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Current climate models have a limited ability to increase spatial resolution because numer-
ical stability requires the time step to decrease. We describe a semi-Lagrangian method for
tracer transport that is stable for arbitrary Courant numbers, and we test a parallel imple-
mentation discretized on the cubed sphere. The method includes a fixer that conserves
mass and constrains tracers to a physical range of values. The method shows third-order
convergence and maintains nonlinear tracer correlations to second order. It shows optimal
accuracy at Courant numbers of 10–20, more than an order of magnitude higher than expli-
cit methods. We present parallel performance in terms of strong scaling, weak scaling, and
spatial scaling (where the time step stays constant while the resolution increases). For a
0.2� test with 100 tracers, the implementation scales efficiently to 10,000 MPI tasks.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

The complexity and resolution of global climate models has increased greatly over the past half a century, and climate
scientists have experienced adequate throughput from these models because of commensurate increases in the capability
of high-performance computers. Climate models currently rely on explicit and semi-implicit time integrators, where the
time step of the dynamics must shrink to maintain numerical stability as resolution increases. Decreasing time steps have
not been a dominant issue in climate simulation because resolutions have been relatively coarse and high-performance com-
puters have increased exponentially in performance [1].

The decrease in time step with increasing resolution is emerging as a challenging barrier to scientific progress, however,
for two main reasons. The first reason concerns the evolution of climate models; increasing resolution is now forcing the
time step needed for stability of the dynamics to be significantly smaller than the time step needed to resolve the dominant
physical processes [2]. The second reason is technological; until recently, the exponential increase in the number of transis-
tors on an integrated circuit, Moore’s Law, has translated into an exponential increase in the performance of a single thread
of execution on a computer. Though the transistor density of computer chips continues to grow exponentially, the perfor-
mance of a single thread has stalled. Instead computer chips are growing in parallelism, with more processor cores, longer
vector instructions, and multi-threading [3]. Greater parallelism allows increases in spatial resolution while maintaining
throughput, but it does not mitigate reductions in time step.
. All rights reserved.
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Increases in resolution typically benefit a physical model in two ways, by increasing the accuracy of numerical approx-
imations and by resolving finer-scale features. Climate models may currently have greater need for the latter, to resolve
topography and physical features such as clouds, while the time scales of the dynamics of interest remain well above the
time step required for numerical stability. This need for spatial detail, combined with the growing availability of parallelism
in high-performance computers while single-thread performance stagnates, motivates the development of methods that al-
low increases in spatial resolution without requiring equivalent decreases in time step. Increasing resolution without
decreasing the time step at all may provide little benefit in accuracy, but some current methods can force the time step down
for numerical stability well beyond the level needed for the desired accuracy. We explore a method that allows arbitrary
time steps and is most accurate at relatively high Courant numbers [4].

Previous generations of climate models used methods that could allow long time steps, such as semi-Lagrangian (or arbi-
trary Lagrangian–Eulerian) spectral methods [5]. Ironically, models have since moved to explicit methods partly in an at-
tempt to improve scalability on parallel computers [6,7]. Parallel implementations of semi-Lagrangian spectral methods
do exist [8], but the computational cost of the spectral transform that the methods rely on grows super-linearly with the
number of grid points, a growing issue at very high resolution.

As an initial step towards improving full climate models, we investigate two-dimensional tracer transport on the sphere.
Tracer transport is an important part of atmospheric models, and it grows in importance as the complexity of physical and
chemical processes increases in the model. Greater physical fidelity in atmospheric chemistry, the carbon cycle, the sulfur
cycle, etc. leads to increases in the number of tracers transported by the dynamics [9].

Global climate models are moving from longitude–latitude horizontal grids to other spherical grids with more-homogenous
grid spacing, no singularities, and better suitability for parallel computers. In particular, a growing number of major climate
models now support the cubed–sphere grid [5,10,11], and a variety of tracer-transport methods target the cubed sphere,
including explicit methods using finite-volume [6], spectral-element [7], and discontinuous-Galerkin spatial discretizations
[12], along with semi-Lagrangian methods using finite-volume discretizations [13,14].

Our target is a method with a linear increase in total computational cost as the number of grid points increases, where the
method can efficiently spread that cost across parallel tasks to allow resolution increases at nearly constant throughput.
Important elements of this method include a semi-Lagrangian formulation, which is numerically stable for large Courant
numbers, and the cubed–sphere grid, which allows efficient decomposition into parallel tasks and localized computation
of Lagrangian-parcel trajectories.

Desirable features of tracer-transport methods for climate modeling include highly accurate mass conservation and
shape preservation. Climate models often run for a century or more of simulated time, which drives the conservation
requirement for long-lived tracers. Within this context, ‘‘shape preservation’’ refers to the avoidance of overshoots and
undershoots near discontinuous features. We distinguish two negative consequences of overshoots and undershoots,
where the first is the inaccuracy associated with the numerically generated waves that do not represent physical flows.
A secondary consequence is that undershoots can generate small negative values for non-negative physical fields, and
these negative values can cause failures (‘‘crashes’’) in physical parameterizations [15]. We investigate ‘‘range preserva-
tion’’, which targets this secondary problem without fully addressing the first. Conservation and shape or range preserva-
tion can be challenging to implement, and different strategies for maintaining them drive much of the variety and ongoing
innovation in tracer-transport methods.

Our semi-Lagrangian method conserves mass to the same order of accuracy as the computed state. Other methods, par-
ticularly finite-volume methods, conserve mass to near machine accuracy. Adding shape preservation to such methods, how-
ever, can decrease accuracy [13] or can add computational cost that increases with the Courant number because of the
resulting increase in the number of overlap areas requiring integration [14]. Instead of full shape preservation, we attack
only range preservation. Lin and Rood explore this strategy, for example, with their positive-definite locally conservative tra-
cer-transport method in [16].

Methods that do not locally conserve mass to machine accuracy often employ ‘‘fixers’’ that scale values based on global
integrals such that the integrals remain constant to within machine accuracy. Our method uses a fixer that maintains ma-
chine accuracy in global mass conservation, constrains the solution to the physical range of values, and minimally affects the
accuracy of the solution. The fixer adds a parallel-communication volume that increases linearly with the number of tracers
and is independent of the time step. It has a liability, however, that is common to all global fixers in a parallel context: it
requires global reductions. Parallel computers can have very efficient implementations of reductions, but the cost of reduc-
tions grows logarithmically with the number of processors, or at best remains nearly constant, so reductions eventually limit
parallel performance [17].

Section 2 describes our tracer-transport method, and Section 3 describes our mass fixer. The Workshop on Transport
Schemes on the Sphere, held at the National Center for Atmospheric Research March 30–31, 2011, prompted the creation
of a new suite of test cases that probes the accuracy, conservation, shape preservation, and mixing characteristics of
tracer-transport methods [18]. Section 4 provides the implementation details of these new tests for our method, along with
our results and comparisons with the existing results in [18–20]. Section 5 describes our parallel implementation, and
Section 6 provides measurements and analyses of parallel performance, including so-called ‘‘strong’’ and ‘‘weak’’ scaling,
along with ‘‘spatial’’ scaling, a variety of weak scaling that keeps the time step constant. Finally, Section 7 gives conclusions
and future prospects.



