
Autotuned Parallel I/O for Highly Scalable Biosequence
Analysis

Haihang You
National Institute for

Computational Science
P.O. Box 2008

Oak Ridge, TN 37831
hyou@utk.edu

Bhanu Rekapalli
National Institute for

Computational Science
P.O. Box 2008

Oak Ridge, TN 37831
bhanu@utk.edu

Qing Liu
National Institute for

Computational Science
P.O. Box 2008

Oak Ridge, TN 37831
qliu5@utk.edu

Shirley Moore
Electrical Engineering and

Computer Science
Department

University of Tennessee,
Knoxville, TN 37996

shirley@eecs.utk.edu

ABSTRACT
In recent years, the rate of genomics sequence generation
increased dramatically due to significant advances in the se-
quencing technology. The genomics data is accumulating at
an exponential rate in various databases all around the world
and rapid analysis techniques will enhance the knowledge
discovery in the fields of medicine and biotechnology. Analy-
sis of such growing sequence databases demands tremendous
computational power that can only be provided by massively
parallel computers. Improving the performance and scala-
bility of bioinformatics tools thus becomes a critical step in
the quest to transform ever-growing raw genomics data into
biological knowledge. In this paper we describe an efficient
parallel implementation of a profile hidden Markov models
(profile HMMs) code used for protein domain identification,
along with auto-tuned parallel I/O optimization. Experi-
mental results show linear speedup with increasing numbers
of computing cores on a supercomputer, allowing the do-
main identification of millions of proteins in few minutes
using hundreds of thousands computing cores.

Categories and Subject Descriptors
J.3 [Computer Applications]: Life and Medical Sciences;
B.4.3 [Input/Output and Data Communications]: In-
terconnections—Parallel I/O ; D.1.3 [Programming Tech-
niques]: Concurrent Programming —Distributed program-
ming, Parallel programming

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
TeraGrid ’11, July 18-21, 2011, Salt Lake City, Utah, USA.
Copyright 2011 ACM 978-1-4503-0888-5/11/07 ...$10.00.

General Terms
Performance

Keywords
parallel I/O; massively parallel; auto-tuning; bioinformatic;
hidden Markov models

1. INTRODUCTION
The exponential growth of genomics data in public databases

[1] is not only with whole genome sequencing but also due to
metagenomics [11] sequence generation. The proteins gener-
ated by metagenomics sequencing are far greater in numbers
than non-redundant protein databases. Improving the per-
formance and scalability of sequence analysis tools thus be-
comes a critical step in the quest to transform ever-growing
raw genomics data into useful biological knowledge. One
such bioinformatics tool is HMMER [7] package which is
an open-source implementation of probabilistic models such
as profile Hidden Markov Models (HMMs) for protein do-
main identification using PFam (Protein Families) models [8]
along with sequence homology searches and protein family
classification. It is known for its algorithmic enhancements
for reducing computation time.

HMMER2 is a computationally intensive search algorithm
which has been ported onto advanced architectures such as
computer clusters, shared memory architectures, and also
hardware accelerators such as GPUs (Graphics Processing
Unit) and FPGAs (Field Programmable Gate Arrays). There
are various implementations of HMMER with different op-
timization and parallelization techniques applied, such as
JackHMMER [22], ClawHMMER [10], MPI-HMMER-Boost
[19], MPI-HMMER [20] and SledgeHMMER [3]. The FPGA
accelerated HMMER can achieve 100-fold speedup over soft-
ware implementation running on single processor desktop
[13]. However, most of the accelerated approaches are pri-
marily focused on decreasing the computation time of single
protein sequence analysis with varying percentage of sen-
sitivity of results. HSP-HMMER [16] tried to address the

