and two-sided factorizations and solvers
– Iterative linear and eigen-solvers

u Productivity
– High-level
– Leveraging prior developments
– Exceeding in performance homogeneous solutions

Hybrid CPU+GPU algorithms
(small tasks for multicores and large

tasks for GPUs)

Statically Scheduled One-Sided Factorizations
(LU, QR, and Cholesky)

u Hybridization
– Panels (Level 2 BLAS) are factored on CPU using LAPACK
– Trailing matrix updates (Level 3 BLAS) are done on the

GPU using “look-ahead”

u Note
– Panels are memory bound but are only O(N2) flops and can be overlapped

with the O(N3) flops of the updates
– In effect, the GPU is used only for the high-performance Level 3 BLAS

updates,
i.e., no low performance Level 2 BLAS is scheduled on the GPU

A hybrid algorithm example

u Left-looking hybrid Cholesky factorization in MAGMA 1.0

u The difference with LAPACK – the 3 additional lines in red

u Line 10 (done on CPU) is overlapped with work on the GPU (line 7)

Hybrid algorithms

1 2 3 4 5 6 7 8 9 10
0

40

80

120

160

200

240

280

320

MAGMA
MKL 8 cores
MKL 1 core

GPU : NVIDIA GeForce GTX 280 (240 cores @ 1.30GHz) GPU BLAS : CUBLAS 2.2, sgemm peak: 375 GFlop/s
CPU : Intel Xeon dual socket quad-core (8 cores @2.33 GHz) CPU BLAS : MKL 10.0 , sgemm peak: 128 GFlop/s

1 2 3 4 5 6 7 8 9 10
0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

Overhead
CPU
CPU+GPU
GPU

Ti
m

e

G
Fl

op
/s

QR factorization in single precision arithmetic, CPU interface
Performance of MAGMA vs MKL MAGMA QR time breakdown

[for more performance data, see http://icl.cs.utk.edu/magma]

Matrix size x 1000 Matrix size x 1000

http://icl.cs.utk.edu/magma

Results – one sided factorizations

FERMI Tesla C2050: 448 CUDA cores @ 1.15GHz
SP/DP peak is 1030 / 515 GFlop/s

ISTANBUL AMD 8 socket 6 core (48 cores) @2.8GHz
SP/DP peak is 1075 / 538 GFlop/s

LU Factorization in double precision

Similar results for Cholesky & QR
Fast solvers (several innovations)
- in working precision, and
- mixed-precision iter. refinement
based on the one-sided factor.1024 3072 5184 7040 9088

0

40

80

120

160

200

240 FERMI MAGMA
ISTANBUL:
 PLASMA
 MKL 11.0
 LAPACK

Matrix Size

G
Fl

op
/s

48/28

Mixed Precision Methods

Mixed Precision Methods

• Mixed precision, use the lowest
precision required to achieve a given
accuracy outcome
§ Improves runtime, reduce power

consumption, lower data movement

§ Reformulate to find correction to
solution, rather than solution
[Δx rather than x].

Idea Goes Something Like This…
• Exploit 32 bit floating point as much as

possible.
§ Especially for the bulk of the computation

• Correct or update the solution with selective
use of 64 bit floating point to provide a
refined results

• Intuitively:
§ Compute a 32 bit result,

§ Calculate a correction to 32 bit result using
selected higher precision and,

§ Perform the update of the 32 bit results with the
correction using high precision.

L U = lu(A) SINGLE O(n3)
x = L\(U\b) SINGLE O(n2)
r = b – Ax DOUBLE O(n2)
WHILE || r || not small enough

z = L\(U\r) SINGLE O(n2)
x = x + z DOUBLE O(n1)
r = b – Ax DOUBLE O(n2)

END

Mixed-Precision Iterative Refinement
• Iterative refinement for dense systems, Ax = b, can work this

way.

§ Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt
results when using DP fl pt.

L U = lu(A) SINGLE O(n3)
x = L\(U\b) SINGLE O(n2)
r = b – Ax DOUBLE O(n2)
WHILE || r || not small enough

z = L\(U\r) SINGLE O(n2)
x = x + z DOUBLE O(n1)
r = b – Ax DOUBLE O(n2)

END

• Iterative refinement for dense systems, Ax = b, can work this
way.

§ Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt
results when using DP fl pt.

§ It can be shown that using this approach we can compute the solution
to 64-bit floating point precision.