6780 J.B. White III, J.J. Dongarra / Journal of Computational Physics 230 (2011) 6778–6799
2. Transport method

We write the tracer transport equation in advective form as follows:
Ta
An
Ca
@/
@t
þ v � r/ ¼ D/

Dt
¼ 0; ð1Þ
where / is the tracer concentration per unit mass. For the surface of a sphere S, v is the two-dimensional horizontal wind
vector, and r is the two-dimensional gradient operator defined on S. D/Dt is the Lagrangian total derivative,
D
Dt
¼ @

@t
þ v � r: ð2Þ
We discretize the surface of the sphere using a cubed sphere [10]. Table 1 gives the angular face coordinates (a,b) in terms
of Cartesian coordinates (x,y,z) for each of the six cube faces forming the sphere. The discrete face coordinates are equi-
angular with range [�p/4,p/4]. The discretized tracer-concentration value /ijk has position
ai ¼ �
p
4
þ id; ð3Þ

bj ¼ �
p
4
þ jd; ð4Þ
on face k, where the angular spacing is
d ¼ p
2n

ð5Þ
for i, j = 0, . . . , n. Fig. 1 shows the grid for n = 30. Redundant points exist along face edges, so for example /001 = /n03 = /004.
To integrate Eq. (1) forward a single time step, the method first computes the past location of each point on the grid, its

‘‘departure point’’. In other words, for each grid point, the method computes the location at the previous time step of the
infinitesimal parcel that arrives at that grid point at the current time. Consider / = /(a(t),b(t), t) along a Lagrangian path
on a particular face of the cubed sphere. Expand the Lagrangian departure point in a Taylor series around small time step Dt.
ble 1
gular face coordinates of the cubed sphere in terms of Cartesian coordinates. The face numbers are arbitrary; the ‘‘Direction’’ column gives the
rtesian unit vector perpendicular to the center of the face, pointing towards that face from the center of the cubed sphere.

Face Direction a b

1 �k arctan(�x/z) arctan(y/z)
2 i arctan(y/x) arctan(z/x)
3 j arctan(�x/y) arctan(z/y)
4 �i arctan(y/x) arctan(�z/x)
5 �j arctan(�x/y) arctan(�z/y)
6 k arctan(x/z) arctan(y/z)

Fig. 1. Cubed-sphere grid for n = 30 in Eq. (5).
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/ðaðtÞ; bðtÞ; tÞ ¼ /ðaðt � DtÞ; bðt � DtÞ; t � DtÞ; ð6Þ
where
aðt � DtÞ ¼ aðtÞ � da
dt

����
t

Dt þ 1
2

d2a
dt2

�����
t

Dt2 � 1
6

d3a
dt3

�����
t

Dt3 þ OðDt4Þ; ð7Þ
and similarly for b(t � Dt).
The first time derivatives of the face coordinates are just the wind velocities.
da
dt

����
t

¼ uðaðtÞ;bðtÞ; tÞ ð8Þ

db
dt

����
t

¼ vðaðtÞ; bðtÞ; tÞ ð9Þ
In terms of the current location, velocities, and derivatives of the velocities, the location at time t � Dt (the departure point)
is the following.
aðt � DtÞ ¼ aðtÞ � uDt þ 1
2
ðuua þ ut þ ubvÞDt2 � 1

6
ðuuat þ ubtv þ uaðuua þ ut þ ubvÞ þ vðuuab þ ubt þ ubbvÞ

þ uðuuaa þ uat þ uabvÞ þ ubðuva þ vvb þ v tÞ þ uttÞDt3 þ OðDt4Þ; ð10Þ

bðt � DtÞ ¼ bðtÞ � vDt þ 1
2
ðuva þ vvb þ v tÞDt2 � 1

6
ððuua þ ut þ ubvÞva þ vbðuva þ vvb þ v tÞ þ uv t

þ uðuvaa þ vvab þ vatÞ þ vvbt þ vðvvbb þ uvab þ vbtÞ þ v ttÞDt3 þ OðDt4Þ: ð11Þ
Subscripts on velocities here indicate partial derivatives, and all velocities and velocity derivatives are at (a(t),b(t), t), the ar-
rival location on the fixed cubed-sphere grid at the arrival time.

The test cases in Section 4 all provide analytic functions for the velocities, allowing exact computation of all space and
time derivatives to arbitrary accuracy [19]. Full climate models, however, must integrate the evolution of velocities and com-
pute their derivatives numerically. To more closely approximate this target situation, our method uses numerical spatial
derivatives.

In (a,b) coordinates, each face of the cubed sphere is a regular grid. A nine-point stencil provides spatial derivatives up to
second order with O(d3) accuracy. Most of the domain uses centered differencing, but points at edges and corners of each face
use one-sided derivatives. For example, the numerical derivatives for arbitrary field w at the corner grid point (0,0) for arbi-
trary face k are the following, where the k index is elided.
ðwaÞ00 �
1

2d
ð4w10 � 3w00 �w20Þ; ð12Þ

ðwbÞ00 �
1
2d
ð4w01 � 3w00 �w02Þ; ð13Þ

ðwaaÞ00 �
1
d2 ðw00 � 2w10 þw20Þ; ð14Þ

ðwbbÞ00 �
1
d2 ðw00 � 2w01 þw02Þ; ð15Þ

ðwabÞ00 �
1

4d2 ð9w00 � 12w10 þ 3w20 � 12w01 þ 16w11 � 4w21 þ 3w02 � 4w12 þw22Þ: ð16Þ
The method thus computes the necessary numerical spatial derivatives of u, ut, v, and vt for Eqs. (10) and (11) using analytic
values of the time derivatives. A ‘‘real’’ application typically would not have analytic values for the wind velocities but would
instead use partial-differential equations to solve for the time evolution of the velocities. Our method could form the velocity
time derivatives using values at multiple time steps or could convert the velocity time derivatives to space derivatives by
repeatedly applying the governing partial-differential equations.

Note that the departure points may have face-coordinate values outside the range [�p/4,p/4] and so may lie on a
different face of the cubed sphere. Therefore the method converts each point to Cartesian coordinates using the functions
in Table 2.

Because of the redundant points on the face edges of the cubed-sphere grid, the method computes two departure points
for each grid point along a cube edge, and three for each corner. It averages these values in Cartesian coordinates to deter-
mine a single departure point for each grid point. This averaging mitigates the numerical instability that might otherwise be
introduced by the one-sided numerical derivatives because the average values are approximately centered.

From the Cartesian coordinates, the method determines the face for each departure point, k0, and the coordinates on that
face, (a0,b0), using the functions in Table 1. Now it has all the information needed to interpolate the values of / at the depar-
ture points. These interpolated values are the new values of / on the fixed cubed-sphere grid.



Table 2
Functions for converting from face coordinates to Cartesian coordinates, where s ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2 aþ tan2 b

p
.

Face x y z

1 s tan a �s tan b �s
2 s s tan a s tan b
3 �s tan a s s tan b
4 �s �s tan a s tan b
5 s tan a �s s tan b
6 s tan a s tan b s
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Our implementation has two options for interpolation, third-order interpolation using a nine-point stencil or fourth-order
using a sixteen-point stencil. For third-order interpolation, the method first finds the closest non-edge grid point ðai0 ; bj0 Þ to
each departure point (a0,b0):
i0 ¼ max 1;min n� 1;nint
a0 þ p=4

d

� �� �� �
; ð17Þ

j0 ¼max 1;min n� 1;nint
b0 þ p=4

d

� �� �� �
; ð18Þ
where ‘‘nint’’ is the Fortran function that rounds its floating-point argument to the nearest integer.

