
Noname manuscript No.
(will be inserted by the editor)

Power-Aware Predictive Models of Hybrid (MPI/OpenMP)
Scientific Applications on Multicore Systems

Charles Lively · Xingfu Wu · Valerie Taylor · Shirley Moore ·
Hung-Ching Chang · Chun-Yi Su · Kirk Cameron

Received: date / Accepted: date

Abstract Predictive models enable a better understand-

ing of the performance characteristics of applications

on multicore systems. Previous work has utilized per-

formance counters in a system-centered approach to

model power consumption for the system, CPU, and

memory components. Often, these approaches use the

same group of counters across different applications. In

contrast, we develop application-centric models (based

upon performance counters) for the runtime and power

consumption of the system, CPU, and memory compo-

nents. Our work analyzes four Hybrid (MPI/OpenMP)

applications: the NAS Parallel Multizone Benchmarks

(BT-MZ, SP-MZ, LU-MZ) and a Gyrokinetic Toroidal

Code, GTC. Our models show that cache utilization

(L1/L2), branch instructions, TLB data misses, and

system resource stalls affect the performance of each

application and performance component differently. We

show that the L2 total cache hits counter affects per-

formance across all applications. The models are vali-

dated for the system and component power measure-

ments with an error rate less than 3%.

Keywords Modeling · Performance Prediction ·
Power Prediction · Multicore Systems · Performance

Analysis

C. Lively, Xingfu Wu, Valerie Taylor
Department of Computer Science,Texas A&M University
E-mail: clively,wuxf,taylor@cse.tamu.edu

Shirley Moore
EECS, University of Tennessee-Knoxville
E-mail: shirley@eecs.utk.edu

Hung-Ching Chang, Chun-Yi Su, Kirk Cameron
Department of Computer Science, Virginia Tech
E-mail: kirk.w.cameron@gmail.com

1 Introduction

The current trend in high-performance computing places

a great focus on minimizing the power consumption of

scientific applications on multicore systems without in-

creasing runtime performance [7–9,18,20,21,24]. Per-

formance models can be used to provide insight into the

application’s performance characteristics that signifi-

cantly impact the runtime and power consumption. As

HPC multicore systems become more complex it is im-

portant to understand the relationships between perfor-

mance and power consumption and the characteristics

of scientific applications that influence the various levels

of performance. In this paper we develop application-

centric models based upon performance counters for

modeling the runtime and power consumption of the

system, CPU, and memory (which are the major com-

ponents of the overall power consumption). We use these

models to explore common and different characteristics

about the applications that impact runtime and power

consumption.

The hierarchical organization of multicore systems

lends itself well to the Hybrid (MPI/OpenMP) pro-

gramming model. The Hybrid programming model ex-

ploits the intra-node parallelization available in multi-

core chips via OpenMP and the scaling to large number

of cores using inter-node parallelism via MPI. Utilizing

OpenMP within a node reduces communication over-

head and makes use of the memory bandwidth available

within a node. Utilizing MPI between nodes matches

the system organization with distributed memory across

nodes. In this paper we focus on Hybrid applications to

investigate performance models. In particular, we uti-

lize the following four Hybrid applications: the NAS

Parallel Multizone Benchmark suite, which consists of

2 Charles Lively et al.

BT-MZ, SP-MZ, LU-MZ (strong scaling) [12], and a

Gyrokinetic Toroidal Code, GTC (weak scaling).

The use of performance counters to predict power

consumption has been explored in previous work [2–4,

6,13,15,22]. Often this work identified a set of common

performance counters to be used across all of the ap-

plications considered. Further, some of the work uses

the performance counters to identify methods for re-

ducing power consumption. Typical methods for reduc-

ing power include power scaling techniques, such as dy-

namic voltage and frequency scaling (DVFS) [8], and

dynamic concurrency throttling (DCT) [4]. DVFS and

DCT seek to reduce the power consumption of appli-

cations by reducing frequency during low activity pe-

riods or determining the most efficient execution con-

figuration dynamically during execution, respectively.

These methods exploit imbalances in the application

and reduce power consumption based on the perfor-

mance of the current systems. In contrast, our method

is focused on an application-centric view of the models

developed and thereby understanding the unique char-

acteristics of each application that impact both runtime

and power consumption. We seek to explore which ap-

plication characteristics (via performance counters) af-

fect performance in order to gain a better understand-

ing of how the application can be modified to improve

performance with respect to runtimes, and power con-

sumption of the system, CPU, and memory.