• Requires extra storage, total is 1.5 times normal;
• O(n3) work is done in lower precision
• O(n2) work is done in high precision
• Problems if the matrix is ill-conditioned in sp; O(108)

Mixed-Precision Iterative Refinement

Results – linear solvers

FERMI Tesla C2050: 448 CUDA cores @ 1.15GHz
SP/DP peak is 1030 / 515 GFlop/s

MAGMA LU-based solvers on Fermi (C2050)

960 3200 5120 7040 8960 11200 13120
0

50

100

150

200

250

300

350

400

450

500
Single Prec
Double Prec
Iter Ref

Matrix size

G
Fl

op
/s

Similar results for Cholesky & QR

56

Two-sided matrix factorizations

Used in singular-value and eigen-value problems

LAPACK-based two-sided factorizations are rich in Level 2 BLAS and
therefore can not be properly accelerated on multicore CPUs

We developed hybrid algorithms exploring GPUs' high bandwidth

1000 2000 3000 4000 5000 6000 7000
0

10

20

30

40

50

60

70

GPU vs CPU GEMV

GPU SGEMV
GPU DGEMV
CPU SGEMV
CPU DGEMV

Matrix size

G
Fl

op
/s

GPU: GTX280 (240 cores @ 1.30GHz, 141 GB/s)
CPU: 2 x 4 cores Intel Xeon @ 2.33GHz, 10.4 GB/s)

High-performance CUDA kernels were developed
for various matrix-vector products
[e.g., ssymv reaching up to 102 Gflop/s for the
symmetric eigenvalue problem]

Statically Scheduled Two-Sided Factorizations
[Hessenber, tridiagonal, and bidiagonal reductions]

u Hybridization
– Trailing matrix updates (Level 3 BLAS) are done on the GPU

(similar to the one-sided factorizations)
– Panels (Level 2 BLAS) are hybrid

– operations with memory footprint restricted to the panel are done on CPU
– The time consuming matrix-vector products involving the entire trailing

matrix are done on the GPU

u Note
– CPU-to-GPU communications and subsequent computations always stay in

surface-to-volume ratio

59

Results – two sided factorizations

FERMI Tesla C2050: 448 CUDA cores @ 1.15GHz
SP/DP peak is 1030 / 515 Gflop/s
[system cost ~ $3,000]

ISTANBUL AMD 8 socket 6 core (48 cores) @2.8GHz
SP/DP peak is 1075 / 538 Gflop/s
[system cost ~ $30,000]

Hessenberg Factorization in double precision
[for the general eigenvalue problem]

Similar accelerations for the
bidiagonal factorization [for SVD] &
tridiagonal factorization [for the
symmetric eigenvalue problem]

Similar acceleration (exceeding 10x)
compared to other top-of-the-line
multicore systems (including
Nehalem-based) and libraries
(including MKL, ACML)

1024 2048 3072 4032 5184 6016 7040 8064
0

10
20
30
40
50
60
70
80
90

FERMI MAGMA
LAPACK +
GOTO BLAS

Matrix Size

G
Fl

op
/s

61

62

MAGMA BLAS

MAGMA BLAS

• Performance critically depend on
BLAS

• How to develop fast CUDA BLAS?
• GEMM and SYMV examples

576 1152 1728 2304 2880 3456 4032 4608 5184 5760
0

100

200

300

400

500

600

700

800

MAGMA
M3 CGEMM
MAGMA
CUBLAS 3.1

Matrix size

G
F

lo
p/

s

GEMM for Fermi

63% of peak

CUBLAS 3.2 GEMM are based on these kernels
TRSM and other Level 3 BLAS based on GEMM
Auto-tuning has become more important

- e.g., for BLAS, for higher-level hybrid algorithms, and for an OpenCL port

512 1024 1536 2048 2560 3072 3584 4096
0

50

100

150

200

250

300

350

400

MAGMA
M3 ZGEMM
MAGMA
CUBLAS 3.1

Matrix Size

G
F

lo
p/

s

DGEMM and M3 ZGEMMSGEMM and M3 CGEMM

Tesla C2050 (Fermi): 448 CUDA cores @ 1.15GHz, theoretical SP peak is 1.03 Tflop/s, DP is 515 GFlop/s)

58% of peak

Autotuning

BACUGen – autotuning of GEMM

C = α A B + β C

u Two levels of parallelism
u Grid of thread blocks

[coarse-level data parallelism]
u Thread block

[fine-level parallelism within
a block]

u Parameterized template to
generate many versions

u including shared memory
and register blocking

u Empirically find the “best” version

Top-level view of the algorithm

(J. Kurzak, UTK)

