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Keeneland: Bringing  
Heterogeneous GPU Computing  
to the Computational Science Community

T he Keeneland project—named 
for a historic thoroughbred 
horse racing track in Lexington, 

Kentucky—is a five-year Track 2D 
grant awarded by the US National Sci-
ence Foundation (NSF) in August 2009 
for the development and deployment of 
an innovative high-performance com-
puting system. The Keeneland project 
is led by the Georgia Institute of Tech-
nology (Georgia Tech) in collabora-
tion with the University of Tennessee 
at Knoxville and Oak Ridge National 
Laboratory. The initial delivery 
system, an HP Linux cluster with  
360 Nvidia Fermi graphics processors, 
is now operational and is being used to 
prepare software tools and applications 
for the full-scale system, which is due 
to be deployed in 2012.

Keeneland is organized into two 
primary deployment phases. The first 
phase provides a moderately sized, ini-
tial delivery system (KID) to develop 
software tools for GPU computing 
and to prepare applications to ex-
ploit GPUs effectively. During 2012, 
Keeneland’s second phase will pro-
vide a full-scale system for production 
use by computational scientists. The 
Keeneland Full Scale (KFS) system 
will be similar to the KID system in 
terms of hardware and software—that 
is, it will be a Linux cluster based on 

commodity next-generation CPUs, 
next-generation GPUs, HPC inter-
connect, programming environment, 
and tools. The KFS system is expected  
to have at least two times KID’s total 
number of GPUs, with the expected 
performance improvements of the 
next-generation CPUs and GPUs. 
KFS will be an Extreme Digital Sci-
ence and Engineering Discovery 
Environment (XSEDE) resource 
available to a broad set of users. Al-
though there’s currently a community 
movement in HPC toward this type 
of architecture, a critical component 
of the Keeneland project is to develop 
software that will let users take advan-
tage of its unique capabilities. We also 
aim to reach out to teams developing 
applications that might map well to 
this innovative architecture.

Motivation
Heterogeneous architectures have 
recently emerged in response to the 
limits on improving single-node per-
formance in traditional architectures; 
the primary factor influencing these 
limits is energy efficiency. In the case 
of GPUs,1,2 these heterogeneous ar-
chitectures were initially designed  
to support a fixed pipeline of gra
phics operations (such as rasteriza-
tion), and consequently, architects 

could specialize them to be exceed-
ingly efficient at those operations. 
However, it was only after a small set 
of early adopters began using GPUs  
for general-purpose computation more 
than a decade ago3,4 that hardware 
features, algorithmic techniques, and 
programming systems—such as Cg,5 
CUDA,6 and OpenCL7,8—started to 
emerge to make GPUs available to a 
wider audience.

Most recently, GPUs such as 
Nvidia’s Fermi1 have added critical 
features, including much-improved 
performance on IEEE double- 
precision arithmetic and memory  
error detection and correction, that 
make these architectures even more 
relevant to large-scale computational  
science. Compared to the alterna-
tives, these new features, when com-
bined with the original capabilities 
of GPUs, provide a competitive plat-
form for numerous types of comput-
ing, such as media processing, gaming, 
and scientific computing, in terms of 
raw performance (665 Gflops/s per 
Fermi) and energy efficiency.

Not surprisingly, these trends have 
garnered the attention of researchers, 
vendors, and HPC customers. Beyond 
the Keeneland project, a substantial 
number of very large GPU-based 
systems have already been deployed.  
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system for the NSF computational science community.

CISE-13-5-Novel.indd   90 8/3/11   5:39 PM
Authorized licensed use limited to: UNIVERSITY OF TENNESSEE. Downloaded on July 23,2020 at 23:33:02 UTC from IEEE Xplore.  Restrictions apply. 



