A Class of Hybrid LAPACK Algorithms for Multicore and GPU Arc hitectures

Mitch Horton*, Stanimire Tomot¥ and Jack Dongartat
*Department of Electrical Engineering and Computer Science
University of Tennessee
Knoxville, TN 37996
Email: {horton, tomov, dongarrfg@eecs.utk.edu
fComputer Science and Mathematics Division, Oak Ridge Natibaboratory, Oak Ridge, Tennessee
tSchool of Mathematics & School of Computer Science, Urityen$ Manchester

Abstract—Three out of the top four supercomputers in the age the exponentially increasing (a) appetite for power of
November 2010 TOP500 list of the world’s most powgrful conventional system designs, and (b) gap between compute
supercomputers use NVIDIA GPUs to accelerate computations 54 communication speeds. Compute Unified Device Ar-

Ninety-five systems from the list are using processors withix . .
or more cores. Three-hundred-sixty-five systems use quade chitecture (CUDA) [4] based multicore platforms stand out

processor-based systems. Thirty-seven systems are usingatt ~ among a confluence of trends because of their low power
core processors. The large-scale enabling of hybrid grapbs consumption and, at the same time, high compute power

processing unit (GPU)-based multicore platforms for compu and bandwidth [3]. Because of the prevalence of multicore
tational science by developing fundamental numerical libaries and GPU architectures in the TOP500 list [5]; the existence

(in particular, libraries in the area of dense linear algebra) for . .
them has been underway for some time. We present a class of current conferences and workshops with emphasis on

of algorithms based largely on software infrastructures trat ~ Multicore and GPU technology [6]-[33]; the long list of
have already been developed for homogeneous multicores and GPU related success stories across academia, industry, and

hybrid GPU-based computing. The algorithms extend what is npational research laboratories for specific applications a
currently available in the Matrix Algebra for GPU and Multicore algorithms [34]—[46]; books related to general purpose GPU

Architectures (MAGMA) Library for performing Cholesky, QR, . ;)
and LU factorizations using a single core or socket and a sirlg computing [47]-[49]; the emergence of compilers that un-

GPU. The extensions occur in two areas. First, panels facted ~ derstand GPU directives [50]-[53]; language in the current
on the CPU using LAPACK are, instead, done in parallel using Exascale roadmap concerning heterogeneity in general and

a highly optimized dynamic asynchronous scheduled algofftm general purpose GPU programming in particular [54]; the
on some number of CPU cores. Second, the remaining CPU fact that NVIDIA did $100 million in revenue from high
cores are used to update the rightmost panels of the matrix in .
parallel. performance computing last year, up from zero three years
) ago [55]; and relentless architectural advancements [56]-

Keywords-GPU; multicore; QR; LU; Cholesky; [63], it is clear that multicore processors and GPUs repriese
the future of high performance computing.

As multicore and GPU systems continue to gain ground

Until roughly 2004, microprocessor manufacturers werein the high performance computing world, linear algebra
able to achieve higher performance by exploiting higheralgorithms have to be reformulated, or new algorithms
degrees of instruction level parallelism (ILP). Based as th have to be developed, in order to take advantage of the
approach, several generations of processors were buitewhearchitectural features on these new architectures [64k Th
clock frequencies were higher and higher and pipelines weraork is a contribution to the development of these algorghm
deeper and deeper. As a result, applications could beneiit the area of dense linear algebra, and will be included
from these innovations and achieve higher performancéen the Matrix Algebra for GPU and Multicore Architec-
simply by relying on compilers that could efficiently exgloi tures (MAGMA) Library [38]. Designed to be similar to
ILP. Due to a number of physical limitations (mostly power LAPACK [65] in functionality, data storage, and interface,
consumption and heat dissipation) this approach cannot lithe MAGMA library allows scientists to effortlessly port
pushed any further. For this reason, chip designers haviheir LAPACK-relying software components and to take
moved their focus from ILP to thread level parallelism (TLP) advantage of the new hybrid architectures.
where higher performance can be achieved by replicating The challenges in developing scalable high performance
execution units (or cores) on the die while keeping thealgorithms for multicore with GPU accelerators systems
clock rates in a range where power consumption and heatem from their heterogeneity, massive parallelism, ard th
dissipation do not represent a problem [1]-[3]. CPU design$iuge gap between the GPUs’ compute power vs. the CPU-
have moved to multicores and are currently going throughGPU communication speed. We show an approach that is
a renaissance due to the need for new approaches to mdargely based on software infrastructures that have ajread