Written in terms of differences da ¼ ða0 � ai0 Þ=d and db ¼ ðb0 � bj0 Þ=d, the interpolated value /0 is
/0 ¼ ðda � 1Þdaðdb � 1Þdb/i0�1j0�1k0 � 2ðda � 1Þda d2
b � 1

� �
/i0�1j0k0 þ ðda � 1Þdadbðdb þ 1Þ/i0�1j0þ1k0

�

�2ðd2
a � 1Þðdb � 1Þdb/i0 j0�1k0 þ 4 d2

a � 1
� �

d2
b � 1

� �
/i0 j0k0 � 2 d2

a � 1
� �

dbðdb þ 1Þ/i0 j0þ1k0

þdaðda þ 1Þðdb � 1Þdb/i0þ1j0�1k0 � 2daðda þ 1Þ d2
b � 1

� �
/i0þ1j0k0 þ daðda þ 1Þdbðdb þ 1Þ/i0þ1j0þ1k0

�
=4: ð19Þ
Fourth-order interpolation uses modified versions of Eqs. (17) and (18) to account for the larger stencil. Instead of finding
the nearest point, they find the indices of the lowest corner of the appropriate stencil. As with the third-order case, points
near cube edges use stencils shifted away from the edges, such that the stencils go up to the edges but not beyond them.
i0 ¼ max 0;min n� 3;nint
a0 þ p=4

d

� �
� 1

� �� �
; ð20Þ

j0 ¼max 0;min n� 3;nint
b0 þ p=4

d

� �
� 1

� �� �
: ð21Þ
Again in terms of da and db,
/0 ¼ ððda � 3Þðda � 2Þðda � 1Þðdb � 3Þðdb � 2Þðdb � 1Þ/i0 j0k0 � 3ðda � 3Þðda � 2Þðda � 1Þðdb � 3Þðdb � 2Þdb/i0 j0þ1k0

þ 3ðda � 3Þðda � 2Þðda � 1Þðdb � 3Þðdb � 1Þdb/i0 j0þ2k0 � ðda � 3Þðda � 2Þðda � 1Þðdb � 2Þðdb � 1Þdb/i0 j0þ3k0

� 3ðda � 3Þðda � 2Þdaðdb � 3Þðdb � 2Þðdb � 1Þ/i0þ1j0k0 þ 9ðda � 3Þðda � 2Þdaðdb � 3Þðdb � 2Þdb/i0þ1j0þ1k0

� 9ðda � 3Þðda � 2Þdaðdb � 3Þðdb � 1Þdb/i0þ1j0þ2k0 þ 3ðda � 3Þðda � 2Þdaðdb � 2Þðdb � 1Þdb/i0þ1j0þ3k0

þ 3ðda � 3Þðda � 1Þdaðdb � 3Þðdb � 2Þðdb � 1Þ/i0þ2j0k0 � 9ðda � 3Þðda � 1Þdaðdb � 3Þðdb � 2Þdb/i0þ2j0þ1k0

þ 9ðda � 3Þðda � 1Þdaðdb � 3Þðdb � 1Þdb/i0þ2j0þ2k0 � 3ðda � 3Þðda � 1Þdaðdb � 2Þðdb � 1Þdb/i0þ2j0þ3k0

� ðda � 2Þðda � 1Þdaðdb � 3Þðdb � 2Þðdb � 1Þ/i0þ3j0k0 þ 3ðda � 2Þðda � 1Þdaðdb � 3Þðdb � 2Þdb/i0þ3j0þ1k0

� 3ðda � 2Þðda � 1Þdaðdb � 3Þðdb � 1Þdb/i0þ3j0þ2k0 þ ðda � 2Þðda � 1Þdaðdb � 2Þðdb � 1Þdb/i0þ3j0þ3k0 Þ=36: ð22Þ
Depending on the Courant number, the computation of the departure points is O(Dt4) or O(d3Dt), because of the O(d3)
numerical derivatives. The interpolation is either O(d3) (Eq. (19)) or O(d4) (Eq. (22)). Integration for a fixed length of time
requires O(Dt�1) time steps. If the Courant number is O(1), convergence for a fixed length of time should be O(Dt2) with
third-order interpolation and O(Dt3) with fourth-order interpolation. If the Courant number is large, convergence should
be O(Dt3) regardless.
3. Mass fixer

With non-divergent winds, Eq. (1) conserves the global integral of / exactly, but our numerical method should conserve
the global integral of / only to the order of accuracy of / itself. (As described in [19], the physically relevant conserved quan-
tity is actually q/, where q is the fluid density, but q is a constant for this test case.) For either divergent or non-divergent
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winds, Eq. (1) maintains the range of / [19], while our numerical method should only maintain the range to within the order
of accuracy of /.

Typical global mass fixers, such as those used by the spectral dynamical cores in the Community Atmosphere Model, scale
a field by a constant factor that is the ratio of the desired global integral and the current global integral before correction
[15]. The following combined mass fixer and limiter uses integrals of the field and the square of the field to both conserve
mass to within machine precision and constrain the range of / to only physical values, while maintaining the same order of
accuracy. A particularly useful constraint that this fixer can apply is at the lower bound to enforce non-negativity.

Let [hmin,hmax] be the range of possible physical values of / for all simulated time. Given the new values /0 computed with
Eq. (19) or (22), the limiter step first truncates the range of /0 to the physical range.
/00 ¼maxðhmin;minðhmax;/
0ÞÞ ð23Þ
The mass fixer then scales the values of /00 so that the global integral equals that of /0 while the range stays within
[hmin,hmax].
/000 ¼ /00ðI2 � hminl� I1/
00 þ l/00Þ þ hmaxðhminðlþ A/00 � I1Þ � l/00Þ

Ahmaxhmin � ðhmax þ hminÞI1 þ I2
; ð24Þ
where
A ¼
ZZ

S
dA; ð25Þ

l ¼
ZZ

S
/dA ¼

ZZ
S
/0dA; ð26Þ

I1 ¼
ZZ

S
/00dA; ð27Þ

I2 ¼
ZZ

S
/002dA; ð28Þ
and /000 is the final result for the tracer concentration at the new time step. Here S is the surface of the sphere, and A is its
area. The fixer computes A and l only once, but it computes I1 and I2 at each time step. We derive Eq. (24) by starting with a
quadratic function of /00 and requiring that /000 = hmin when /00 = hmin, /000 = hmax when /00 = hmax, and the integral of /000 equals
l.

Our implementation uses sixth-order numerical quadrature to perform the integrals; it computes the weights once and
simply sums the weights times the integrand values on the fixed grid for each integral. The sixth-order weights come from
seven-point one-dimensional stencils in each dimension of the face coordinates, with modified weights at the ends to ac-
count for numbers of points in a given dimension not divisible by six. The two-dimensional weights are products of two
one-dimensional weights and a metric term to convert from face-coordinate area to physical area: s3(1 + tan2a)(1 + tan2b),
where s is as in Table 2. The mass fixer and limiter should change values of /0 only to within the order of accuracy, so /000

should have the same order of accuracy as /0.
Eq. (1) does not conserve the global integral of / when the winds are divergent because q does not remain constant, but

the equation does maintain a constant range of / [19]. Thus the test cases in Section 4 with divergent winds use only the
limiter step, Eq. (23). A full climate model would compute the winds and fluid density before transporting tracers, so it could
conserve mass using Eq. (24) with integrals modified to include q, while still constraining the range of / with Eq. (23). Thus
our mass fixer is not applicable to the test cases with divergent winds, but it would be applicable to a full climate model with
divergent winds.

