

MAGMAMAGMA
 LAPACK for GPUs LAPACK for GPUs

Stan Tomov
Research Director

Innovative Computing Laboratory
Department of Computer Science

University of Tennessee, Knoxville

Keeneland GPU Tutorial 2011, Atlanta, GA
April 14-15, 2011

Outline

Motivation

MAGMA 1.0 – LAPACK for GPUs

Overview

Using MAGMA

Methodology

Performance

Current & future work directions

Conclusions

 3/28

Hardware Trends

Power consumption and the
move towards multicore

Hybrid architectures

GPU

Hybrid GPU-based systems

CPU and GPU to get integrated
(NVIDIA to make ARM CPU
 cores alongside GPUs)

DMA

PCI-e 3.0

7.5 GB/s

x86 host

 host
memory

 4/28

A New Generation of Algorithms

 MAGMA
 Hybrid Algorithms
 (heterogeneity friendly)

Rely on
 - hybrid scheduler (of DAGs)
 - hybrid kernels
 (for nested parallelism)
 - existing software infrastructure

 5/28

Matrix Algebra on GPU and Multicore Architectures
(MAGMA)

MAGMA: a new generation linear algebra (LA) libraries to achieve the fastest possible time to
 an accurate solution on hybrid/heterogeneous architectures
Homepage: http://icl.cs.utk.edu/magma/

MAGMA & LAPACK

– MAGMA uses LAPACK (on the CPUs) and extends its functionality to hybrid systems (GPU support);

– MAGMA is designed to be similar to LAPACK in functionality, data storage and interface

– MAGMA leverages years of experience in developing open source LA software packages like
LAPACK, ScaLAPACK, BLAS, ATLAS, and PLASMA

MAGMA developers/collaborators

– University of Tennessee, Knoxville; University of California, Berkeley; University of Colorado, Denver

– INRIA Bordeaux - Sud Ouest, France; INRIA Paris – Saclay, France; KAUST, Saudi Arabia

http://icl.cs.utk.edu/magma/

 6/28

MAGMA 1.0 RC5

32 algorithms are developed (total – 122 routines)

Every algorithm is in 4 precisions (s/c/d/z, denoted by X)

There are 3 mixed precision algorithms (zc & ds, denoted by XX)

These are hybrid algorithms

Expressed in terms of BLAS

Support is for single CUDA-enabled NVIDIA GPU,
either Tesla or Fermi

MAGMA BLAS

A subset of GPU BLAS, optimized for Tesla and Fermi GPUs

 7/28

MAGMA 1.0

1. Xgetrf LU factorization; CPU interface

2. Xgetrf_gpu LU factorization; GPU interface

3. Xgetrf_mc LU factorization on multicore (no GPUs)

4. Xpotrf Cholesky factorization; CPU interface

5. Xpotrf_gpu Cholesky factorization; GPU interface

6. Xpotrf_mc Cholesky factorization on multicore (no GPUs)

7. Xgeqrf QR factorization; CPU interface

8. Xgeqrf_gpu QR factorization; GPU interface; with T
matrices stored

9. Xgeqrf2_gpu QR factorization; GPU interface; without T
matrices

10. Xgeqrf_mc QR factorization on multicore (no GPUs)

11. Xgeqrf2 QR factorization; CPU interface

12. Xgeqlf QL factorization; CPU interface

13. Xgelqf LQ factorization; CPU interface

One-sided factorizations

 8/28

MAGMA 1.0

14. Xgetrs_gpu Work precision; using LU factorization; GPU interface

15. Xpotrs_gpu Work precision; using Cholesky factorization; GPU interface

16. Xgels_gpu Work precision LS; GPU interface

17. XXgetrs_gpu Mixed precision iterative refinement solver;
Using LU factorization; GPU interface

18. XXpotrs_gpu Mixed precision iterative refinement solver;
Using Cholesky factorization; GPU interface

19. XXgeqrsv_gpu Mixed precision iterative refinement solver;
Using QR on square matrix; GPU interface

Linear solvers

 9/28

MAGMA 1.0

20. Xgehrd Reduction to upper Hessenberg form;
with T matrices stored; CPU interface

21. Xgehrd2 Reduction to upper Hessenberg form;
Without the T matrices stored; CPU interface

22. Xhetrd Reduction to tridiagonal form; CPU interface

23. Xgebrd Reduction to bidiagonal form; CPU interface

Two-sided factorizations

 10/28

MAGMA 1.0

24. Xungqr Generates Q with orthogonal columns as the product of
elementary reflectors (from Xgeqrf); CPU interface

25. Xungqr_gpu Generates Q with orthogonal columns as the product of
elementary reflectors (from Xgeqrf_gpu); GPU interface