problem of identifying protein domains on very-large scale.
It used HMMER2 algorithm and load balancing techniques
to scale HMMER to thousands of cores on Cray XT4 archi-
tecture. The latest version of HMMER3 is 100 times faster
than HMMER2. Despite performance improvement of HM-
MER3 algorithm, HMMER tools are still unable to keep up
with the exponential growth of biological databases. There
are now more than 100 million protein sequences in all pub-
lic databases around the world, and this number is growing
rapidly. Thus, to identify protein domains in all currently
available protein sequences is a challenging computational
task.
To the best of our knowledge, we have not seen any imple-

mentation of protein sequence analysis that can successfully
scale up to hundreds of thousands of processors. According
to the current ranking of the world’s fastest supercomputers
[14], Kraken, located at Oak Ridge National Laboratory, is
one of the world’s fastest machine. It provides tremendous
computing power that could speed up the sequence analysis
process and potentially solve the problem of very-large scale
genomics data analysis.
In this paper we describe an efficient parallel implemen-

tation of HMMER3 along with auto-tuned parallel I/O op-
timization. Experimental results show linear speedup with
increasing numbers of computing cores on a supercomputer.
We were able to identify domain models for 100 million pro-
teins in less than six minutes by running a capability job
with 98K cores on Kraken. This paper is organized as fol-
lows. In Section 2, we briefly introduce HMMER, our mod-
ified HMMER parallel algorithm, and the scalability issues
faced by our approach. Section 3 describes the optimizations
that are suitable for improving I/O performance and load
balancing. Experimental results are presented in Section 4.
In Section 5, we describe our I/O auto-tuning framework in
more detail. Finally, conclusions are provided in Section 6.

2. PARALLEL MODIFIED HMMER ALGO-
RITHM

HMMER is used for searching sequence databases for ho-
mologs of protein sequences, and for making protein se-
quence alignments along with protein domain identification.
It implements methods using probabilistic models called pro-
file hidden Markov models (HMMs)[6]. The hmmscan tool
of the HMMER package is used to search a query protein se-
quence against the PFam (protein family) database, which
is one of the largest public collection of conserved protein
domains [8].
We modified the hmmscan code of the HMMER package

using MPI (Message Passing Interface) [18] to distribute in-
dividual serial hmmscan jobs to each of the many computer
cores participating in the parallel run. Each hmmscan job
gets access to its own individual input sequence and there
is no communication between any of the many participating
computer nodes. This scenario is often referred to as ideally
parallel. The advantage is not only in simplifying program-
ming issues, but also in avoiding the overhead associated
with sending and receiving messages. The latter problem
is likely a significant factor contributing to the low perfor-
mance observed with the MPI-HMMER, especially when the
number of computer cores is sufficiently high (more than
500). The performance of both MPI-HMMER and our ap-
proach are affected by the intense disk I/O. Input data has

to be read for Pfam database and each protein sequence,
and the resulting analysis has to be written to separate out-
put files. When using 1000 or more compute cores, this can
create very intense I/O traffic.

Nowadays multi-core CPUs are in the mainstream. On
the Cray XT5, each compute node contains two sockets, each
with a hex-core AMD Istanbul CPU. First, we chose a hybrid
programming model combining MPI with Pthreads. One
MPI process runs on each compute node and creates twelve
threads which do the hmmscan job while only one thread
does I/O. In this manner, we can decrease the number of
readers and writers by twelve times compared to the original
MPI-HMMER which would have one MPI process per core.
A side benefit of this approach is to balance the workload to
some extent, since each sequence has a different length and
its processing time is proportional to the length. While one
thread is processing a long length sequence, other threads
can grab remaining sequences to work on. We have been
able to mitigate the I/O problem partially by rearranging
the distribution of protein sequences that are handed over
to each MPI process on each compute node. The main idea
consists of distributing protein sequences of different lengths
so that each job finishes (and writes results) and starts a new
sequence (reads) at a different time, thus randomizing the
I/O events as much as possible [16]. This minimizes simul-
taneous reads/writes and avoids major time delays due to
traffic jams. Second, the size of the Pfam database is around
one Gigabyte. Instead of having each MPI process read the
database, which would create intense I/O traffic on the file
system, we subset the MPI processes and split the global
communicator into multiple sub-communicators. Each sub-
communicator has one reader that reads in the database and
broadcasts it inside the group. On a parallel computer, the
fact is that network speed is faster than I/O speed. Third,
using a similar principle, we concatenate the output files that
each MPI process generates inside each sub-communicator
and write the result into one file. This approach lowers the
number of files generated and consequently improves I/O
performance.