4. Numerical tests

A new test suite for two-dimensional tracer transport on a sphere appears in [18], based on the deformational-flow test
cases that appear in [19,20]. The tests include convergence with smooth and quasi-smooth initial conditions, preservation of
the shape of discontinuous initial conditions, and preservation of nonlinear relationships between two tracers. We augment
these tests with convergence tests at high resolution with large Courant numbers—tests of accuracy designed to compliment
our performance tests in Section 6. The subsections below describe the implementations and results of all these tests for our
semi-Lagrangian method, with comparisons to the results in [18,19]. Our results are among the first for the full suite of tests
in [18].

4.1. Convergence

Two types of initial conditions test convergence, Gaussian hills, which are infinitely differentiable, and cosine bells, which
have discontinuous second derivatives. In Cartesian coordinates that are implicitly constrained to the surface of the unit
sphere, the initial two Gaussian hills, with indices 1 and 2, are



Table 3
Cartesian and spherical coordinates for the initial conditions of the test cases.

Coordinate Non-divergent winds Divergent winds

x1 �
ffiffiffi
3
p

=2 �1=
ffiffiffi
2
p

y1 1/2 1=
ffiffiffi
2
p

z1 0 0
k1 5p/6 3p/4
h1 0 0

x2 �
ffiffiffi
3
p

=2 �1=
ffiffiffi
2
p

y2 �1/2 �1=
ffiffiffi
2
p

z2 0 0
k2 �5p/6 �3p/4
h2 0 0
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/0 � /ðx; y; z; t ¼ 0Þ ¼ h1 þ h2; ð29Þ
where
hiðx; y; zÞ ¼ h0e�b0ððx�xiÞ2þðy�yiÞ2þðz�ziÞ2Þ; ð30Þ
h0 = 0.95, b0 = 5, and the values of the coordinates (xi,yi,zi) are in Table 3. The limiter constrains the range of / using hmin = 0
and hmax = 1; /0 never reaches these exact values, so the bounds are not tight in this case.

The initial cosine bells take the following form, in terms of Cartesian coordinates constrained to the surface of the unit
sphere.
riðx; y; zÞ ¼ arccosðxxi þ yyi þ zziÞ; ð31Þ

hiðx; y; zÞ ¼
hmaxð1þ cosðpri=rÞÞ=2 if ri < r;

0 otherwise;



ð32Þ

/0 ¼ bþ cðh1 þ h2Þ: ð33Þ
Here b = 0.1, c = 0.9, r = 1/2, and the limiter constrains the values of / using hmin = 0.1 and hmax = 1, which are tight con-
straints in this case.

The test suite [18] includes non-divergent and divergent wind fields. In each case, the winds both deform the tracer field
and translate it one rotation around the sphere, such that the tracer field takes its initial form at time T = 5. In spherical coor-
dinates, the non-divergent wind field in non-dimensional units is
uðkÞ ¼ j sin2 k0 sin 2h cos xt þ 2x cos h; ð34Þ
v ðhÞ ¼ j sin 2k0 cos h cos xt; ð35Þ
where j = 2, x = p/T, and k0 = k � 2xt. This corresponds to Case 4 in [19].
The divergent wind field in non-dimensional units is
uðkÞ ¼ �j sin2 k0=2 sin 2h cos2 h cos xt þ 2x cos h; ð36Þ

v ðhÞ ¼
j
2

sin k0 cos3 h cos xt: ð37Þ
This corresponds to Case 3 in [19] with the addition of solid body rotation.
Our method uses the wind fields in face-coordinate velocities, (u,v) from Eqs. (8) and (9), where the fields vary in form for

each face of the cubed sphere. To derive the wind fields in face coordinates, we first convert Eqs. (34)–(37) to Cartesian coor-
dinates. For example, the non-divergent wind fields in Cartesian coordinates constrained to the surface of the sphere are the
following.
uðxÞ ¼ jzðcos xt þ cos 3xtÞðx sin 2xt � y cos 2xtÞ �xy; ð38Þ
v ðyÞ ¼ 4jz cos2 xt sin xtðx sin 2x2� y cos 2xtÞ þxx; ð39Þ
wðzÞ ¼ j cos xtð2xy cos 4xt þ ðy2 � x2Þ sin 4xtÞ: ð40Þ
We convert these to face coordinates using the functions in Table 2 and corresponding velocity vectors. For example, the
velocity vector for Face 1 (the �k face) is the following in terms of face coordinates and Cartesian unit vectors, where s is
as in Table 2.
v ¼ 1
s

u
1þ tan2 a

i� v
1þ tan2 b

jþ u tan a
1þ tan2 a

þ v tan b

1þ tan2 b

� �
k

� �
ð41Þ
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For the non-divergent winds, the velocity components in face coordinates for Face 1 are then
u ¼ js cos xt
1þ tan2 a

ðtan aðtan2 b� tan2 a� 1Þ sin 4xt � ð1þ 2 tan2 aÞ tan b cos 4xt � tan bÞ þ 2x tan b

1þ tan2 a
; ð42Þ

v ¼ js cos xt
1þ tan2 b

ðtan bðtan2 b� tan2 aþ 1Þ sin 4xt � ð1þ 2 tan2 bÞ tan a cos 4xt þ tan aÞ � 2x tan a
1þ tan2 b

: ð43Þ
We derive the velocity components for the other faces similarly.
4.1.1. Non-divergent winds
Fig. 2(a) and (b) show the initial conditions for the convergence tests with non-divergent winds. (Fig. 2(c) and (d) relate to

Sections 4.2 and 4.3.) Because the state at time t = T should match the initial conditions, the normalized l1, l2, and l1 norms
comparing the initial (/0) and final (/T) states show the error in the method, where
l1 ¼
RR
Sj/0 � /T jdARR
Sj/0jdA

; ð44Þ

l2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiRR
Sð/0 � /TÞ

2dARR
S/

2
0dA

vuut ; ð45Þ

l1 ¼
maxSj/0 � /T j

maxSj/0j
: ð46Þ
Fig. 3 shows convergence of these norms using the resolutions and time steps in Table 4. The maximum Courant number
for each of the runs is 10.4, and the number of time steps for each resolution gives the minimum or nearly minimum errors
for that resolution.

The convergence of the Gaussian-hills initial conditions follows the third-order line for fourth-order interpolation and the
second-order line for third-order interpolation, as expected. The lines with and without the mass fixer are indistinguishable.

The convergence of the cosine-bells initial conditions follows the second-order line regardless of interpolation order,
which is expected because of the discontinuous second derivative at the edge of each cosine bell. The fourth-order interpo-
lation has slightly higher error at low resolution and slightly lower at high resolution, particularly for the l1 error. The mass
fixer does not change the order of accuracy, but it does increase the l1 error very slightly.