September/October 2011� 91

Examples include China’s Tianhe-1A,  
Nebulae at the National Super
computing Centre (NSCS) in  
Shenzhen, Tokyo Tech’s Tsubame 2, 
and several other systems in the US 
including Dirac at Lawrence Berkeley 
National Laboratory, Lincoln at the 
National Center for Supercomput-
ing Applications (NCSA), and Edge 
at the Lawrence Livermore National 
Laboratory. Notably, the Chinese 
Tianhe-1A system at the NSCS in 
Tianjin achieves a performance of 2.57 
petaflops/s on the TOP500 Linpack 
benchmark (www.top500.org), which 
was #1 in the world in November 2010.

All of these examples are scalable het-
erogeneous architectures that leverage 
commodity components: multinode 
computing systems with a high- 
performance interconnection network, 
where each node contains more than 
one type of processing device, such as 
a traditional CPU and a graphics pro-
cessor. Most experts expect this trend 
to continue into the foreseeable future, 
given the requirements and constraints 
of HPC. Even with this tremendous 
progress over the past few years, 
the adoption of GPUs by the wider 
computational science community 
faces several hurdles. These hurdles 
include programmability; portabil-
ity; consistent performance; limita-
tions of architectural interfaces; and 
the fact that some application fea-
tures, such as performing I/O, simply 
won’t perform well on current GPU  
architectures.

Keeneland
The Keeneland project’s first phase 
is underway; it includes the acquisi-
tion and operation of the initial deliv-
ery system, development of software 
tools, preparation of applications for 
GPU computing, and an assessment 
of the fast-changing technologies.

Architecture
KID has been installed and operat-
ing since November 2010. As Table 1 
shows, KID’s configuration is rooted 
in the scalable node architecture of the 
HP ProLiant SL390 G7. In particular, 
as Figure 1 shows, each node has two 
Intel Westmere CPUs, three Nvidia 
M2070 Fermi GPUs with 6 Gbytes of 
memory each, 24 Gbytes of host main 
memory, and a Mellanox Quad Data 
Rate (QDR) InfiniBand Host Channel  
Adapter (HCA). Overall, the system 
has 120 nodes with 240 CPUs and  
360 GPUs; the installed system has 
a peak performance of 201 Tflops in 
seven racks (or 90 square feet, includ-
ing the service area).

More specifically, in the HP SL390, 
memory is directly attached to the 
CPU sockets, which are connected 
to each other and the Tylersburg I/O 

hubs via Intel’s Quick Path Inter
connect (QPI). GPUs are attached 
to the node’s two I/O hubs using  
Peripheral Component Interconnect 
Express (PCIe). The theoretical peak 
for QPI’s unidirectional bandwidth 
is approximately 12.8 Gbytes/s, and  
for PCIe x16 it is approximately  
8.0 Gbytes/s. With these two I/O 
hubs, each node can simultaneously 
supply three full x16 PCIe links to the 
GPUs and an x8 link to the integrated  
Infiniband QDR HCA.

This design avoids contention and 
offers advantages in aggregate node 
bandwidth when the three GPUs 
and the HCA are used concurrently, 
as they often are in a scientific sys-
tem. In contrast, other architectures 
frequently use a PCIe-switch-based 
approach, and the switch can quickly 
become a performance bottleneck. 

Figure 1. The HP SL390 G7 Node Architecture provides two host CPUs, up to three 
GPUs, and an integrated Infiniband QDR HCA.
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Table 1. The KID Configuration.

Node architecture HP ProLiant SL390 G7

CPU Intel Xeon X5660 (Westmere) 

CPU frequency 2.80 Ghz 

CPU cores per node 12 

Host memory per node 24 Gbytes

GPU architecture Nvidia Tesla M2070 (Fermi)

GPUs per node 3

GPU memory per node 18 Gbytes (6 Gbytes per GPU)

CPU/GPU ratio 2:3

Interconnect InfiniBand QDR (single rail)

Total number of nodes 120

Total CPU cores 1,440

Total GPU cores 161,280
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Nevertheless, with this PCIe-switch-
based approach, vendors are currently 
offering systems with the highest 
number of GPUs per node.