3. IMPLEMENTATION AND I/O OPTIMIZA-
TION

We implement the multi-threaded parallel modified HM-
MER algorithm as described in Section 2. On each multi-
core compute node, a multi-threaded HMMER process is
created as shown in Figure 1. For this implementation, each
process has an entire node (12 cores, 16GB RAM) at its dis-
posal. Looking at a single node, there is one process that
forks off twelve threads, so we have a total of twelve work-
ers. The master reads the database into RAM while reading
the query sequences and inputting them into a work queue.
Each worker takes sequences, as they need them, from the
queue and performs domain identification on them. Each
process has its own set of inputs and outputs in the same
file hierarchy used for the ideally parallel approach. Each
MPI process reads in two files, a Pfam database file and
a sequences file, and writes out a file with results. This
approach decreases the input contention for reading in the
database by twelve times, and also decreases the number of
resultant files by twelve times. This implementation worked
out much better for both I/O and load balancing problems
than the ideally parallel approach had. This helped the I/O

Figure 1: One HMMER process on a single compute
node

by limiting the number of concurrent reads and writes to
disk by a factor of 12. It also helped with the load balanc-
ing problems by allowing cores to share the workload that
each node has. For instance, if a core gets a sequence that
takes exceptionally long to compute, the other cores can con-
tinue to pull sequences off the queue without having to wait
on that one to complete. The cores within a node share the
workload so that the workload is more evenly distributed.
One extra benefit of this implementation is the caching be-
havior. Since the database is shared among all the cores in
a node, the database can be cached and shared so that each
core does not have to go to RAM for every database access.
This is especially beneficial when each of the queries takes
approximately the same amount of time to compute so that
each core accesses the same portion of the database at the
same time.
The previously described optimizations are still not enough

when we try to scale the code to a full machine, Kraken,
the Cray XT5 hosted at the National Institute for Com-
putational Sciences, which has 99,072 compute cores, 8,256
compute nodes and a Lustre parallel file system. Because
during a full machine run each MPI process on a compute
node still generates I/O traffic which causes overwhelming
contention not only on Lustre’s metadata server, but also
on storage servers. We will give a brief introduction of Lus-
tre file system and our approach to optimize I/O within an
auto-tuning framework in following sections.

3.1 Lustre Parallel File System
Nowadays, a parallel shared file system is a must have for

a supercomputer. To utilize I/O effectively is essential for
an application to scale up. Our current work is in the con-
text of Lustre, but our ideas should be applicable to other
distributed file systems. Lustre[4] is a distributed file system
used for large scale cluster computing. It can support up to
tens of thousands of client systems and serve petabytes of
storage and hundreds of GBs per second of I/O through-
put. As of June, 2010, 15 of the top 30 supercomputers in
the world use the Lustre file system. A Lustre file system
consists of two major units:

Figure 2: Lustre file system architecture

1. A single metadata target (MDT) per file system that
stores metadata, such as filenames, directories, permis-
sions, and file layout, on the metadata server (MDS)

2. One or more object storage servers (OSSes) that store
file data on one or more object storage targets (OSTs).
An OSS typically serves between two and eight targets,
with each target being a local disk file system up to 8
terabytes (TBs) in size. The capacity of a Lustre file
system is the sum of the capacities provided by the
targets.

The architecture of a typical Lustre system is shown in Fig-
ure 2.

To access a file, a client has to complete a filename lookup
on the MDS. Consequently, either a file is created if the file
does not exist or information about the file is returned to
the client. The information includes on which OSTs the file
resides, and the offsets and sizes on each OST. The client
then opens the file and does I/O operations directly to the
OSTs. In this paper, we focus on the OSS and OST part
and consider the MDS and MDT as the independent pro-
cess. In other words, we will deal only with queuing and
writing/reading.