I. INTRODUCTION

been developed — namely, the QUeuing And Runtime fo[72] Golub and Van Loan give QR algorithms based on
Kernels (QUARK) dynamic scheduler [66] and the MAGMA Householder, block Householder, Givens, and fast Givens
[38] library. The approach extends what is currently avail-transformations; Gram-Schmidt orthogonalization, andlmo
able in the MAGMA Library for performing Cholesky, QR, ified Gram-Schmidt orthogonalization [68]. The LAPACK
and LU factorizations using a single core or socket and @R factorization is a block Householder transformation
single GPU. The extensions occur in two areas. First, panelisnplementation.
factored on the CPU using LAPACK are, instead, done in The QR factorization is a transformation that factorizes an
parallel using a highly optimized dynamic asynchronousm xn matrix A into its factorsQ and R whereQ is a unitary
QUARK scheduled algorithm on some number of CPUmatrix of sizem xm andR is a triangular matrix of size: x
cores. Second, the remaining CPU cores are used to update The LAPACK version of this algorithm achieves higher
the rightmost panels of the matrix in parallel. The approactperformance on architectures with memory hierarchies by
aims to better utilize all available hardware. accumulating a number of Householder transformations in
The results of this work are communicated using thewhat is called ganel factorizatiorwhich are, then, applied
QR algorithm as a framework. The Cholesky and LUall at once by means of high performance Level 3 BLAS
algorithms are similar in implementation. The paper isoperations.
organized as follows. Section Il provides an overview of The LAPACK routine that performs the QR factorization
the QR factorization. Section Il illustrates how the QR is calledx GEQRF where x can bé, D, C, or Z depending on
factorization is performed by the MAGMA library using the precision. Consider a matrix A of sizex n represented
a single core or socket and a single GPU. Section IVas
describes the new approach, outlining how it differs from A= < A A >
what is currently available in the MAGMA library. Section V A1 Ago
briefly describes the QUARK dynamic scheduler. Section VI
discusses autotuning. In particular, an explanation igmgiv
of how to — for a given matrix size, precision, architecture,
and algorithm — choose the optimal number of cores fo
panel factorization, number of cores for panel updatesglpan
width, outer panel width, and inner panel width. Section
VII describes algorithm optimization with respect to panel Ay A Vit Ry1 Ris
factorization. Section VIII presents results on two diéfer A= (Agp Aoy > = < Vo >) (0 Asg >)
architectures: a single NVIDIA GeForce GTX480 GPU
with fifteen cores (streaming multiprocessors) @1.401 GHz he transformation in Equation (1) is obtained in two steps:
connected to eight six-core Intel Xeon X5660 Westmere 1) Panel factorization. At this step a QR factorization
@2.8 GHz processors and a single NVIDIA Telsa M2070 of the panel(A.;) is performed as in Equation (2).
GPU with fourteen cores (streaming mulitprocessors) @1.15

where Ay, is of sizeb x b, A4 is of sizeb x (n —b), Agy

is of size(m —b) x b, and Aa is of size(m —b) x (n—b).

; The LAPACK algorithm for QR factorization can be
described as a sequence of steps where, at each step, the
transformation in Equation (1) is performed.

GHz connected to two six-core Intel Xeon X5660 Westmere < An > — < Vi1 > (T11), (R11) 2)
@2.8 GHz processors. Finally, section IX discusses future Az Va1
work. This operation produce$ Householder reflectors

(Vi1) and an upper triangular matrik;; of sizebx b,
))) _) which is a portion of the finalR factor, by means
This section contains a high level explanation of the block of the xDGEQR2 LAPACK routine. At this step, a

II. BLOCK QR FACTORIZATION

QR factorization implemented by LAPACK. The explanation triangular matrixTi; of size b x b is produced by

will facilitate an understanding of the description of themn the xLARFT LAPACK routine. Note thatV;, is a

approach given in Section IV. A detailed discussion of the unit lower triangular matrix of sizé x b. The arrays

block QR factorization can be found here [67]-[71]. V., and Ry, overwrite A,,. Temporary workspace is
Stewart refers to the QR factorization as, "the great needed to stord;.

success story of modern computation,” [72]. Trefethen and 2) Trailing submatrix update. At this step, the transfor-