Fig. 3 is comparable to Fig. 4 in [18], which shows results for the CSLAM method [13]. The best CSLAM results use twice as
many time steps and compute the backward trajectory for each grid point using analytic values of all the velocity derivatives
at multiple trajectory points. The convergence of our method with fourth-order interpolation is similar to that of unfiltered
CSLAM, but our method can have higher absolute error, up to three times higher for the Gaussian hills. The shape-preserving
filter used by CSLAM can increase the error, however, such that our method with a fixer has equivalent l2 error and smaller l1
error for the Gaussian hills.

Results for the cosine-bells test at 1.5� resolution appear in [19] for unfiltered CSLAM and for an unfiltered explicit dis-
continuous-Galerkin (DG) method. Table 5 compares our results with those, including the range errors defined as follows.
/max ¼
maxS/T �maxS/0

maxS/0 �minS/0
; ð47Þ

/min ¼
minS/T �minS/0

maxS/0 �minS/0
ð48Þ
Our errors are lower than those for DG and just slightly higher than for CSLAM, particularly with third-order interpolation,
while our time step is twice as long as that for CSLAM and 40 times as long as for DG. Our mass fixer increases most errors
very slightly, but it eliminates the /min error to within machine precision.

A least-squares linear regression [18] provides numerical convergence ratesK1;K2, andK1 for the respective error norms.
Table 6 confirms the visual results in Fig. 3: fourth-order interpolation approaches third-order convergence for the Gaussian
hills, while third-order interpolation maintain second-order convergence, and the cosine bells show second-order conver-
gence with little dependence on interpolation order.

While the mass fixer conserves the global integral of / to machine precision (about 10�16), Fig. 4 shows the error in this
quantity without the fixer. Our ‘‘un-fixed’’ method conserves mass to third order with either third- or fourth-order interpo-
lation, for both Gaussian hills and cosine bells.
4.1.2. Divergent winds
Convergence results for the divergent winds are very similar to those for the non-divergent winds. Convergence rates ap-

pear in Table 7. Because the divergent winds do not maintain a constant density, and the test case does not provide an ana-
lytic density field, the results include the limiter from Eq. (23) but not the fixer from Eq. (24). Though Lauritzen and
Skamarock [18] recommend the divergent-wind tests, it does not provide results for comparison.



Fig. 2. Contour plots of initial conditions for the non-divergent winds at 1.5� resolution, interpolated from the cubed-sphere grid onto a longitude–latitude
grid.
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4.1.3. Effective resolution
‘‘Effective resolution’’ is defined in [18] as the resolution for which l2 is approximately 0.033 for the cosine-bells initial

conditions with no limiters or fixers. Table 8 shows effective resolutions for our method, defined conservatively as the
maximum resolutions where l2 6 0.033. For this test case, the lower-order interpolation performs better (coarser effective



Fig. 3. Normalized error norms at time T = 5 for a range of spatial resolutions with non-divergent winds. Time steps decrease with increasing resolution, as
shown in Table 4. Solid lines show results with third-order interpolation, and dashed lines with fourth-order. Points marked with ‘‘x’’ are for the original
method, and points marked with a box include the mass fixer. The upper thin line shows a slope of second-order convergence, and the lower thin line shows
that of third-order convergence.
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resolution), and the divergent winds are less challenging than the non-divergent. Lauritzen and Skamarock [18] report that
the effective resolution of CSLAM for the non-divergent winds using 120 time steps is 1.5�. This is slightly better than for our
method, but ours uses just over half as many time steps.



Table 4
Values used for the convergence plots in Figs. 3–5, where n is as in Eq. (5). Each experiment runs out to time T = 5.

Resolution Points (n) Number of time steps Dt

3� 30 30 0.166667
1.5� 60 60 0.083333
0.75� 120 120 0.041667
0.375� 240 240 0.020833
0.1857� 480 480 0.010417

Table 5
A comparison of error norms at T = 5 for the cosine-bells test at 1.5� resolution. The /max and /min values show the deviation of the solution from the
physical range. ‘‘3rd’’ represents our method with third-order interpolation, and ‘‘4th’’ represents ours with fourth-order.

Method Time steps l1 l2 l1 /max /min

DG 2400 0.0330 0.0562 0.1047 �0.0678 �0.0846
CSLAM 120 0.0158 0.0328 0.0473 �0.0068 �0.0214
3rd 60 0.0177 0.0377 0.0500 �0.0166 �0.0301
3rd+fixer 60 0.0179 0.0425 0.0550 �0.0180 �10�16

4th 60 0.0245 0.0512 0.0601 �0.0364 �0.0224
4th+fixer 60 0.0231 0.0556 0.0684 �0.0392 �10�16

Table 6
Convergence rates for our tests with non-divergent winds. ‘‘Order’’ is the order of accuracy of the interpolation. ‘‘Fixer’’ shows whether the mass fixer
is active.

Initial conditions Order Fixer K1 K2 K1

Gaussian hills 3rd No 2.4 2.2 1.8
Yes 2.4 2.2 1.8

4th No 2.9 2.8 2.7
Yes 2.8 2.8 2.7

cosine bells 3rd No 2.1 1.9 1.4
Yes 2.0 1.9 1.4

4th No 2.3 2.0 1.7
Yes 2.2 2.0 1.7

Fig. 4. Absolute value of the error in the global integral of / for a range of spatial resolutions with non-divergent winds. The number of time steps increases
with resolution, as shown in Table 4. Solid lines represent the Gaussian-hills initial conditions, and dashed lines represent the cosine-bells initial conditions.
Points marked with ‘‘x’’ use third-order interpolation, and points marked with a box use fourth-order. The thin line shows a slope of third-order
convergence.
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4.2. Shape preservation

‘‘Rough’’, or discontinuous, initial conditions test the shape-preservation properties of a method. The test here uses two
slotted cylinders, as shown in Fig. 2(c). A combination of Cartesian and spherical coordinates most easily defines the slotted
cylinders.



Table 7
Convergence rates for our tests with divergent winds. ‘‘Order’’ is the order of accuracy of the interpolation. ‘‘Limiter’’ shows whether the limiter is active.

Initial conditions Order Limiter K1 K2 K1

Gaussian hills 3rd No 2.4 2.3 2.1
Yes 2.4 2.3 2.1

4th No 2.9 2.8 2.8
Yes 2.9 2.8 2.8

cosine bells 3rd No 2.2 2.0 1.6
Yes 2.2 2.0 1.6

4th No 2.4 2.1 1.8
Yes 2.5 2.2 1.7

Table 8
Effective resolution, as indicated by ‘‘Resolution’’, where ‘‘Divergent’’ indicates whether the winds are divergent or non-divergent, ‘‘Order’’ indicates the order of
accuracy of the interpolation, and n is as in Eq. (5).

Divergent Order Resolution Points (n) Time Steps l2

No 3 1.4� 64 64 0.0327
4 1.2� 75 75 0.0325

Yes 3 1.7� 52 52 0.0329
4 1.6� 57 57 0.0321
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r1 ¼ arccosðxx1 þ yy1 þ zz1Þ; ð49Þ
r2 ¼ arccosðxx2 þ yy2 þ zz2Þ; ð50Þ

/0 ¼

c if r1 6 r and jk� k1jP r=6;
c if r1 6 r and jk� k1j < r=6 and h� h1 < �5r=12;
c if r2 6 r and jk� k2jP r=6;
c if r2 6 r and jk� k2j < r=6 and h� h2 > 5r=12;
b otherwise:

8>>>>>><
>>>>>>:

ð51Þ
Here b = 0.1, c = 1, r = 1/2, and (xi,yi,zi) and (ki,hi) come from Table 3. The mass fixer uses hmin = b and hmax = c in Eqs. (23) and
(24).