3.2 Tuning Parameters of Lustre I/O
The I/O of the Lustre file system is very complicated.

Here we list the parameters we are interested in that could
affect the I/O performance:

1. Lustre stripe count

2. Lustre stripe size

3. I/O transfer size

4. Number of I/O processes

When an application does I/O on a Lustre file system,
choosing different parameter values can affect the I/O per-
formance dramatically. Sometimes users can see several
magnitude difference in performance. For example, stripe
size and stripe count(number of OSTs) are common param-
eters to tweak on a lustre file system.

3.3 HMMER I/O Optimization
To eliminate intense I/O contention, we divide the MPI

global communicator into multiple sub-communicators, and
the process with rank zero in each sub-communicator per-
forms the I/O. It reads in the Pfam database and broadcasts
it to other processes inside the sub-communicator. It also
gathers output data from peer processes and aggregates the
data into one file. The parameters mentioned in Section 3.2
will have a big impact on the overall performance. Empir-
ical optimization techniques have been successfully applied
to numerous software packages such as ATLAS and FFTW
for achieving good performance. In our work, we applied
similar techniques to acquire optimal values of parameters
mentioned above.

3.3.1 I/O Auto-tuning
The I/O auto-tuning framework is discussed in section 5.

To begin the auto-tuning process, we use an I/O benchmark
IOR[12] to measure the I/O performance for I/O patterns
of a single file written by a single process. For the single
file and single process I/O case, we utilize the framework
to search for optimal values for Lustre stripe count, and
stripe size, transfer size per write. Given a set of initial
set of parameters, IOR takes it as input, and it will report
performance which will be used by the search engine to come
up with the next set of parameters. Previous search results
and sets of parameters are stored in a database, so that
the search process can avoid redoing the test for an existing
result. This procedure will stop when an optimal set of
parameters is reached.

3.3.2 Search Space
Given the I/O pattern to be tuned, we can define the

search space in different ways. See Table 1 for a summary
of the search spaces. For sequential POSIX I/O case, we de-
fined a search space with three parameters with lower and
upper bounds: Lustre stripe count, stripe size, and transfer
size. For parallel POSIX I/O case, we add an extra param-
eter: number of I/O processes.

Table 1: Summary of the Search Spaces
Code Dimension Bounds

IOR Lustre stripe count 1 - 160
(sequential POSIX I/O) Lustre stripe size 1M - 256M

I/O transfer size 1M - 256M
IOR Lustre stripe count 1 - 160
(parallel POSIX I/O) Lustre stripe size 1M - 256M

I/O transfer size 1M - 256M
Number of I/O processes 1 - 12K

3.3.3 Search Techniques
Essentially, we are trying to solve an optimization problem

of the function:

f(x1, x2, · · · , xn)

The parameters x1 through xn represent the tuning pa-
rameters, such as Lustre stripe count and size. Typically
these are integer values, but in some cases could be real
numbers. The value of the function is the performance of
the I/O benchmark using that set of parameters. Perfor-
mance can be evaluated in many ways, but the results pre-
sented in this paper are based on using IOR to measure I/O

Megabytes per second. In [17], we have examined a variety
of search heuristics such as Simplex Method, Genetic Algo-
rithm, Simulated Annealing, Particle Swarm Optimization,
Orthogonal and Random search method. Having effective
search techniques will become increasingly important when
empirical tuning become more sophisticated and the search
spaces consequently grow.

3.3.4 Search Results
Search results are shown in Table 2. Figure 3 shows the

I/O performance with searched parameters. The number of
processes sharing one file decides the size of the subcommu-
nicator in parallel HMMER. It is relatively easy to conduct
sequential POSIX I/O tuning on Kraken, since the search
task can be launched in interactive mode and there is no
waiting time in the job queue for each benchmark test during
the search process. But the parallel version can not avoid
submitting benchmark test through the job queue, and it
makes the search process take too much time to finish. And
it generates too much I/O traffic on a production machine.
So we obtained Lustre stripe count, stripe size and transfer
size by running sequential POSIX I/O tuning. By conduct-
ing a few parallel HMMER experiments with different sub-
communicator sizes, we chose it to be 1024. On Kraken, the
default Lustre stripe count is 4 and stripe size is 1 MB. By
default, transfer size the same as stripe size.