In this paper, we explore the following issues in re-

gards to modeling the runtime and power consumption

of Hybrid scientific applications on multicore systems:

a) What is the accuracy of application-centric mod-

els in estimating performance (runtime and power con-

sumption for system, CPU, and memory components?

b) Which combination of performance counters can

be used to model the Hybrid application in terms of

runtime, system power, CPU power, and memory power?

c) What are the application characteristics that af-

fect runtime and power consumption in Hybrid scien-

tific applications?

d) What characteristics of Hybrid applications can

be optimized to improve performance on multicore sys-

tems?

In this work, we use MuMI (Multicore application

Modeling Infrastructure) [17], which facilitates system-

atic measurement, modeling, and prediction of perfor-

mance, power consumption and performance-power trade-

offs for multicore systems. The MuMI framework is an

integration of existing frameworks: Prophesy [25], Pow-

erPack [23], and PAPI [19]. We use the SystemG power-

aware cluster to conduct our experiments. Table 1 pro-

vides an overview of the overall performance specifica-

tions of SystemG. SystemG, available at Virginia Tech,

Table 1 Configuration of SystemG

Configuration of SystemG

Mac Pro Model Number MA970LL/A
Total Cores 2,592
Total Nodes 324
Cores/Socket 4
Cores/Node 8
CPU Type Intel Xeon 2.8Ghz Quad-Core
Memory/Node 8GB
L1 Inst/D-Cache per core 32-kB/32-kB
L2 Cache/Chip 12MB
Interconnect QDR Infiniband 40Gb/s

is a 22.8 TFLOPS research platform that utilizes 325

Mac Pro computer nodes. This system is the largest

power-aware research system and with each node con-

taining more than 30 thermal sensors and more than

30 power sensors. Each node in the system contains

two quad-core 2.8GHz Intel Xeon Processors 5400 se-

ries processor. Each node is configured with 8GB RAM

which is configured with eight 1GB 1066MHz DDR3

ECC DIMMs .

Our models have an average error of less than 3% for

runtime, system power, CPU power and memory power

and are validated with actual component power mea-

surements. Our models highlight that L1 cache utiliza-

tion (reads/writes/accesses/hits/misses), L2 cache uti-

lization (accesses/hits), branch instructions, TLB data

misses, and various system resource stalls affect perfor-

mance differently for each application and performance

component. Additionally, our models show that L2 total

cache hits per cycle affects performance greatly across

all applications and all performance components.

The remainder of this paper is organized as follows.

Section 2 presents an overview of our modeling method-

ology. Section 3 presents the validation and results of

our modeling methodology. Section 4 presents related

work followed by the paper summary in Section 5.

2 Model Development Method

Our models are developed using five configuration points

for each application to constitute a training set for pre-

dicting performance. Three of the configuration points

are used for predicting intra-node performance and two

are used for predicting inter-node performance. Scal-

ing processor performance for each MPI x OpenMP

configuration is represented as (M x N), where M is

the number of MPI processes or nodes used, and N is

the number of OpenMP threads utilized per node. One

MPI process is utilized per node in all of our exper-

iments. A configuration of 11x8 means that 11 MPI

processes (11 nodes with 1 MPI process per node) with

Power-Aware Predictive Models of Hybrid (MPI/OpenMP) Scientific Applications on Multicore Systems 3

8 OpenMP threads per node were used for a total of

88 processors. The training set is used to predict the

larger performance components. In this sense, an appli-

cations training set would consist of an intra-node set

using performance of 1 thread (1x1), 2 threads (1x2),

and 3 threads (1x3) within a node. The training set for

inter-node performance would use two data points con-

sisting of performance using the configurations for 1x8

(1 MPI/8 OpenMP threads) or 8 processes and 2x8 (2

MPI/8 OpenMP threads) or 16 processes. The 5 train-

ing points were used to predict performance for up to

16 larger configuration points. We developed predictive

models for the following Hybrid (MPI/OpenMP) con-

figuration points: 1x4, 1x5, 1x6, 1x7, 3x8, 4x8, 5x8, 6x8,

7x8, 8x8, 9x8, 10x8, 11x8, 12x8, 13x8, 14x8, 15x8, 16x8.