The node architecture exemplifies 
the heterogeneity trends and has one 
of the highest number of GPU counts 
per node in the November TOP500 
list. The HP SL390 design has sig-
nificant benefits over the previous gen-
eration architecture, but also exhibits 
multiple levels of non-uniformity.9 
In addition to traditional non-uniform 
memory access (NUMA) effects 
across the two Westmere’s integrated 
memory controllers (see Figure 1), 
the dual I/O hub design introduces 
non-uniform characteristics for data 
transfers between host memory and 
GPU memory. These transfers will 
perform better if the data traverses 
only one QPI link (such as a transfer 
between data in the memory attached 
to CPU socket 0 and GPU 0) than if 
it traverses two QPI links (such as a 
transfer between data in the memory 
attached to CPU socket 0 and GPU 1 
or GPU 2).

In addition, KID’s GPUs in-
clude other features that can greatly  
affect performance and contribute to 
non-uniformity. For instance, each 
GPU contains error-correcting code 
(ECC) memory. ECC memory is de-
sirable in a system designed for scal-
able scientific computing. Enabling 
ECC gives some assurance against 
these transient errors, but results in a 

performance penalty and adds yet an-
other complexity to the GPU memory 
hierarchy.

Software Tools
As mentioned earlier, one of the 
risks in using these new heteroge-
neous platforms involves decreased 
programmer productivity. On the 
Keeneland project, we’ve started col-
laborating with many vendors and 
initiated research activities to address 
this challenge. In particular, software 
tools currently developed under the 
Keeneland project include scientific 
libraries, performance and correct-
ness tools, and virtualization system 
software.

For scientific libraries, the Uni-
versity of Tennessee at Knoxville’s  
Matrix Algebra on GPU and Multi-
core Architectures (Magma) project10 
is developing adaptive, dense linear  
algebra libraries that exploit GPUs 
and CPUs simultaneously. Magma is 
similar to Lapack, but includes sup-
port for heterogeneous architectures.

For performance and correctness 
tools, Georgia Tech’s Ocelot project11 
offers a modular, dynamic compila-
tion framework for heterogeneous 
systems, providing various backend 
targets for CUDA programs and 
analysis modules for the PTX virtual 
instruction set. Ocelot currently all
ows CUDA programs to be executed 
on Nvida GPUs, AMD GPUs, and 
x86-CPUs without recompilation.  

Furthermore, Ocelot supports the 
construction of a range of correct-
ness and performance tools, such 
as a memory checker that detects  
unaligned and out of bounds memory 
accesses.

For system software and virtualiza-
tion, Georgia Tech is developing a 
framework for integrating GPUs into 
existing infrastructures for virtual-
ization.12 This infrastructure will be 
useful for checkpointing and migra-
tion in virtualized systems, as well as 
for load balancing and debugging.

Technical Assessment
Because the architectures and soft-
ware for heterogeneous comput-
ing are changing rapidly, we have an 
ongoing effort to evaluate different  
architectures and software stacks. For 
our assessment, we’ve developed the 
Scalable Heterogeneous Computing 
(SHOC) Benchmark Suite.13 SHOC 
is a collection of programs designed 
to test the ability of GPUs and other 
OpenCL devices for scalable scientific 
computing. SHOC has benchmarks at 
three levels of complexity, which mea-
sure device “feeds and speeds,” impor-
tant scientific kernels, and portions of 
full applications. SHOC also includes 
a stability test to validate and stress 
new heterogeneous architectures dur-
ing procurement and installation.

Application Readiness
An important aspect of Keeneland is 
our applications outreach and readiness  
activities. In particular, we’re working  
with early adopters to ensure that 
their applicat ions work well on 
Keeneland. Moreover, we’re aggres-
sively pursuing those applications 
that might make efficient use of 
GPUs, but whose developers haven’t 
yet made the jump to rewriting their 
applications. Our team is surveying, 

Figure 2. The KID system as installed in Keeneland’s data center. The compact  
201 teraflops/s system requires only seven racks and 90 square feet of floor  
space.
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contacting, modeling, and, in some 
cases, assisting the applications teams 
with porting their code to this new 
architecture.