Figure 3: Single process IO performance on Kraken

3.4 Application Programming Interface
We developed an I/O API, ATLIO(Auto-Tuned Linux

I/O), as an extension of the ANSI C file I/O API. It seam-
lessly replaces the POSIX I/O API with very few source
code changes for HMMER versions that use POSIX I/O to
read and write task-local files in parallel. For now, ATLIO
supports the following two I/O functionalities:

1. Parallel write

2. Parallel read

3.4.1 Parallel Write
Sequential HMMER writes data into a file using mul-

tiple POSIX fwrite() calls with small data sizes. Obvi-
ously this approach generates too much I/O contention when

Parameters Optimal Value Default Value
Lustre Stripe Size 32MB 1MB

Lustre Stripe Count 5 4

Transfer Size 32MB 1MB

Number of processes/shared file 1024 1

Table 2: Optimized and default parameters for Lustre on Kraken

tens of thousands of MPI processes write simultaneously.
ATLIO File Write() does buffering automatically on each
MPI process and sends the data to the rank zero process
of the subcommunicator when the buffer is full. Since HM-
MER output consists of a list of hits that do not need to be
in any particular order, the data can be merged without or-
dering and thus, it is relatively easy for the implementation.
The writer simply concatenates received data and writes to
a file. Listing 1 is an example of writing to a file:

Listing 1: Parallel write
/* initialize the configuration data structure */
ATLIO_Init(&cfg);
/* open file */
ATLIO_File_Open(&cfg, comm, filename, "w", fh);
/* write to file */
ATLIO_File_Write(&cfg, fh, buf, count, datatype);
/* close file */
ATLIO_File_Close(&cfg, fh);
/* clean up */
ATLIO_Finalize(&cfg);

ATLIO Init() initializes the structure with parameters
generated from the auto-tuning process. It sets the Lustre
stripe count, stripe size, transfer size, and buffer size, the size
of the subcommunicator,etc. ATLIO Finalize() cleans up
the allocated data structure.

3.4.2 Parallel Read
Reading a file is identical to Listing 1, except with a call to

ATLIO File Read instead of to ATLIO File Write. The
reader opens and reads data into a buffer, and broadcasts to
peer processes. For parallel HMMER, it is used to read the
Pfam database which is shared across every process. The
parameter of number of readers is determined by the I/O
throughput and network speed is set at initialization time.
Synchronization has to be taken care of during the reading
between peer processes.

4. EXPERIMENTAL RESULTS
In this section, we briefly describe the system used for the

experiments and explain the setup of the experiments for
the HMMER full machine capability run. We present re-
sults to show scalability of our parallel HMMER implemen-
tation and the effectiveness of the parallel I/O technique we
provide.

4.1 Kraken
Kraken is a Cray XT5 supercomputer hosted by the Na-

tional Institute for Computational Sciences (NICS) located
at the Oak Ridge National Laboratory in the US[15]. Kraken
has a total number of 8,256 compute nodes. Each node has
two sockets, and each socket has a 2.6 Ghz hex-core AMD
Opteron processor. The total number of cores is 99,072

with a peak performance of 1.03 PetaFLOPS. Each com-
pute node has 16GB memory and thus the total compute
memory 129TB. Kraken is attached to a Lustre parallel file
system.