Fig. 5 shows contour plots of the results of this test with non-divergent winds at 1.5� resolution for t = T/2 and t = T. We do
not include plots for divergent winds, which show less error structure and smaller errors. Table 9 shows error results at 1.5�
and 0.75� resolutions for both divergent and non-divergent winds.

For the non-divergent winds, the mass fixer successfully reduces errors in the maximum value, minimum value, and glo-
bal integral down to machine precision without significantly affecting the other norms. Eq. (24) is inactive for the divergent
winds, but the limiter (Eq. (23)) successfully eliminates the error in the maximum and minimum values without significantly
affecting the error norms.

Our fixer, which eliminates overshoots outside the physically prescribed range, dramatically reduces all the oscillations in
this test case because the discontinuous values lie at the limits of the range. The fixer does not eliminate oscillations in gen-
eral, so, if one of the cylinders were, for example, half as high as the other, the shorter cylinder would generate oscillations at
its top as in the case without a fixer.

Results for CSLAM at 1.5� using 120 time steps (twice our number) for the non-divergent test case appear in [18]. The
error norms are almost identical to our results. For the unfiltered case, CSLAM gets /min = �0.19 and /max = 0.15, similar
but slightly larger than our results. With its shape-preserving filter, CSLAM gets /min = 0.0 and /max = �4.34 � 10�3, while
our limiter gets 0.0 for both.

4.3. Nonlinear relationship

Lauritzen and Thuburn [20] define a new class of tests that explores the mixing characteristics of transport methods using
nonlinear relationships between tracers. Correlated cosine bells, /0 and /�0, provide the initial conditions.
/�0 ¼ wð/0Þ; ð52Þ
where /0 is from Eq. (32), and
wðvÞ ¼ av2 þ b; ð53Þ
where a = �0.8 and b = 0.9.



Fig. 5. Contour plots for slotted cylinders with non-divergent winds and 1.5� resolution (see Table 4), interpolated from the cubed-sphere grid onto a
longitude–latitude grid. The green-to-blue gradient shows the range of values of the initial conditions. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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Table 9
Results for the slotted-cylinder test cases. ‘‘Div’’ indicates whether the winds are divergent. ‘‘Res’’ indicates the resolution from Table 4. ‘‘Lim’’ shows whether
the mass fixer is active for the non-divergent winds and whether the limiter is active for the divergent winds. /min and /max are errors in the global minimum
and maximum values, and ‘‘Mass’’ gives the error in the global mass integral.

Div Res Lim l1 l2 l1 /min /max Mass

No 1.5� No 0.136 0.243 0.781 0.125 0.137 �0.011
Yes 0.143 0.262 0.812 10�16 10�15 10�16

0.75� No 0.084 0.186 0.803 0.125 0.149 0.005
Yes 0.089 0.204 0.753 10�15 10�16 10�15

Yes 1.5� No 0.140 0.250 0.801 0.162 0.163 �0.008
Yes 0.153 0.274 0.761 0.0 0.0 �0.004

0.75� No 0.090 0.196 0.802 0.186 0.186 0.001
Yes 0.096 0.214 0.765 0.0 0.0 0.005
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A plot of / versus /⁄ should follow a constant curve that bends downward, as in Fig. 6. [20] defines three types of devi-
ation from this curve, identifiable by their mixing characteristics.

1. ‘‘Real mixing’’ causes points to move to the concave side of the curve.
Fig. 6. Scatter plots at t = T/2 for nonlinearly correlated (Eq. (52)) cosine-bells initial conditions. Points below the curve within the triangle represent real
mixing, points above the curve within the triangle represent range-preserving unmixing, and points outside the triangle represent overshooting. All results
use third-order interpolation.



Table 10
Diagnostics for real mixing (lr), range-preserving unmixing (lu), and overshooting (lo) at t = T/2 with non-divergent winds. ‘‘Resolution’’ indicates the
resolution from Table 4, where the CSLAM results use twice as many time steps. ‘‘3rd’’ indicates our method with third-order interpolation, and ‘‘+
fixer’’ indicates that the mass fixer is active. CSLAM results come from [20], and ‘‘+ filter’’ indicates that the shape-preserving filter is active.

Resolution Method lr lu lo

1.5� 3rd 7.00 � 10�4 1.57 � 10�4 6.36 � 10�4

CSLAM 7.55 � 10�4 1.58 � 10�4 3.79 � 10�4

3rd+fixer 7.78 � 10�4 1.06 � 10�4 1.82 � 10�5

CSLAM+filter 6.28 � 10�4 6.73 � 10�5 0.0

0.75� 3rd 2.01 � 10�4 8.65 � 10�5 1.73 � 10�4

CSLAM 1.40 � 10�4 2.99 � 10�5 3.43 � 10�5

3rd+fixer 2.12 � 10�4 6.94 � 10�5 2.66 � 10�15

CSLAM+filter 1.05 � 10�4 2.57 � 10�5 0.0

Table 11
Diagnostics for real mixing (lr), range-preserving unmixing (lu), and overshooting (lo) at t = T/2 for our method with divergent winds. ‘‘Resolution’’
indicates the resolution from Table 4. ‘‘Limiter’’ shows whether the limiter is active. All results use third-order interpolation.

Resolution Limiter lr lu lo

1.5� No 5.80 � 10�6 2.08 � 10�6 1.59 � 10�5

Yes 4.18 � 10�6 2.05 � 10�6 4.23 � 10�7

0.75� No 9.17 � 10�7 8.10 � 10�7 2.80 � 10�6

Yes 2.94 � 10�7 8.34 � 10�7 1.28 � 10�9
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2. ‘‘Range-preserving unmixing’’ causes point to move to the convex side of the curve, while staying within the range of the
initial conditions.

3. ‘‘Overshooting’’ causes points to move outside the range of the initial conditions.

Fig. 6 has scatter plots of / versus /⁄ that illustrate the mixing induced by our method for non-divergent winds. These
plots are comparable to those in Fig. 6 of [20], and we can discern no important differences. We do not include plots for
divergent winds because of their similarity to our Fig. 6.

The error measure for each type of deviation—lr for ‘‘real’’, lu for ‘‘unmixing’’, and lo for ‘‘overshooting’’—sums the dis-
tance to the correct curve of all points lying in that region, and it divides by the total number of points of all
types [20].

Table 10 compares the values of these diagnostics for our method and CSLAM with non-divergent winds, and Table 11
shows values for our method with divergent winds. No results for divergent winds appear for CSLAM in [20]. Without fixers
or filters, our method gives results comparable to CSLAM at 1.5�. The CSLAM results improve slightly more with resolution,
and the CSLAM filter improves results slightly more than our mass fixer. In general, our results for divergent winds have sig-
nificantly lower errors than for non-divergent.