Bau say, "One algorithmic idea in numerical linear algebra mation that was computed in the panel factorization is

is more important than all the others: QR factorization [70] ?f)?“e‘j to the trailing submatrix as shown in Equation

It is used for solving linear systems of equations [64], [68]

solving the linear least squares problem [65], [73], com- (212): (1_(“;11)(Tll)(vﬁvﬁ)) (2‘12) 3)
puting eigenvalues and eigenvectors [72], [74], computing 22 2 2

the SVD [72], [74], and computing an orthonormal basis This operation, performed by theLARFB LAPACK
for a set of vectors [68]. Stewart says, "the underlying routine, produces a portioR;» of the final R factor
theory of the method continues to suggest new algorithms.” of sizeb x (n — b) and the matrixA,.

Computational pattern of a typical

CPU memory one-sided hybrid factorization: GPU memory OB

NB

CPU work
space 1. Copy dP (GPU) to hP (CPU)

2. Factor hP on the CPU using LAPACK \
3. Copy the resulting hP to dP
4. Update T, on the GPU using dP
5. Send next panel (part of Ti) to the CPU
6. Start updating T2 on the GPU
7. Start factoring the next panel on the CPU

dP [Ty T2

Figure 1. A typical hybrid pattern of computation and cominun
cation for the one-sided matrix factorizations in MAGMA 1.0

The QR factorization is continued by applying the trans-
formation (1) to the submatri¥y,, and then, iteratively,
until the end of the matrix4 is reached.

Note thatxGEQR2 and XLARFT are rich in Level 2
BLAS operations and cannot be efficiently parallelized on
currently available shared memory machines. The speed of
Level 2 BLAS computations is limited by the speed at which
the memory bus can feed the cores. On current multicore Figure 2. Computation splitting for new approach
architectures, because of the vast disproportion between t

bus bandwidth and the speed of the cores, a single core _
can saturate the bus in double precision so there would b&PNs are scheduled on the CPU using calls to LAPACK,

no advantage to using additional cores for a Level 2 BLAS2Nd the Level 3 BLAS updates on the trailing sub-matrices
operation. See [67] for more details. The LAPACK algorithm '€ scheduled on the GPU. The trailing matrix updates are
for QR factorization can use any flavor of parallel BLAS to SPIit into 2 parts — one that updates just the next panel and
exploit parallelism from the Level 3 BLASLARFB update & S€cond one updating the rest, i.e., correspondingly sub-

on a multicore shared-memory architecture, but the pandfatricesT: andT; as given in Figure (1). The next panel
update is considered a sequential operation. update (i.e.I1) is done first, sent to the CPU, and the panel
factorization on the CPU is overlapped with the second part

I11. MAGMA QR FACTORIZATION WITH A SINGLE of the trailing matrix (i.e./I%). This technique is known as
CORE ORSOCKET AND A SINGLE GPU look-aheadand has been used before [42], [75]-[77]. Its
The MAGMA QR factorization with a single core or US€ enables the overlap of CPU and GPU work (and some

socket and single GPU (MAGMA 1.0) differs from the COmmunications).
LAPACK QR factorization in 3 major respects. First, pan-
els are factorized using GEQRF as opposed txGEQR2.
Second, thexLARFB update is done on the GPU. Third, The new approach differs from MAGMA QR factorization
the xLARFB update is done in a lookahead fashion. Subtlewith a single core or socket and a single GPU (MAGMA
differences include asynchronicity with respect to host an 1.0) in two areas. First, panels factored on the CPU using
device execution and with respect to memory transfers whereAPACK are, instead, done in parallel using a highly opti-
possible. mized dynamic asynchronous scheduled algorithm on some
Figure (1) illustrates this typical pattern of hybridizati number of CPU cores. Second, the remaining CPU cores are
Several groups have observed that panel factorizations aresed to update the rightmost panels of the matrix in parallel
often faster on the CPU than on the GPU [64]. ThereforeWe think of the new approach as MAGMA QR factorization
like the LAPACK QR factorization, the panel factorization with all available cores and a single GPU. While it is true
is considered a sequential operation; there is not enougthat if parallel BLAS is being used on the CPU, MAGMA
parallelism to keep the GPU busy. Unlike the LAPACK QR 1.0 can use all available cores for the panel factorization,
factorization, the panel factorization is done using theckl practice, little, if any, additional speedup is attainedtpghe
QR factorization routine GEQRF. If parallel BLAS is being number of cores on a single socket. It is a better use of the
used on the CPU, the panel factorizations are often fastelemaining cores to be tasked for other operations.
when using several cores; depending on the architecture, a The computation is split as in Figure (2). Assuming an
single socket or the entire host for the panel factorizationV x N matrix and a two socket, twelve core architecture,
will result in the optimal performance. the first NV — 6(OB) columns are factorized as described in
MAGMA 1.0 uses static scheduling and a right-looking the previous section with two exceptions. First, the panels
version of the block QR factorization. The panel factoriza-are factorized using an optimized dynamic asynchronous