26. Xunmtr Multiplication with the orthogonal matrix, product of
elementary reflectors from Xhetrd; CPU interface

27. Xunmqr Multiplication with orthogonal matrix, product of elementary
reflectors from Xgeqrf; CPU interface

28. Xunmqr_gpu Multiplication with orthogonal matrix, product of elementary
reflectors from Xgeqrf_gpu; GPU interface

29. Xunghr Generates Q with orthogonal columns as the product of
elementary reflectors (from Xgehrd); CPU interface

Generating/applying orthogonal matrices

 11/28

MAGMA 1.0

30. Xgeev Solves the non-symmetric eigenvalue problem;
CPU interface

31. Xheevd Solves the Hermitian eigenvalue problem;
Uses devide and conquer; CPU interface

32. Xgesvd SVD; CPU interface

Eigen/singular-value solvers

Currently, these routines have
GPU-acceleration for the

– two-sided factorizations used and the

– Orthogonal transformation related to them
(matrix generation/application from slide 9)

 12/28

MAGMA BLAS

1. Xgemv_tesla General matrix-vector product for Tesla

2. Xgemv_fermi General matrix-vector product for Fermi

3. Xsymv_ tesla Symmetric matrix-vector product for Tesla

4. Xsymv_fermi Symmetric matrix-vector product for Fermi

Level 2 BLAS

 13/28

MAGMA BLAS

5. Xgemm_tesla General matrix-matrix product for Tesla

6. Xgemm_fermi General matrix-matrix product for Fermi

7. Xtrsm_ tesla Solves a triangular matrix problem on Tesla

8. Xtrsm_fermi Solves a triangular matrix problem on Fermi

9. Xsyrk_tesla Symmetric rank k update for Tesla

10. Xsyr2k_tesla Symmetric rank 2k update for Tesla

Level 3 BLAS

CUBLAS GEMMs for Fermi are based on the
MAGMA implementation

Further improvements
– BACUGen - Autotuned GEMM for Fermi (J.Kurzak)
– ZGEMM from 308 Gflop/s is now 341 Gflop/s

 14/28

MAGMA BLAS
Other routines

11. Xswap LU factorization; CPU interface

12. Xlacpy LU factorization; GPU interface

13. Xlange LU factorization on multicore (no GPUs)

14. Xlanhe Cholesky factorization; CPU interface

15. Xtranspose Cholesky factorization; GPU interface

16. Xinplace_transpose Cholesky factorization on multicore (no GPUs)

17. Xpermute QR factorization; CPU interface

18. Xauxiliary QR factorization; GPU interface; with T matrices stored

 15/28

Download

Download MAGMA 1.0 RC5

http://icl.cs.utk.edu/magma/software/

and get file magma_1.0.0-rc5.tar.gz

Prerequisites
LAPACK
BLAS
CUDA Toolkit

http://icl.cs.utk.edu/magma/software/

 16/28

Compile

Provided are Makefiles for Linux | MacOS

Modify make.inc in the main MAGMA directory
specifying the GPU family and the locations of the host LAPACK,
host BLAS, and CUDA, e.g.,

GPU_TARGET specifies for which GPU you want to compile MAGMA
0: Tesla family
1: Fermi Family
GPU_TARGET = 1
…
LIB = -lmkl_em64t -lguide -lpthread -lcublas -lcudart -lm
CUDADIR = /mnt/scratch/cuda-4.0.11rc
LIBDIR = -L/home/tomov/intel/mkl/10.0.1.014/lib/em64t -L$(CUDADIR)/lib64
...

See examples make.inc.[acml | mkl | goto | atlas | accelerate | shared]

 17/28

Using MAGMA 1.0 RC5

Documentation
http://icl.cs.utk.edu/magma/docs/
[generated by Doxygen]

Examples in directory testing, e.g.,
> testing_dgeqrf_gpu
device 0: Tesla C2050, 1147.0 MHz clock, 3071.7 MB memory
device 1: Quadro NVS 290, 918.0 MHz clock, 255.7 MB memory

Usage:
testing_dgeqrf_gpu -M 1024 -N 1024

 M N CPU GFlop/s GPU GFlop/s ||R||_F / ||A||_F
================== ==========================
1024 1024 24.20 51.44 2.040039e-15
2048 2048 26.51 111.74 2.662709e-15
3072 3072 27.50 151.65 3.256163e-15
4032 4032 29.96 183.02 3.546103e-15
...

http://icl.cs.utk.edu/magma/docs/

 18/28

FORTRAN Interface

● Example in testing_[zcds]getrf[_gpu]_f.f90
 ...
 magma_devptr_t :: devptrA, devptrB
 …
!------ Allocate GPU memory
 stat = cublas_alloc(ldda*n, sizeof_complex, devPtrA)
 …
!---- devPtrA = h_A
 call cublas_set_matrix(n, n, size_of_elt, h_A, lda, devptrA, ldda)
 …
 call magmaf_cgetrf_gpu(n, n, devptrA, ldda, ipiv, info)

 19/28

Methodology overview

MAGMA uses HYBRIDIZATION methodology based on
Representing linear algebra algorithms as collections
of TASKS and DATA DEPENDENCIES among them