BACUGen – autotuning of GEMM

u Parallelism in a thread block
[blockDim.x x blockDim.y threads]

u A thread in this example computes
6 elements

u Register blocking
u In this example:

2 + 3 elements are loaded in
registers (from shared memory)
and reused in
2 x 3 multiply-adds

Thread-level view of the algorithm

BACUGen – autotuning of GEMM

u Number of variants
generated and tested

BACUGen – autotuning of GEMM

u Performance on Fermi
(C2050) in Gflop/s

u ZGEMM improved significantly
compared to CUBLAS

u from 308 to 341 Gflop/s

u Improvement up to 2x on
some specific matrices
(e.g., of “rectangular” shape)

SYMV example

• Memory bound kernel
n2 sizeof(data_type) B -> 2 n2 flops
=> theoretical SSYMV peak on a 142 GB/s bus (e.g., in GTX280)

is 142 Gflop/s

• “Irregular” data accesses

• O(1) Gflop/s with CUBLAS
§ What can be done?

y = α A x + β y, where A is a symmetric matrix

SYMV example

• Explore the symmetry
N2 / NB work space

=

A x y

1 2 3 4 5 6

=+ + + + +

1 2 3 4 5 6

x1

x3A31 A31 x1

A’31x3

NB

SYMV example
Performance of SSYMV on GTX280

Matrix size

Multicore + multi-GPU algorithms

Multicore + multi-GPU algorithms

• Reuse already developed kernels
§ Hybrid MAGMA 1.0 for single GPU
§ PLASMA for multticore

• Use run time system to schedule
(dynamically) the kernels’ execution
§ StarPU
§ QUARK (from PLASMA)
§ …

Parallel
Compilers

HPC Applications

Runtime system

Operating System

CPU

Parallel Librariesl do dynamically what
would be difficult to do
statically

l Library that provides
- Task scheduling
- Memory management

The need for runtime systems

GPU …

The StarPU runtime system

http://runtime.bordeaux.inria.fr/StarPU/

http://runtime.bordeaux.inria.fr/StarPU/

Productivity

// Sequential Tile Cholesky

FOR k = 0..TILES-1

DPOTRF(A[k][k])

FOR m = k+1..TILES-1

DTRSM(A[k][k], A[m][k])

FOR n = k+1..TILES-1

DSYRK(A[n][k], A[n][n])

FOR m = n+1..TILES-1

DGEMM(A[m][k], A[n][k], A[m][n])

// Hybrid Tile Cholesky

FOR k = 0..TILES-1

starpu_Insert_Task(DPOTRF, …)
FOR m = k+1..TILES-1

starpu_Insert_Task(DTRSM, …)
FOR n = k+1..TILES-1

starpu_Insert_Task(DSYRK, …)
FOR m = n+1..TILES-1

starpu_Insert_Task(DGEMM, …)

u Develop parallel multicore + multiGPU algorithms from
sequential algorithms

u Example to be given w/ QUARK scheduler (in PART II)

Performance scalability
Statistics for codelet spotrf

CUDA 0 (Quadro FX 5800) -> 3 / 36 (8.33 %)
CUDA 1 (Quadro FX 5800) -> 1 / 36 (2.78 %)
CUDA 2 (Quadro FX 5800) -> 3 / 36 (8.33 %)
CPU 0 -> 6 / 36 (16.67 %)
CPU 1 -> 9 / 36 (25.00 %)
CPU 2 -> 4 / 36 (11.11 %)
CPU 3 -> 6 / 36 (16.67 %)
CPU 4 -> 4 / 36 (11.11 %)

Statistics for codelet ssyrk
CUDA 0 (Quadro FX 5800) -> 41 / 630 (6.51 %)
CUDA 1 (Quadro FX 5800) -> 40 / 630 (6.35 %)
CUDA 2 (Quadro FX 5800) -> 49 / 630 (7.78 %)
CPU 0 -> 105 / 630 (16.67 %)
CPU 1 -> 85 / 630 (13.49 %)
CPU 2 -> 105 / 630 (16.67 %)
CPU 3 -> 102 / 630 (16.19 %)
CPU 4 -> 103 / 630 (16.35 %)