4.2 Experiment Setup
Protein sequences vary significantly in length. The com-

putation time of HMMER’s hmmscan is dependent both
on the query sequence length and the domain database size.
All the nodes in our approach use Pfam24 database. Thus
the computation time is proportional to the sequence length,
with longer sequences taking more time to finish than shorter
sequences. We divide the query sequence file into N input
files of approximately equal amino acids(AA) count, with
each file about the same size, so that all the nodes finish
the computation at about the same time. First the total
number of amino acids(AA) count A in the query file is cal-
culated. The AA count for each job will be A/N , denoted
as a. Then all the sequences in the query file are sorted in
descending order based on sequence lengths. Next we tra-
verse through the sorted list allocating a sequence to a file,
working from input file 0 to N − 1. Once the first N se-
quences are allocated to these N input files, we restart the
allocation, working from input file N − 1 to 0 in reverse or-
der. This allocation process is done in a round robin fashion
until all the sequences are allocated to these N input files.
The smallest sequences with length less than 50 AA are al-
located at the end, ensuring almost the same number of AA
count per each file [16].

4.3 Experiment Results
There are three sets of experiments:

1. Non-Optimized, ideally parallel HMMER with default
Lustre settings shown in Table 2.

2. Multi-Threading, running one MPI process and multi-
ple threads on each compute node with default Lustre
settings.

3. Optimized I/O, multi-threading parallel HMMERwith
optimized I/O and pre-selected optimal Lustre settings
shown in Table 2.

Figure 4 shows the performance comparison in terms of
execution time of three versions of parallel HMMER run-
ning on Kraken. We can see that non-optimized version
won’t scale. Even though the ideally parallel approach is
easy to implement, the performance is bad due to severe
I/O contention between each process. The multi-threading
version performed better than the non-optimized version be-
cause it eliminates I/O contention by twelve times. But it
does not solve the I/O contention problem and we can see it
takes more time to finish when the job size increases. The
optimized I/O version shows the best performance. It com-
bines multi-threading parallel HMMER with optimized I/O

and auto-tuned Lustre parameters. Table 3 shows experi-
mental results of the optimized I/O version using from 1008
up to 96000 compute cores. We measured total execution
time and total number of queries that are processed. Hm-
merSearch uses a profile hidden Markov model, which rep-
resents a group of aligned sequences, as a query to search a
sequence database for related sequences. The alignments of
the profile HMM to the best-scoring sequences are displayed
in the output. We also give the average time for processing
a single query. As shown in Figure 5(a) and Figure 5(b),
our implementation of parallel HMMER can achieve linear
speedup as we use more compute cores up to a full machine
run, and our approach is perfectly scalable on a massive
parallel supercomputer like Kraken.

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1024 2048 4096 8192 16384 32768 65536 131072

T
im

e(
se

co
nd

)

Number of Cores

Parallel HMMER Execution Time Comparison on Kraken

Non-Optimized
Multi-Threading

Optimized I/O

Figure 4: Parallel HMMER execution time compar-
ison on Kraken

5. I/O AUTO-TUNING FRAMEWORK
In this section, we describe our I/O auto-tuning frame-

work, which we used in Section 3. More details can be
found in [23]. Figure 6 shows the structure of the auto-
tuning process. In the first step to calibrate the simulation
on a specific system, we run a benchmark such as IOR[12]
and compare with the simulation results. By adjusting the
setup parameters of the simulation and the mathematical
models, the simulation will behave in the same way as the
real system. We call this step the training process. The goal
is to figure out key parameters for the mathematical model
and, based upon that auto-tuning can be done by simula-
tion (not on real system). Then for a given I/O setup, we
use the mathematical model to generate a set of parameters
that serve as the starting point of the tuning process. Each
set of parameters is input to the simulation, which reports
performance that is used by the search engine [17] to come
up with the next set of parameters. Previous search results
and sets of parameters are saved into a database, so that if
search process finds the parameters set has already be done,
it skips to the next set of parameters This procedure stops
when an optimal set of parameters is reached.
The advantages of our approach are as follows:

• Simulation will release the burden on the real system
since it will not generate real I/O traffic.