During each execution we capture 40 performance

counter events utilizing the performance application pro-

gramming interface (PAPI) [19] and the perfmon per-

formance library. All performance counter events are

normalized using the total cycles of execution to cre-

ate performance event rates for each counter. Curve

fitting is used to extrapolate the smaller counter rates

to the counter rates for the larger configurations. The

40 performance counters are analyzed for each appli-

cation using a performance-tuned supervised principal

component analysis method, which is a derivative of

the supervised principal components analysis method

[1]. In particular, the following algorithm was used to

identify the performance counter events needed to build

the predictive models for each application:

1. Compute the Spearman’s rank correlation for each

performance counter event rate for each performance

component (runtime, system power, CPU power,

and memory power).

2. Establish a threshold, βai, to be used and eliminate

any counters below the threshold.

3. Compute a multivariate linear regression model based

upon the remaining performance counter event rates.

4. Establish a new threshold, βbi, and eliminate per-

formance counters and ensure that the regression

coefficients are not greater than the selected thresh-

old in terms of magnitude.

5. Compute the principal components of the reduced

performance counter event rates.

6. Use the performance counter event rates with the

highest principal component coefficient vectors to

build a multivariate linear regression model to pre-

dict the respective performance metric.

This process is repeated for each application and for

each performance component.

Table 2 provides a sample of the βai and βbi val-

ues used in our work for modeling runtime. The βai

Table 2 Correlation θ values for Runtime

β BT-MZ SP-MZ LU-MZ GTC

βai 0.60 0.50 0.60 0.60
βbi 0.100 3.50 6.000 1.250

Table 3 Overview of Normalized Performance Counters

Counter Description

PAPI TOT INS Total instructions completed
PAPI TLB DM TLB misses
PAPI L1 TCA L1 cache total accesses
PAPI L1 ICA L1 instruction cache accesses
PAPI L1 TCM L1 total cache misses
PAPI L1 DCM L1 data cache misses
PAPI L2 TCH L2 total cache hits
PAPI L2 TCA L2 total cache accesses
PAPI L2 ICM L2 instruction cache misses
PAPI BR INS Branch instructions completed
PAPI RES STL System stalls on any resource
Cache FLD per instruction L1 writes/reads/hits/misses
LD ST stall per cycle Load/stores stalls per cycle

were used to identify the performance counters with

the strongest correlation to each application and per-

formance component. Different values for βai and βbi
were used for system power, CPU power, and memory

power component modeling.

We are able to utilize a small subset of the orig-

inal 40 performance counters (presented in Table 3).

Throughout our experiments the performance counter

events collected are per cycle event rates and are nor-

malized based on the total cycles of execution for each

application. In addition, in our work several restrictions

were placed on our derived predictive models to ensure

that they were representative of realistic performance

scenarios. In several cases, utilizing some counters re-

sulted in negative regression coefficients for those coun-

ters. For example, a runtime predictive model that uti-

lizes PAPI TOT INS (normalized per cycle) should not

have a negative regression coefficient. This would mean

that as the number instructions per cycle increases the

runtime would decrease. Theoretically this could pro-

vide an accurate model for predicting runtime but it is a

blackbox approach, which is not indicative of a realistic

performance scenario. Based on our modeling method-

ology (which combines correlation, principal component

analysis, and regression), we assume a causal relation-

ship between the derived performance counter event

rates and each performance component.

These performance counters represent a smaller sub-

set of the total number of performance counters used

to measure the application performance on SystemG.

4 Charles Lively et al.

This subset provides for a representation of the counters

needed for the application-centered predictive models.

y = β0 + β1 ∗ r1 + β2 ∗ r2.......βn ∗ rn (1)

Each multivariate linear regression model is constructed

for each performance component (execution time, sys-

tem power, CPU power, and memory power) for each

application. In Equation 1, y is the component predictor

used to represent the value for runtime, system power,

CPU power, or memory power. The intercept is β0 and

each βn represents the regression coefficient for hard-

ware counter rn.