4.4. High resolution

A primary motivation for our method is to allow high spatial resolution without requiring small time steps. Two conver-
gence tests not included in [18] or [20] illustrate the accuracy of the method at high spatial resolution and compliment our
performance tests in Section 6. Both tests use the cosine-bells initial conditions with non-divergent winds. Results are sim-
ilar for Gaussian hills and for divergent winds.

Fig. 7 shows the results of the first test, where spatial resolution increases while the time step remains constant.
Because of the large time step, the error quickly stops decreasing. The time error dominates, so the order of the spatial
interpolation matters little. The mass fixer has little effect on the error, slightly decreasing the l1 error. The major
benefit of the semi-Lagrangian method is that it remains stable as the Courant number increases, reaching a value
of 166 at 0.1875� resolution. This is an extreme test of numerical stability, with Courant numbers well above what
a climate model is likely to use. The primary intent is to explore performance characteristics out to extreme regimes,
as shown in Section 6.

Fig. 8 shows the results of the second test, which varies the number of time steps while maintaining a constant, high
spatial resolution of 0.1875�. For large time steps (small numbers of steps), the time error dominates and decreases at
third order. For small time steps (large numbers of steps), the interpolation error dominates and grows because of the
increasing number of interpolations. The l1 and l2 errors reach a minimum at 240 time steps (Courant number of 20.8),



Fig. 7. Error norms for the cosine-bells test case with non-divergent winds over a range of resolutions. The number of time steps is constant at 30. Line and
point styles are as in Fig. 3.
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while the minimum l1 error depends on the order of the interpolation. Third-order interpolation minimizes l1 at 120 time
steps (Courant number of 40.5), while fourth-order interpolation minimizes l1 at 240 time steps, with a slightly lower
minimum.

Whereas explicit methods usually require Courant numbers of less than one, our semi-Lagrangian method favors Courant
numbers over an order of magnitude higher.
5. Parallel implementation

Our parallel implementation distributes the cubed-sphere grid among tasks that communicate using the Message-Passing
Interface (MPI) [21]. To simplify the determination of neighboring tasks and the home task for any grid point, the distribution
places the following constraints on the number of tasks, N.

� N must be divisible by six (the number of faces of the cubed sphere).
� N/6 must be a perfect square.
� The number of grid points along an edge of the cubed sphere, n + 1, must be divisible by

ffiffiffiffiffiffiffiffiffi
N=6

p
.

For example, a grid of n + 1 = 30 (n = 29) allows task counts of 6, 24, 54, 150, 216, 600, 1350, or 5400.
Full climate models transport more than one tracer, so our implementation allows the transport of an arbitrary number of

identical tracers to better approximate the performance characteristics of full models.



Fig. 8. Error norms for the cosine-bells test case with non-divergent winds over a range of time steps. The spatial resolution is constant at 0.1875�. Line and
point styles are as in Fig. 3.
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Each time step performs up to four stages of parallel communication, in the following order.

1. Each task exchanges ‘‘halos’’ with its eight neighbors, where the halos contain the values of u, ut, v, and vt needed for the
nine-point stencils of the spatial derivatives used in Eqs. (10) and (11). No communication occurs between faces because
of the one-sided derivatives on face edges, so edge tasks communicate with only five neighbors, and corner tasks com-
municate with only three. For all tasks, the volume of communication is independent of the number of tracers. If N = 6,
with one task per face, no communication occurs at this stage.

2. After the method computes all the departure points in Cartesian coordinates, it must average the coordinate values
along the edges. Each edge task exchanges edge values with the neighboring task on the adjoining cube face. Edge
tasks communicate with a single neighbor, and corner tasks communicate with two neighbors. The volume of commu-
nication is independent of the number of tracers. If N = 6, with one task per face, each task communicates with four
neighbors.

3. The communication needed to interpolate the tracer concentrations is dynamic. The departure points change with each
time step, and the tasks that a particular task communicates with can change. Algorithms 1 and 2 provide a detailed
description of this phase. In addition to the number of tasks and the size of the grid, the volume of communication
depends on the values of the wind fields and the size of the time step. Parts of this phase increase linearly with the num-
ber of tracers. The phase also requires a global synchronization that grows logarithmically in cost with the number of
tasks.

4. When the mass fixer is active, it must perform a global reduction to compute the integrals in Eq. (24). MPI libraries typ-
ically have efficient implementations of such global reductions, but they can increase logarithmically in cost with the
number of tasks [22]. Each tracer requires two integrated values, so the volume of communication grows linearly with
the number of tracers.
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Algorithm 1: Parallel interpolation for each task

for each local grid point do
compute face coordinates and nearest grid point for departure point

end for
empty task list and message lists
for each local grid point do

if task for departure point is in task list then
add grid point to message list for that task

else
add new task to task list and grid point to its message list

end if
end for
for each task in task list do

fill message buffer with departure points to be interpolated
end for
issue non-blocking receives for synchronization with parent and children
for each task in task list do

issue non-blocking receive of interpolated values
issue non-blocking send of desired departure points

end for
for each task in task list do

repeat
check for incoming requests (Algorithm 2)

until send of departure points to other task completes
wait for receipt of interpolated values from that task

end for
copy new values from received messages
repeat

check for incoming requests (Algorithm 2)
until synchronization messages arrive from children
send synchronization message to parent
repeat

check for incoming requests (Algorithm 2)
until synchronization message arrives from parent
send synchronization messages to children

Algorithm 2: Check for incoming requests

loop
probe for incoming requests
if no requests waiting to be received then

return
end if
receive list of departure points from requesting task
for each departure point in received list do

compute nearest local grid point
interpolate values for all tracers at departure point

end for
send list of interpolated values to requesting task

end loop

Timers measure the performance of the time-stepping loop, and counters track the volume of sent messages and the
number of neighbors that are sent interpolation requests. Our implementation outputs

� the total runtime for the time-stepping loop,
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� the number of tracers times the number of time steps per second (a measure of throughput),
� the average number of bytes sent per task per time step (which does not include communication volume from the global

reductions), and
� the average number of neighbors per task that were sent interpolation requests.
6. Performance tests

This section provides performance results of our parallel implementation run on the Hopper-II computer hosted by the
National Energy Research Scientific Computing Center (NERSC). Table 12 gives details of the computer and software. All the
tests use the cosine-bells initial conditions with non-divergent winds and third-order interpolation.

Tests of parallel performance often come in two varieties, ‘‘strong scaling’’ and ‘‘weak scaling’’. Strong-scaling tests mea-
sure the increasing performance of a fixed-size problem as the number of parallel tasks increases. Fig. 9 shows the perfor-
mance of a strong-scaling test at 0.2� resolution (n = 479) with 480 time steps.

Because the problem size remains constant, the amount of computational work per task shrinks until the latency costs of
communication eventually dominate. The test scales linearly up to about 1000 tasks for one tracer and up to almost 10,000
tasks for 100 tracers. Beyond 10,000 tasks the performance declines. Increasing the resolution or the amount of computa-
tional work per tracer, as in a full climate model, would likely improve scaling to higher task counts. Throughput improves
as the number of tracers increases, likely as a result of increasing computational efficiency. The performance impact of the
mass fixer is negligible for one tracer, but it grows with tracer count and reduces performance by about 30% for 100 tracers.