Properly SCHEDULING tasks' execution over
multicore and GPU hardware components

Successfully applied to fundamental
linear algebra algorithms

One and two-sided factorizations and solvers

Iterative linear and eigen-solvers

Productivity
High-level

Leveraging prior developments

Exceeding in performance homogeneous solutions

Hybrid CPU+GPU algorithms
(small tasks for multicores and large
 tasks for GPUs)

Hybrid CPU+GPU algorithms
(small tasks for multicores and large
 tasks for GPUs)

 20/28

Statically Scheduled One-Sided Factorizations
(LU, QR, and Cholesky)

Hybridization
Panels (Level 2 BLAS) are factored on CPU using LAPACK

Trailing matrix updates (Level 3 BLAS) are done on the
GPU using “look-ahead”

Note

Panels are memory bound but are only O(N2) flops and can be overlapped
with the O(N3) flops of the updates

In effect, the GPU is used only for the high-performance Level 3 BLAS updates,
i.e., no low performance Level 2 BLAS is scheduled on the GPU

 21/28

A hybrid algorithm example

Left-looking hybrid Cholesky factorization in MAGMA

The difference with LAPACK – the 3 additional lines colored in red

Line 10 (done on CPU) is overlapped with work on the GPU (line 7)

 22/28

Results – one sided factorizations

FERMI Tesla C2050: 448 CUDA cores @ 1.15GHz
 SP/DP peak is 1030 / 515 GFlop/s

ISTANBUL AMD 8 socket 6 core (48 cores) @2.8GHz
 SP/DP peak is 1075 / 538 GFlop/s

LU Factorization in double precision

 Similar results for Cholesky & QR
 Fast solvers (several innovations)

 - in working precision, and
 - mixed-precision iter. refinement
 based on the one-sided factor.1024 3072 5184 7040 9088

0

40

80

120

160

200

240 FERMI MAGMA
ISTANBUL:
 PLASMA
 MKL 11.0
 LAPACK

Matrix Size

G
F

lo
p

/s

 23/28

 24/28

Results – linear solvers

FERMI Tesla C2050: 448 CUDA cores @ 1.15GHz
 SP/DP peak is 1030 / 515 GFlop/s

MAGMA LU-based solvers on Fermi (C2050)

960 3200 5120 7040 8960 11200 13120
0

50

100

150

200

250

300

350

400

450

500
Single Prec
Double Prec
Iter Ref

Matrix size

G
F

lo
p/

s

 25/28

Statically Scheduled Two-Sided Factorizations
[Hessenber, tridiagonal, and bidiagonal reductions]

Hybridization
Trailing matrix updates (Level 3 BLAS) are done on the GPU
(similar to the one-sided factorizations)

Panels (Level 2 BLAS) are hybrid
– operations with memory footprint restricted to the panel are done on CPU
– The time consuming matrix-vector products involving the entire trailing
 matrix are done on the GPU

Note
CPU-to-GPU communications and subsequent computations always stay in
surface-to-volume ratio

 26/28

Results – two sided factorizations

FERMI Tesla C2050: 448 CUDA cores @ 1.15GHz
 SP/DP peak is 1030 / 515 Gflop/s
 [system cost ~ $3,000]

ISTANBUL AMD 8 socket 6 core (48 cores) @2.8GHz
 SP/DP peak is 1075 / 538 Gflop/s
 [system cost ~ $30,000]

Hessenberg Factorization in double precision
[for the general eigenvalue problem]

 Similar accelerations for the
 bidiagonal factorization [for SVD] &
 tridiagonal factorization [for the
 symmetric eigenvalue problem]

 Similar acceleration (exceeding 10x)
 compared to other top-of-the-line
 multicore systems (including
 Nehalem-based) and libraries
 (including MKL, ACML)

1024 2048 3072 4032 5184 6016 7040 8064
0

10
20
30
40
50
60
70
80
90

FERMI MAGMA
LAPACK +
GOTO BLAS

Matrix Size

G
F

lo
p

/s

Results – two sided factorizationsResults – two sided factorizations

 27/28

Current and future work

Hybrid algorithms
– Further expend functionality

– New highly parallel algorithms of optimized communication and
synchronization

OpenCL support
– To be derived from OpenCL BLAS

Autotuning framework
– On both high level algorithms & BLAS

Multi-GPU algorithms
– StarPU scheduling

 28/28

Conclusions

Linear and eigenvalue solvers can be significantly
accelerated on systems of multicore and GPU
architectures

Many-core architectures with accelerators (e.g., GPUs) are the
future of high performance scientific computing

Challenge: Fundamental libraries will need to be
redesigned/rewritten to take advantage of the emerging
many-core architectures

Collaborators / Support

MAGMA [Matrix Algebra on GPU
and Multicore Architectures] team
http://icl.cs.utk.edu/magma/

PLASMA [Parallel Linear Algebra
for Scalable Multicore
Architectures] team
http://icl.cs.utk.edu/plasma

Collaborating partners

University of Tennessee, Knoxville
University of California, Berkeley
University of Colorado, Denver

INRIA, France
KAUST, Saudi Arabia

http://icl.cs.utk.edu/magma/
http://icl.cs.utk.edu/plasma

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