3 Experimental Results: Model Development

and Validation

In this section, we provide the details of our experimen-

tal results. This section is organized as follows. Section

3.1 provides an overview of the Hybrid MPI/OpenMP

applications utilized in our experiments. Section 3.2

provides an overview of the predictive model valida-

tion discussing commonalities across all applications for

each performance component (runtime, system power,

CPU power, and memory power. Section 3.3 provides

an overview of modeling validation for each applica-

tion and discusses application characteristics that affect

each performance component.

3.1 Benchmarks and Scientific Applications

We model the runtime, system , CPU, and memory

power consumption of Hybrid scientific applications.
We utilize the MultiZone NAS Parallel Benchmark Suite

(NPB-MZ). NPB-MZ contains three benchmarks (LU-

MZ, SP-MZ, and BT-MZ), using a main loop to ex-

change values during MPI communication and an OpenMP

phase within the loop.

The Block Tri-diagonal algorithm (BT-MZ) contains

(16x16) x-zones x y-zones and has uneven mesh tilings.

BT-MZ represents realistic performance case for ex-

ploring the discretization meshes in parallel computing.

The Scalar Penta-diagonal algorithm (SP-MZ) contains

(16x16) x-zones x y-zones and is representative of a

balanced workload in the suite. The Lower-Upper sym-

metric Gauss-Seidel algorithm (LU-MZ) contains (4x4)

x-zones x y-zones and the coarse-grain parallelism of

LU-MZ is limited to 16. Therefore, at most 16 MPI

processes can be used in executing LU-MZ. The prob-

lem sizes for all NPB-MZ benchmarks are strong scaling

using class C, utilizing 800MB of memory.

The Gyrokinetic Toroidal code (GTC) is a 3D particle-

in-cell application developed at the Princeton Plasma

Physics Laboratory to study turbulent transport in mag-

netic fusion. GTC is a flagship SciDAC fusion microtur-

bulence code written in Fortran90, MPI and OpenMP.

There are 7 major functions: load, field, smooth, pois-

son, charge, shift and pusher in the code. Charge, pusher

and shift dominate most of the runtime. Note that GTC

is executed in weak scaling to keep a constant workload

per processor as the number of processors increase using

100 particles per cell and 100 time steps.

In our experiments with NPB-MZ we test inter-node

performance from 1 OpenMP thread to 8 OpenMP threads

for a single node. NPB-MZ performance was predicted

from up to 11x8 (88 processors) and up to 16x8 (128

processors) for GTC.

3.2 Predictive Model Validation

In this section, we present the normalized (per cycle)

performance counters derived for each application and

for each performance component (runtime, system power,

CPU power, and memory power). Figure 1 shows an

overview of the counters derived from our performance-

tuned supervised principal components method. The

figure shows each performance counter event rate used

and the corresponding regression coefficient, β1. The

regression coefficients utilized in this work are repre-

sented up to 5 significant digits based on the precision

of the performance counter measurements obtained us-

ing PAPI. These counters provided for the best per-

formance models according to their correlation to each

performance component and application, principal com-

ponent coefficients, and restrictions placed on our de-

tailed multivariate linear regression models.

In this work, we placed restrictions on our mod-

els to ensure that the models reflected realistic per-

formance trends for each application. Different perfor-

mance counter events are utilized to represent each ap-

plication and modeling of each component. The reason

for this method is to ensure that the application trends

are correctly represented through appropriate counters

that strongly represent the performance characteristics

of each application.

3.2.1 Runtime Performance Overview

Our method highlights that the per cycle event rates

from PAPI TOT INS and PAPI L2 TCH affect run-

time performance across all four applications. For SP-

MZ, LU-MZ, and GTC, optimizations made to increase

the number of L2 cache hits per cycle could potentially

improve performance. BT-MZ and LU-MZ models in-

dicate that improvements made to L1 cache utilization

(through Cache FLD per instruction) should improve

Power-Aware Predictive Models of Hybrid (MPI/OpenMP) Scientific Applications on Multicore Systems 5

Fig. 1 Overview of Performance Counters Used for Predictive Models with the Corresponding Regression Coefficients

runtime, while increasing the number of L2 cache ac-

cesses per cycle could increase runtime.