Science and Applications
During our acceptance testing of the 
KID system in November 2010, we 
evaluated the system’s performance 
with various applications and kernels 
for functionality, performance, and 
stability. The KID acceptance test in-
cluded tests for all system components 
including the CPU, GPU, intercon-
nect, and storage. However, for the 
sake of brevity, we include only the 
relevant GPU results here. Unless 
otherwise noted, the benchmarks and 
applications were built using the Intel 
11.1.073 compilers, Intel’s Math Ker-
nel Library (MKL), OpenMPI 1.4.3, 
and CUDA 3.2RC.

High-performance Linpack (HPL) 
for TOP500 has become the domi
nant benchmark for high-performance  
computing due to its ubiquity, por-
tability, and legacy. It has several 
characteristics that make it perform 
well on a GPU-based cluster, includ-
ing reliance on dense linear algebra  
operations--exactly the type of regu-
lar, throughput-oriented problems that 
GPUs excel at solving.

Figure 3 shows KID’s HPL scaling 
results compared to the theoretical 
hardware peak performance and the 
aggregate measured double-precision, 
general matrix-matrix multiplica-
tion (DGEMM) performance across 
GPUs. For these results, we used 
Nvidia’s implementation of HPL, 
version 9. In this version, each MPI 
task dynamically splits work between 
the GPU and CPU (using multi-
threaded MKL). The best perfor-
mance on the KID node architecture 
requires three MPI tasks per node, 
where each task controls one GPU 

and uses four cores via MKL. We ex-
perienced highly variable single-node  
performance, presumably due to the 
dynamic load balancing. However, 
the primary bottleneck for HPL 
performance on KID was the rela-
tively small size of our host memory.  
HPL performance is highly depen-
dent on problem size, and nodes with 
a larger memory configuration are 
known to realize a higher percentage 
of peak performance. However, our 
configuration is sufficient for most of 
our real-world scientific applications.

In addition, we captured the power 
usage of our HPL experiments using 
real-time monitoring of the entire 
cluster. With this information, we 
were able to calculate the energy effi-
ciency of KID to be 677 megaflops per 
watt, which placed it at the #9 ranking  
on the November Green500 list (www. 
green500.org/lists/2010/11/top/list.
php). Interestingly, eight of the current  
top-10 systems on this list use GPUs.

Next, we ran many real-world ap-
plications on the system, including 
both CPU-only applications and ap-
plications that had been ported to use 
GPUs. Among these applications,  

we found that the Groningen Ma-
chine for Chemical Simulation (Gro-
macs)14 and the Nanoscale Molecular 
Dynamics (NAMD)15 biomolecular 
modeling applications immediately 
performed well on the system without 
additional performance tuning. Both  
applications are used for biomolecular  
modeling. Table 2 shows performance  
results for these applications on KID 
nodes. For Gromacs, we used the 
dhfr-impl-2nm benchmark on a single 
node. We found that a single M2070 
GPU outperforms a single CPU 
thread by 52 times, and outperforms 
a fully populated socket by 10.9 times. 
For NAMD, we used the apoa1 prob-
lem running in parallel on four nodes 
and realized a 6.6 times speedup when 
utilizing the GPUs.

Finally, during this early acceptance 
phase, we also ported and successfully 
ran the main kernel (Fast Multipole 
Method) for a blood flow simulation 
application on KID; the results were 
presented at the 2010 International 
Conference on High Performance 
Computing, Networking, Storage, 
and Analysis, where this paper was 
awarded the SC10 Gordon Bell prize.16

Figure 3. High-performance Linpack (HPL) performance on KID. 
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C urrently, many applications per-
form well on Keeneland, due to 

previous work by researchers to mod-
ify their codes to exploit GPUs.17–19 
The user community has responded 
positively to the availability of KID. 
In the first six months of operation, 
more than 70 projects and 200 users 
have requested and received access 
to KID. In the coming months, we’ll 
be preparing for delivery of the final 
system, deploying GPU-enabled soft-
ware, and engaging more applications 
teams so that they can use this inno-
vative architecture to accelerate their 
scientific discovery, as NAMD, Gro-
macs, and others have.�
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