In contrast to strong-scaling, weak-scaling tests change the size of the problem as the number of tasks increases such that
the number of grid points per task remains constant. Fig. 10 shows the throughput and runtime for a weak-scaling test,
where each task has a domain of 30 � 30 grid points per tracer. The throughput lines show only small deviations from hor-
izontal, indicating good scalability. The relative cost of the fixer grows with the number of tracers, up to 25–30% for 100
tracers.

Fig. 10(b) demonstrates the issue with traditional weak scaling through increasing resolution. Because the number of
time steps increases linearly with resolution, perfect weak scalability for a two-dimensional problem leads to an increase
in total runtime proportional to the square root of the number of tasks.

The time stability of the semi-Lagrangian method allows a third type of scaling, ‘‘spatial scaling’’, where the spatial res-
olution increases with the number of tasks, but the time step stays constant. Perfect spatial scaling has constant performance
and constant total runtime for a fixed number of tracers.
Table 12
Computer and software details for parallel performance tests on NERSC Hopper II.

Computer Cray XE6
Compute nodes 6392
Memory per node 32 GB DDR 1333 MHz
Processors per node 2 � AMD 12-core Opteron 6172 at 2.1 GHz
Interconnect Cray Gemini 3D Torus
Compiler PGI Fortran 10.9.0
MPI Cray MPT 5.1.3

Fig. 9. Parallel throughput of the strong-scaling test. The test uses 0.2� resolution (n = 479) with 480 time steps. Dashed lines indicate ‘‘w/fixer’’, where the
mass fixer is active. The thin solid line shows linear performance increase.



Fig. 10. Weak-scaling test. Each MPI task has a domain of 30 � 30 grid points per tracer. The number of time steps increases with the square root of the
number of tasks (linearly with resolution). Dashed lines indicate ‘‘w/fixer’’, where the mass fixer is active. The thin solid line in Fig. 10(b) shows a runtime
increase proportional to the square root of the number of tasks.
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Fig. 11 shows the throughput and runtime of a spatial-scaling test, where each task has a domain of 30 � 30 grid points
per tracer, and the number of time steps stays constant at 30. This performance test corresponds to the convergence test
shown in Fig. 7. The throughput does not scale as well as for the weak-scaling test, and the runtime goes up by a factor
of as much as 2.7 from 6 to 1536 tasks (for 100 tracers with no fixer). Compare this, however, to the factor of 21.6 for
the equivalent weak-scaling case.

Fig. 12 shows the cost increase in the interpolation phase, which explains the differences in scalability between the weak-
and spatial-scaling tests. Fig. 12(a) shows that the communication volume per task of the spatial-scaling test increases sig-
nificantly more than that of the weak-scaling test, and Fig. 12(b) shows some of the reason why. For the weak-scaling test,
the average number of neighbors each task queries during the interpolation phase shrinks slightly with increasing task
count. For the strong-scaling test, however, the number of neighbors increases significantly.

For spatial scaling, the time step stays constant as the resolution increases, so each departure point gets farther and far-
ther away relative to the grid spacing. The likelihood that a departure point is not in the local domain gets higher until, at
some resolution, all the departure points are remote to that task. The departure points may also spread farther from each
other relative to the grid spacing, since the increasing Courant number amplifies any variability in the wind fields.

For the case of weak scaling, however, the time step stays constant relative to the grid spacing, so the departure points do
not get farther away. As the resolution increases, the wind fields have less variability across the local domain, so the spread
of departure points decreases. Thus the average number of neighbors decreases.
Fig. 11. Spatial-scaling test. Each MPI task has a domain of 30 � 30 grid points per tracer. The number of time steps stays constant at 30. Dashed lines
indicate ‘‘w/fixer’’, where the mass fixer is active.



Fig. 12. Communication costs of interpolation for the spatial-scaling and weak-scaling tests with increasing task counts. The communication volume is the
average number of bytes sent by each task during each time step, not including global reductions. The message count is the average number of neighbors
per time step that a task sends interpolations requests to.
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7. Conclusions

We presented a semi-Lagrangian method for two-dimensional tracer transport on a sphere. Our method is stable for arbi-
trary Courant numbers, grows linearly in computational complexity with the number of grid points, and has computational
complexity independent of the Courant number. The method uses a cubed-sphere discretization, backward projection of the
Lagrangian departure points that is O(Dt4) per time step, and interpolation that is O(d3) or O(d4), where Dt is the time step
and d is the grid spacing. The resulting method has accuracy approaching O(Dt3) for simulations of a fixed time length with
smooth initial conditions or with large Courant numbers. As is, the method conserves mass to O(Dt3).

We also presented a mass fixer that conserves mass to machine precision for non-divergent wind fields, while limiting
tracer values to a prescribed range, also to within machine precision. The fixer maintains the same accuracy as the unaltered
method. The fixer requires non-divergent winds for the tests used here because the tests do not define a density field, and the
method does not solve for density. For tests with divergent winds, we apply only the limiter. In a full climate simulation, the
method for integrating wind dynamics would likely provide a density field, so the fixer would be applicable even if the winds
were divergent.

We presented results for the new suite of numerical tests defined in [18] and based on [19,20]. Tests with a constant Cou-
rant number of 10.4 show convergence approaching the expected third order for Gaussian hills with fourth-order interpo-
lation and convergence of second order for cosine bells. The effective resolution of our method, defined as the resolution that
provides l2 error of about 0.033 for cosine bells, is about 1.3� for the non-divergent case. A test with discontinuous initial
conditions, slotted cylinders, shows the effectiveness of the fixer at conserving mass while eliminating values outside the
physical range. A test of nonlinearly correlated cosine bells shows that the method has mixing errors of the same order
as the standard error norms, and that the fixer significantly reduces the overshooting error, lo. Additional tests not included
in [18] demonstrate the numerical stability of the method at high Courant numbers, above 150. The method favors relatively
large Courant numbers for best accuracy, about 10–20, an order of magnitude higher than the stability limits of explicit
methods.

Finally we presented a parallel implementation of the method with a dynamic algorithm for parallel interpolation of
departure points. The algorithm allows arbitrary winds and time steps by computing the necessary neighbors for commu-
nication at each time step. Performance tests on NERSC Hopper II show scaling past 1000 parallel tasks for a 0.2� strong-scal-
ing problem with one tracer, and up to 10,000 tasks for 100 tracers. Weak-scaling tests show near-perfect parallel efficiency
and improving computational efficiency with increasing numbers of tracers, but they also show increasing relative cost of
the fixer with increasing numbers of tracers. The numerical stability of the method allows tests of spatial scaling, where
the time step and physical dimensions stay constant while the resolution and task count increase. These tests measure
the increases in communication costs that come from increasingly remote and dispersed departure points.

Our semi-Lagrangian method and parallel implementation show promise for future climate models to mitigate the
throughput limitations of high-performance computers. The method achieves its best accuracy at relatively high Courant
numbers, thus reducing the required number of time steps. And it allows still-higher Courant numbers, so resolution may
increase to resolve physical features of interest without forcing increases in the number of time steps. This capability, com-
mon to semi-Lagrangian methods for tracer transport, joins with parallel scalability to enhance throughput for high resolu-
tion on high-performance computers.
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In future work, we anticipate investigating scalable semi-Lagrangian methods for the more-challenging dynamics prob-
lem of the winds and mass density that drive tracer transport. Semi-Lagrangian methods may enable arbitrary time steps for
that problem by efficiently preconditioning implicit methods.
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