• The auto-tuning framework is faster compared to run-
ning the search process on the real system, since each

 100

 150

 200

 250

 300

 350

 1024 2048 4096 8192 16384 32768 65536 131072

T
im

e(
se

co
nd

)

Number of Cores

HMMER Execution Time on Kraken

Total Time

(a) Total execution time

-20

-19

-18

-17

-16

-15

-14

-13

-12

-11

-10

 1024 2048 4096 8192 16384 32768 65536 131072

T
im

e(
se

co
nd

|lo
g2

)

Number of Cores

HMMER Average Time per Sequence on Kraken

Time/Sequence

(b) Average execution time per sequence

Figure 5: Parallel HMMER with I/O optimization
on Kraken

benchmark job has to go through the batch queuing
systems, and also it takes more time to finish each job.

• The noise of the real system will be avoided, and the
framework can provide parameters without much er-
ror.

To summarize, an application user who wants to use this
tool to auto-tune I/O should follow the steps below

• Use IOR to do parameter training for a particular sys-
tem.

• Feed the parameters that are generated in the previous
step to the mathematical model and start auto-tuning
process. This should be significantly faster than con-
ventional auto-tuning, which occurs on a real system.

• Adopt the optimized parameters into the application
code.

6. CONCLUSION
HMMER is one of the essential computational tools widely

used by biologists to construct profile hidden Markov mod-
els for the detection of protein sequence similarity, protein
family classification, and functional annotation. To the best
of our knowledge, it has not been able to scale up to hun-
dreds of thousands compute cores, limiting its capability to

Cores Queries Total Time (s) avg time/query
1008 1006809 284.97 2.8304E-04

2004 2001699 299.11 1.4943E-04

4008 4003352 302.02 7.5442E-05

8004 7994733 300.77 3.7621E-05

16008 15989466 317.71 1.9870E-05

32004 31966977 306.67 9.5933E-06

64008 63933972 312.81 4.8927E-06

96000 95888993 313.04 3.2646E-06

Table 3: Parallel HMMER with I/O optimization experimental results on Kraken

Figure 6: I/O Auto-tuning Framework

satisfy the needs of the advance of computational biology
research on very large scale. In this paper we demonstrate
the effectiveness of our parallel implementation of the HM-
MER hmmscan tool along with our I/O auto-tuning strat-
egy. We also describe an auto-tuned I/O library for such
applications. Empirical optimization has been shown to be
an effective technique for optimizing code for a particular
platform such as ATLAS [21, 5], PHiPAC [2], and FFTW
[9]. Our research demonstrates that it also can be effective
for I/O tuning. We plan to build an auto-tuning I/O frame-
work based on mathematical modeling and simulation that
will generate an I/O library with optimal parameters for an
underlying architecture and file system.

Acknowledgment
This research used resources at the National Institute for
Computational Sciences supported by the National Science
Foundation. This research was also supported in part by the
National Science Foundation under grant EPS-0919436.

7. REFERENCES

[1] D. A. Benson, M. S. Boguski, D. J. Lipman, J. Ostell,
and B. F. Francis. Ouellette genbank. In Nucl. Acids
Res., volume 26, pages 1–7, 1998.

[2] J. Bilmes, K. Asanovic, C.-W. Chin, and J. Demmel.
Optimizing Matrix Multiply Using PHiPAC: A
Portable, High-Performance, ANSI C Coding
Methodology. In International Conference on
Supercomputing, pages 340–347, 1997.

[3] G. Chukkapalli, C. Guda, and S. Subramaniam.
Sledgehmmer: a web server for batch searching the
pfam database. In Nucl. Acids Res., volume 32, 2004.

[4] Cluster File Systems, Inc. Lustre: A scalable,
highperformance file system. Technical report, White
paper (2002).

[5] J. Demmel, J. Dongarra, V. Eijkhout, E. Fuentes,
A. Petitet, R. Vuduc, C. Whaley, and K. Yelick. Self
adapting linear algebra algorithms and software.
Proceedings of the IEEE, 93(2), 2005. special issue on
”Program Generation, Optimization, and Adaptation”.