Statistics for codelet strsm
CUDA 0 (Quadro FX 5800) -> 125 / 630 (19.84 %)
CUDA 1 (Quadro FX 5800) -> 127 / 630 (20.16 %)
CUDA 2 (Quadro FX 5800) -> 122 / 630 (19.37 %)
CPU 0 -> 50 / 630 (7.94 %)
CPU 1 -> 52 / 630 (8.25 %)
CPU 2 -> 52 / 630 (8.25 %)
CPU 3 -> 54 / 630 (8.57 %)
CPU 4 -> 48 / 630 (7.62 %)

Statistics for codelet sgemm
CUDA 0 (Quadro FX 5800) -> 2258 / 7140 (31.62 %)
CUDA 1 (Quadro FX 5800) -> 2182 / 7140 (30.56 %)
CUDA 2 (Quadro FX 5800) -> 2261 / 7140 (31.67 %)
CPU 0 -> 87 / 7140 (1.22 %)
CPU 1 -> 94 / 7140 (1.32 %)
CPU 2 -> 85 / 7140 (1.19 %)
CPU 3 -> 85 / 7140 (1.19 %)
CPU 4 -> 88 / 7140 (1.23 %)

Performance of Cholesky factorization in SP

SGEMM
gpu : 333.04 GFlop/s
cpu : 20.06 GFlop/s
STRSM

gpu : 59.46 GFlop/s
cpu : 18.96 GFlop/s
SSYRK

gpu : 298.74 GFlop/s
cpu : 19.50 GFlop/s
SPOTRF

gpu : 57.51 GFlop/s
cpu : 17.45 GFlop/s

- 5 CPUs (Nehalem)
+ 3 GPUs (FX5800)

- Efficiency > 100%

l QR factorization

- System: 16 CPUs (AMD) + 4 GPUs (C1060)

PLASMA & MAGMA with StarPU

79/34

Scheduling using QUARK
u Register tasks & dependencies in

QUARK (similar to StarPU)

u Need a layer/mechanism to handle
CPU-GPU communications

u Use MAGMA and LAPACK/ScaLAPACK

A QR for GPU + Multicore

Hybrid QR factorization trace for matrix of size 3360 x 3360

u Parallel, dynamically scheduled panel
factorizations (w/ QUARK) on multicore

u Parallel updates on multicore

u Parallel updates on GPU

A QR for GPU + Multicore

Current and future work

Sparse iterative solvers

u The hybridization approach naturally
works
[e.g., Richardson iteration in mixed-
precision
iterative refinement solvers, Krylov space
iterative solvers and eigen-solvers]

u Fast sparse matrix-vector product on
Fermi

u Explore ideas to reduce communication
[e.g., mixed precision, reduced storage
for integers for the indexing, etc.]

u Need high bandwidth

Current and future work

u Hybrid algorithms
- Further expend functionality
- New highly parallel algorithms of optimized communication

and synchronization

u OpenCL support
- To be derived from OpenCL BLAS

u Autotuning framework
- On both high level algorithms & BLAS

u Multi-GPU algorithms
- StarPU scheduling

DPLASMA (Work in progress)
• Provide a framework for distributed execution

of a DAG

§ Taking in account the properties of the
hardware and the network (cores and
accelerators)

§ Minimizing the impact on the system (CPU
and memory waste)

• Let the user describe the algorithms based on
data dependencies between tasks

§ Language to be defined

DPLASMA

• Distribute the DAG analysis
§ The DAG is never completely unrolled
§ Each node only unrolls it’s own portion

of the DAG

• Minimize the data transfers
• Overlap communication and

computations
• Many possible extensions on the

scheduling

Conclusions

u Linear and eigenvalue solvers can be significantly
accelerated on systems of multicore and GPU
architectures

u Many-core architectures with accelerators (e.g., GPUs)
are the future of high performance scientific computing

u Challenge: Fundamental libraries will need to be
redesigned/rewritten to take advantage of the emerging
many-core architectures

Collaborators / Support

u MAGMA [Matrix Algebra on GPU
and Multicore Architectures] team
http://icl.cs.utk.edu/magma/

u PLASMA [Parallel Linear Algebra
for Scalable Multicore
Architectures] team
http://icl.cs.utk.edu/plasma

u Collaborating partners
University of Tennessee, Knoxville
University of California, Berkeley
University of Colorado, Denver

INRIA, France
KAUST, Saudi Arabia

http://icl.cs.utk.edu/magma/
http://icl.cs.utk.edu/plasma