3.2.2 System Power Performance Overview

BT-MZ, LU-MZ, and GTC use the event rates from

PAPI L2 TCH and PAPI RES STL for predicting sys-

tem power. For all applications, increasing the L2 cache

hits per cycle can aid in reducing the system power

consumption of each application. BT-MZ, LU-MZ and

GTC utilize MPI/OpenMP with an increased MPI com-

munication component. To accurately model their sys-

tem power consumption the number of system stalls
on any resource must be used to provide an accurate

model. Since SP-MZ has a smaller variation in the com-

munication message sizes and utilizes less than 160KB

size messages, PAPI RES STL is not needed.

3.2.3 CPU Power Performance Overview

Improvements made to L1 and L2 cache utilization can

potentially result in lower CPU power consumption across

all applications. Improvements made to increase the

number of L2 cache hits per cycle can potentially re-

duce the application’s CPU power. Each application

needs improvements in different aspects with regards

to L1 cache performance. The models for both BT-MZ

and SP-MZ demonstrate that improvements made to

reduce the number of L1 cache misses can aid in de-

creasing the CPU power consumption. LD ST stall per

cycle in SP-MZ and LU-MZ causes CPU power con-

sumption to increase.

3.2.4 Memory Power Prediction Overview

PAPI L2 TCH is used in all applications in predicting

the memory power consumption. Importantly, improv-

ing the number of L2 cache hits per cycle will aid in

reducing the memory power. Better utilization of the

L2 cache will result in a decrease in the workload of the

memory component. For all of the NPB-MZ applica-

tions, L1 cache performance affects the memory power

consumption. For BT-MZ and LU-MZ, PAPI L1 TCA

affects memory performance by indicating that as the

number of L1 cache accesses per cycle increases memory

power consumption will also increase. SP-MZ utilizes

Cache FLD per cycle to capture activity with regards

to L1 cache reads, writes, hits, and misses.

3.3 Application-Centric Analysis

In this section, we identify the characteristics of each

application that affect the predictive models in terms

of runtime, system power, CPU power, and memory

power. The goal is to outline the differences that each

application exhibits with respect to the other Hybrid

applications utilized in this work.

3.3.1 BT-MZ

BT-MZ has an average error of less than 3%. Figure 2

provides an overall depiction of the errors for each mod-

eling component for BT-MZ. Four performance coun-

ters from our performance-tuned principal component

analysis method were derived to model runtime. Im-

proving the L1 cache utilization of the application on

SystemG has the potential to reduce the runtime of the

6 Charles Lively et al.

Fig. 2 Average Error of Predictive Models for Four Hybrid Scientific Applications

application. The Cache FLD per instruction event rate

has the largest regression coefficient in this model in

terms of magnitude (-1.611). Cache utilization for BT-

MZ places a larger emphasis on L1 utilization as activ-

ity in the L2 cache is limited for the class C benchmark.

The BT-MZ model indicates that improvements to L1

cache performance may improve runtime.

Our system power model shows that increasing the

L2 cache hits per cycle provides for a strong optimiza-

tion method for reducing the system power consump-

tion. The PAPI L2 TCH has the largest regression co-

efficient in terms of magnitude (-1.6769) for system

power. Our model shows that increasing the number of

cache hits per cycle can possibly reduce system power.

The CPU model shows that L2 cache hits per cycle

has the largest regression coefficient in terms of magni-

tude (-3.9389). Improvements made to increase the L2

cache hits per cycle can potentially lower the power con-

sumption of memory. PAPI RES STL has a large num-

ber of reported counts per cycle and the regression co-

efficient is not large in comparison to the other counter

event rates. The product of the regression coefficient for

PAPI RES STL and the reported event count per cycle

contribute greatly to the CPU power consumption.

Prediction for memory power consumption has an

average error of less than 3.6%. The predictive model

shows that the PAPI L1 DCM event has the largest

regression coefficient. Improvements made to the uti-

lization of the L2 cache are likely to affect the power

consumption of the memory as it has a negative regres-

sion coefficients for PAPI L2 TCH.

3.3.2 SP-MZ

The SP-MZ benchmark has an average error of less than

3% for all modeling components. Insight provided from

the modeling of the runtime shows that optimizations

made to improve L2 total cache hits can be used to re-

duce the runtime of the application. Consequently, poor

utilization of the L1 cache with regards to total cache

misses per cycle may have a larger affect on the run-

time as the PAPI L1 TCM event rate carries a larger

regression coefficient (1.1761). The system power model

utilizes three counter events and indicates that improve-

ments made to L2 cache utilization by improving total

cache hits can decrease system power consumption. The

regression coefficient for PAPI L2 TCH has the largest

magnitude (-1.3452) for the system power consumption

model. Poor utilization of the L1 cache results in an in-

crease in power consumption as demonstrated through

the model from the L1 instruction cache access counter

and L1 total cache misses counter event.