N-6(OB)

IV. THE NEwW APPROACH

scheduled algorithm using six cores. Second, whenever keft of the bottom fourteen green rows. Next, eight CPU
panel factorization completes, one thread per core wakesores are woken from a busy wait and the rightmost eight
from a busy wait from the remaining six cores, and thepanel updates begin; this can be seen as the leftmost eight
rightmost 6 panels are updated in parallel on the CPU. Noteyan rectangles on the top eight rows. From Equation (3) it
there is a final factorization to be done corresponding to thean be seen that/; Vyh)A., can be computed before the
square in the lower right hand corner of Figure (2). ThexLARFT is finished. Therefore the rightmost panel updates
number of cores used for the panel factorization, and thean be started early if they are split into two pieces, a piece
number of cores used for the rightmost panel updates, dehat does not use the result from thReARFT and a piece
pend on the architecture, matrix size, and precision. Taninthat does. While the computation of the first piece of the
is discussed in detail in Section VI. Note that there are fiverightmost panel updates progressex! ARFT is done on a
parameters that are tunable for the new approach: the numbsingle CPU core; that can be seen as the leftmost large blue
of cores for panel factorization (Q), the number of cores forrectangle in row nine. Because tRé ARFT finishes before
rightmost panel updates (P), the panel width for rightmosthe first update piece is done, both update steps are seen as a
panel updates (OB), the panel width for the part of the matrixsingle cyan rectangle. Once tk& ARFT is done, the result
that does not include the rightmost panel updates (NB), andf the panel factorization is sent to the GPU; this can be seen
the inner panel width for panel factorizations (IB). as the sliver of yellow to the immediate right of the leftmost
Figure (3) is a trace of the new approach on a singldarge blue rectangle in row nine. Next, the single panel to
NVIDIA Tesla M2070 GPU with fourteen cores @1.15 GHz the right of the factorized panel is updated on the GPU; this
connected to two six-core Intel Xeon X5660 Westmere @2.&an be seen as the leftmost thin column of green rectangles
GHz processors for single precision when the matrix size isn the bottom eight rows. Finally, the remaining panels ® th
5920 x 5920 at the optimal parameter settings @f = 4, left of the eight rightmost panels, are updated on the GPU;
P =8, NB =128, OB = 172, andIB = 12. We take this can be seen as the thick column of green rectangles to
GPU coreto mean a single streaming multiprocessor. Thethe immediate right of the leftmost thin column of green
y-axis can be thought of as core number; the bottom 14ectangles in the bottom eight rows. This process continues
green rows are GPU cores; the next 12 rows are CPU corewith the remaining panels to the left of the rightmost eight
The z-axis is time. White space is idle time. Black spacepanels. The last grouping of rectangles in rows nine through
indicates a busy wait. All other space represents usefut wor twenty-six correspond to the final factorization depictad i
The top eight rows of the graph correspond to the CPUhe lower right hand square of Figure (2).
cores dedicated for the rightmost panel updates; agaitk blac Note that the peak single precision CPU performance
corresponds to a busy wait. Cyan corresponds to the ugder the machine described above is 270 Gflop/s. The peak
date. The middle four rows correspond to the CPU coresingle precision GPU performance, however, is 1030 Gflop/s
dedicated to the panel factorization. Additionally, theeco (The heights of the GPU cores in Figure (3) are scaled
corresponding to the ninth row from the top is responsibleaccordingly.). The new approach aims to start with a busy
for computing axLARFT; it can be seen in the trace as a GPU since it is the more powerful of the two. After that, all
blue rectangle. The core is also responsible for initiatingthat can be done to keep the CPU cores busy is done. This
a synchronous memory copy of the result of the panetan be seen in Figure (3). The bottom fourteen rows show
factorization on the host to the GPU; that synchronoughat the GPU has very little idle time. Our approach was
memory copy is seen as a yellow rectangle. Synchronou® start with MAGMA 1.0 QR factorization code; this code
memory copies from the host to the GPU do not start until allhas been optimized for the GPU over the course of several
kernels that have been launched on the GPU are finished; thears. We enhanced the MAGMA 1.0 code to make better
call does not return until the memory copy is finished. Theuse of the CPU cores but the GPU code was unchanged.
bottom fourteen rows correspond to the GPU cores dedicatethis approach differs from what others are currently doing
to panel updates to the left of the eight rightmost panelsto merge GPU and multicore code. Namely, to start with
The white space in the middle four rows is when the coredighly optimized multicore code and call GPU kernels where
dedicated for panel factorization are idle. The white spacgossible [78].
at the right of the top eight rows depicts the fact that the
cores for rightmost panel updates are not used for the final V. QUARK DYNAMIC SCHEDULER
factorization. Panels are factorized using a highly optimized version
The flow of the new approach can be seen in the traceof the LAPACK block QR algorithm using the QUARK
Initially, four CPU cores are factorizing the first panel \eéhi dynamic scheduler to schedule the subtasks on some number
eight CPU cores are in a busy wait and all GPU cores aref CPU cores. We experimented with many different combi-
idle. This is seen as the eight leftmost black rectangles imations of subtask granularities and scheduling polidigs.
the top eight rows, the leftmost block of colored rectanglequse the version with the highest performance, and it will be
in rows nine through twelve, and the white space to thedescribed in detail.