[6] S. R. Eddy. HMMER3: a new generation of sequence
homology search software .
http://hmmer.janelia.org.

[7] S. R. Eddy. Profile hidden Markov models.
Bioinformatics, 14:755–763, 1998.

[8] R. Finn, J. Mistry, J. Tate, P. Coggill, A. Heger,
J. Pollington, O. Gavin, P. Gunesekaran, G. Ceric,
K. Forslund, L. Holm, E. Sonnhammer, S. Eddy, and
A. Bateman. The pfam protein families database.
Nucleic Acids Research Database Issue,
(38):D211–222, 2010.

[9] M. Frigo and S. G. Johnson. FFTW: An Adaptive
Software Architecture for the FFT. In Proc. 1998
IEEE Intl. Conf. Acoustics Speech and Signal
Processing, volume 3, pages 1381–1384. IEEE, 1998.

[10] D. R. Horn, M. Houston, and P. Hanrahan.
Clawhmmer: A streaming hmmer-search
implementatio. In SC ’05: Proceedings of the 2005
ACM/IEEE conference on Supercomputing, page 11,
Washington, DC, USA, 2005. IEEE Computer Society.

[11] P. Hugenholtz and G. W. Tyson. Microbiology:
Metagenomics. In Nature, volume 455, pages 481–483,
2008.

[12] IOR. The ASCI I/O stress benchmark.
https://computing.llnl.gov/?set=code\&page=

sio_downloads.

[13] R. P. Maddimsetty, J. Buhler, R. D. Chamberlain,
M. A. Franklin, and B. Harris. Accelerator design for
protein sequence hmm search. In Proceedings of the
20th annual international conference on
Supercomputing, ICS ’06, pages 288–296, New York,
NY, USA, 2006. ACM.

[14] H. Meuer, E. Strohmaier, J. Dongarra, and H. Simon.
TOP500 Supercomputing Sites. http://top500.org.

[15] National Institute for Computational Sciences.
Kraken. http://www.nics.tennessee.edu/
computing-resources/kraken.

[16] B. Rekapalli, C. Halloy, and I. B. Zhulin. Hsp-hmmer:
a tool for protein domain identification on a large
scale. In Proceedings of the 2009 ACM symposium on

Applied Computing, SAC ’09, pages 766–770, New
York, NY, USA, 2009. ACM.

[17] K. Seymour, H. You, and J. Dongarra. A comparison
of search heuristics for empirical code optimization. In
3rd International Workshop on Automatic
Performance Tuning, 2008.

[18] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and
J. Dongarra. MPI-The Complete Reference, Volume 1:
The MPI Core. MIT Press, Cambridge, MA, USA,
1998.

[19] J. Walters, X. Meng, V. Chaudhary, T. Oliver,
L. Yeow, B. Schmidt, L. Nathan, and J. Landman.
Mpi-hmmer-boost: Distributed fpga acceleration.
Journal of VLSI signal processing, 2007.

[20] J. P. Walters, R. Darole, and V. Chaudhary.
Improving mpi-hmmer’s scalability with parallel i/o.
In Proceedings of the 2009 IEEE International
Symposium on Parallel&Distributed Processing, pages
1–11, Washington, DC, USA, 2009. IEEE Computer
Society.

[21] R. C. Whaley, A. Petitet, and J. Dongarra.
Automated Empirical Optimizations of Software and
the ATLAS Project. Parallel Computing, 27(1-2):3–35,
January 2001.

[22] B. Wun, J. Buhler, and P. Crowley. Exploiting
coarse-grained parallelism to accelerate protein motif
finding with a network processor. In PACT ’05:
Proceedings of the 14th International Conference on
Parallel Architectures and Compilation Techniques,
pages 173–184, Washington, DC, USA, 2005. IEEE
Computer Society.

[23] H. You, Q. Liu, Z. Li, and S. Moore. The design of an
auto-tuning I/O framework on Cray XT5 system. In
Cray User Group meeting (CUG 2011), Fairbanks,
Alaska, May 2011.