The CPU power model has an average error of less

than 1.6% for SP-MZ. The CPU regression model is

based upon LD ST stall per cycle, PAPI L1 TCM, and

PAPI L2 TCH. The model shows that improving the

total L2 cache hits provides for the best method for

reducing the CPU power consumption of the applica-

tion. The PAPI L2 TCH has the largest regression co-

efficient, -1.6914, and serves as the largest contributor

to the power model.

The memory model highlights the large affect that

L2 cache performance has on memory power consump-

tion. Specifically, the L2 total cache hits per cycle largely

Power-Aware Predictive Models of Hybrid (MPI/OpenMP) Scientific Applications on Multicore Systems 7

affect memory power consumption. Our model shows

that increasing the number of L2 total cache hits per cy-

cle could help to significantly reduce the memory power

consumption. Improving the L2 cache performance of

the application will reduce memory activity, which will

lower the power consumption. Our predictive models for

SP-MZ show that improving L2 cache performance pro-

vides a strong opportunity for improving performance

in terms of runtime and component power consumption.

For each component, the PAPI L2 TCH event had the

highest regression coefficient.

3.3.3 LU-MZ

Modeling of the LU-MZ benchmark has an average er-

ror of less than 3.3%. Insight provided from the run-

time model indicates that improvements made to re-

duce TLB misses per cycle and increase L2 total cache

hits per cycle can possibly reduce the runtime. On av-

erage, the TLB data misses per cycle in LU-MZ are 5

times higher than the TLB data misses per cycle in BT-

MZ and SP-MZ. In addition, the average number of L2

total cache hits per cycle and the regression coefficient

is the second largest contributor to the runtime model.

For LU-MZ, our model for system power consump-

tion utilizes four performance counters and shows that

improvements made to utilization of the L2 cache by

reducing the total cache misses can decrease system

power consumption. The largest contributor to the model

is from PAPI TOT INS event.

The CPU power model is based upon three perfor-

mance counters and indicates that improving the total

L2 cache hits provides for the best method for reduc-

ing the CPU power consumption of the application.

The PAPI L2 TCH has the largest regression coeffi-

cient, -0.9886. Reducing the total number of L2 cache

accesses will also reduce the power consumption of the

CPU as the PAPI L2 TCA event rate is the largest

contributor to the CPU power consumption. Model-

ing the CPU power consumption for LU-MZ utilizes

three performance counters. The CPU power model

shows the strong correlation between L2 cache activ-

ity and CPU power consumption. PAPI L2 TCH, and

PAPI L2 TCA have the largest regression coefficients

at -8.0003 and 7.9137. Improvements made to the L2 to-

tal cache hits will result in reduction in the CPU power

consumption for the LU-MZ application. The memory

power model shows that activity on the L1 and L2 cache

can be used to measure and predict power consumption

for the memory on the system. Specifically, the L2 total

cache hits counter has the largest regression coefficient,

-3.9574. L1 total cache accesses is the strongest con-

tribution to the memory model because of the large

number of L1 cache accesses that occur per cycle.

3.3.4 Gyrokinetic Toroidal Code (GTC)

The GTC application has an average error of less than

2.8% for all performance component models. To model

the runtime for GTC we utilize four performance coun-

ters, indicated in Figure 1. Insight provided from the

modeling of the runtime shows that optimizations made

to improve L2 cache performance will play a significant

roll in reducing the runtime of this application. The

value from the product of L2 total cache hits per cy-

cle and the regression coefficient is the second largest

contributor to the runtime model.

Modeling of system power for GTC indicates L1

cache activity affects system power greatly. The event

rate captured from PAPI L1 TCA, L1 total cache ac-

cesses, is the largest contributor to the total system

power. The second largest contributor to the system

power model is PAPI RES STL. Reducing the num-

ber of stalls on any system resource can be used to

reduce performance and system power consumption.

PAPI L2 TCH has the largest regression coefficient in

terms of magnitude, -3.25050068, however it contributes

the least to the system power model.

Memory power is predicted using PAPI TOT INS,

PAPI L2 TCH, and PAPI L2 ICM. The model shows

that the instructions per cycle (through PAPI TOT INS)

correlates strongly with memory power consumption for

GTC. PAPI L2 TCH can be increased to reduce mem-

ory power consumption as it has the largest regression

coefficient in terms of magnitude, -2.8805.

4 Related Work

In [3] performance counters are used to provide power

measurements of the complete system. The average er-

ror was less than 9%. This work provided a system-

centered approach to modeling based on the correlation

of performance counter events to applications.

In [20] a surrogate estimation model using perfor-

mance counters is presented on an Intel Core i7 system

to estimate for CPU, Memory, and the total system

power for OpenMP benchmarks up to 8 threads. The

median error was 5.32% on the system. In [20] vari-

ous Intel Core i7 specific counters that were representa-

tive of the system features were utilized. For example,

this work used counters that represented the number

of unhalted cycles in the CPU and retired instructions

for building the CPU power model. The robust regres-

sion model was built based on the spearman correla-

tion. In contrast, our work seeks to understand how

8 Charles Lively et al.

the application characteristics, such as how L1 and L2

cache utilization, affect the power consumption by us-

ing application-centric performance counters available

in PAPI and perfmon. In [22] power estimations using

counters are presented with median errors of 5.63%.

Our work differs from previous works using per-

formance counters in that we seek to identify areas

within each Hybrid application that should be opti-

mized to improve performance. We determine which

counters most influence the performance of each ap-

plication. We also apply our methodology to Hybrid

(MPI/OpenMP) applications to exploit the hierarchi-

cal nature of multicore systems. In addition, we identify

performance counters that can provide detailed mea-

surements of the hierarchical characteristics of the sys-

tem with regards to utilization of the L1 and L2 cache.

5 Conclusions

In this paper, we present predictive performance mod-

els to analyze the performance characteristics of Hy-

brid scientific applications in terms of runtime, system

power, CPU power, and memory power. The predictive

models are able to determine the performance charac-

teristics that affect each performance component. Most

importantly, our method identifies the different perfor-

mance counter measurement that are needed to accu-

rately predict application performance and provide in-

sight to improve performance for each application. Our

models make use of the Multicore Application Modeling

Infrastructure, MuMI, which utilizes Prophesy, Power-

Pack, and PAPI to provide systematic measurement,

and modeling of power consumption and performance-

power tradeoffs on multicore systems. Our predictive

models are 97% accurate across four Hybrid scientific

applications for up to 128 processors and can be used

to obtain insight into improving applications for better

performance on multicore systems.

Future work will use our models to predict perfor-

mance for different problems sizes and frequency set-

tings. We will also test our modeling insights to improve

performance by reducing runtime and decreasing power

consumption. We will apply our methodology to differ-

ent applications and parallel programming models.

Acknowledgements This work is supported by NSF grants
CNS-0911023, CNS-0910899, CNS-0910784, CNS-0905187. The
authors would like to acknowledge Stephane Ethier from Prince-
ton Plasma Physics Laboratory for providing the GTC code.

References

1. E. Bair, et. al. , Prediction by Supervised Principal Com-
ponents, Journal of the American Statistical Ass., 2006.

2. F. Bellosa, The Benefits of Event-Driven Energy Account-
ing in Power-Sensitive Systems. ACM SIGOPS Euro. Work-
shop, September 2000.

3. W. Lloyd Bircher, Lizy K. John, Complete System Power
Estimation: A Trickle-Down Approach Based on Perfor-
mance Events, In Proc. of ISPASS’2007. pp.158 168.

4. W. Lloyd Bircher, et. al., Runtime Identification of Micro-
processor Energy Saving Opportunities, In Proc. of the Int.
Sym. on Low Power Elec. and Design, August 2005.

5. Zhenwei Cao, David R. Easterling, Layne T. Watson,
Dong Lia; Kirk W. Cameron; Wu-Chun Feng,Power sav-
ing experiments for large-scale global optimisation, In the
International Journal of Parallel, Emergent and Distributed
Systems, Volume 25, Issue 5 October 2010 , pages 381 - 400.

6. M. Curtis-Maury, et al., Online Power-Performance Adap-
tation of Multithreaded Programs using Hardware Event-
Based Prediction (ICS06), 2006.

7. M. Curtis-Maury, et. al., Prediction-Based Power-
Performance Adaptation of Multithreaded Scientific Codes,
(TPDS), Vol.19, No.10, 2008.

8. V. Freeh, et. al., Just-in-time Dynamic Voltage Scaling:
Exploiting inter-node slack to save energy in MPI Pro-
grams, Journal of Parallel and Dist. Comp. Vol. 68 Issue
9, Sept. 2008.

9. V. Freeh, Feng Pan, D. Lowenthal, and N. Kappiah, Us-
ing Multiple Energy Gears in MPI Programs on a Power-
Scalable Cluster, PPOPP05, 2005.

10. C-H. Hsu, and W-C Feng, A Power-Aware Run-Time
System for High-Performance Computing, IEEE/ACM Su-
percomputing 2005 (SC05), November 2005.

11. R. Ge, et.al., PowerPack: Energy Profiling and Analy-
sis of High-Performance Systems and Applications, IEEE
Trans. Parallel Distrib. Syst. 21(5): 658-671, 2010.

12. H. Jin et. al., Performance Characteristics of the Multi-
Zone NAS Parallel Benchmarks, (IPDPS), 2004.

13. K. Lee and Kevin Skadron, Using Performance Coun-
ters for Runtime Temperature Sensing in High Performance
Processors, (HPPAC05), April 2005.

14. D. Li, et. al., Hybrid MPI/OpenMP Power-Aware Com-
puting, IPDPS2010, Atlanta, Georgia, April 2010.

15. T. Li, et. al., Run-Time Modeling and Estimation of Op-
erating System Power Consumption, Sigmetrics2003, 2003.

16. C. Lively, V. Taylor, et. al., A Methodology for Devel-
oping High Fidelity Communication Models on Multicore
Systems, SBAC-PAD 2008: 55-62.

17. Multicore application Modeling Infrastructure (MuMI)
project, http://www.mumi-tool.org.

18. P. M. Kogge, ExaScale Computing Study: Technology
Challenges in Achieving Exascale Systems, Univ. of Notre
Dame, CSE Dept. Tech. Report TR-2008-13, Sept. 28, 2008.

19. Performance Application Programming Interface, papi,
http://icl.cs.utk.edu/papi/

20. M. Lim, A. Porterfield, and R. Fowler, SoftPower:
fine-grain power estimations using performance counters,
(HPDC10), New York, NY, 2010.

21. B. Rountree, et. al. , Adagio: making DVS practical for
complex HPC Applications, (ICS09), NY, 2009.

22. K. Singh, M. Bhadhauria, and S. A. McKee, Real Time
Power Estimation and Thread Scheduling via Performance
Counters, Proc. of Workshop on Design, Architecture, and
Simulation of Chip Multi-Processors, November 2008.

Power-Aware Predictive Models of Hybrid (MPI/OpenMP) Scientific Applications on Multicore Systems 9

23. S. Song, et. al., Energy Profiling and Analysis of the HPC
Challenge Benchmarks, Int. Journal of High Perf. Comput-
ing Applications, Vol. 23, No. 3, (2009).

24. S. Song, et. al., Iso-energy-efficiency: An approach to
power-constrained parallel computation, (IPDPS), 2011.

25. V. Taylor, X. Wu, and R.Stevens, Prophesy: An Infras-
tructure for Performance Analysis and Modeling System of
Parallel and Grid Applications, ACM SIGMETRICS Perf.
Evaluation Review, Vol. 30, Issue 4, March 2003.

26. X. Wu, V. Taylor, et. al., Performance Analysis, Modeling
and Prediction of a Parallel Multiblock Lattice Boltzmann
Application Using Prophesy System, ICCC06, 2006.

27. X. Wu, V. Taylor, C. Lively et al, Performance Analy-
sis and Optimization of Parallel Scientific Applications on
CMP Clusters, Scalable Computing: Practice and Experi-
ence, Vol. 10, No. 1, 2009.

28. X. Wu and V. Taylor, Performance Characteristics of
Hybrid MPI/OpenMP Implementations of NAS Parallel
Benchmarks SP and BT on Large-scale Multicore Super-
computers, ACM SIGMETRICS Perf Evaluation Review,
Vol. 38, Issue 4, 2011.