Figure 3. Trace 065920 x 5920 Matrix

Individual subtasks, along with the dependencies betweeaven after careful pruning, autotuning a single matrix fize
subtasks, are communicated to QUARK at subtask insera single precision on a reasonably fast architecture vk ta
tion time. QUARK is then free to schedule the subtasksmore than one calendar year. This is clearly unacceptable.

among available cores in any order as long as the subtask ¢ y,rns out that autotuning burden can be greatly mitigated
depe_ndenues are not wolatgd. This concept of repregentingy the combination of assuming orthogonality and noticing
algorithms and their execution flows as Directed Acyclicgome rules of thumb. The first rule of thumb is that the

Graphs (DAGs), where nodes represent the subta;ks, a'b‘ﬂ)timal panel width, for that part of the matrix that does not
the edges represent the dependencies among them, is nothigyy e the rightmost panel updates, is the very same panel
new and is discussed in greater detail here [75], [76]. \idth already recorded for MAGMA 1.0. This panel width
Optimal performance is observed when the subtasks argysts in a lookup table at runtime and is a function of matrix
c_omposed frorr_l the operations in Section Il as follows. Asize, precision, and algorithm. The orthogonality assionpt
single subtask is made from th&SEQR2 and thexLARFT gjiows one to fix this optimal panel width regardless of the
calls from the panel factorization step. TR&ARFB call yajue of the other parameter settings. The second rule of
from the trailing submatrix step is split into three sub&ask tyumb is that the optimal number of cores for the panel
Optimal performance is observed when the subtasks argctorization is the number of cores on a single socket. The
scheduled in a left looking fashion as opposed to the righthird rule of thumb is that the number of cores for the
looking approach described in Section Il. Note that therightmost panel updates is the number of remaining cores
DAG for QR block factorization with subtasks inserted in for |arge enough matrices and a linear function of the matrix
a left looking fashion will be identical to the DAG for QR sjze otherwise. Experimenting with the number of cores for
block factorization with subtasks inserted in a right lowki panel factorizations and rightmost panel updates on éiffer
fashion. QUARK allows one to give subtasks priorities andarchitectures results in slight modifications to the secamd
that feature is exploited to achieve a left looking exeautio third rules of thumb, depending on the architecture, but the
order. end result is that the information exists in a lookup table
and is available at runtime. The fourth rule of thumb is that
VI. AUTOTUNING IB is always 12. This number was observed over the course

At first blush, it would appear that the tunable parameter®f much hand tuning.
are inextricably entwined such that adjusting one paramete Thus the only parameter that needs to be tuned is OB, the
can alter the effect of the other parameter settings. Theref panel width for the rightmost panel updates. An autotuner
an autotuning approach suggests itself whereby all passiblwas written that tests a number of values for OB for every
values of all five parameters are tried, noting what combinamatrix size at every precision and takes two hours to com-
tion of parameters results in the best performance. Howeveplete on a reasonably fast architecture. All tuning resanés

Performance of multicore QR factorization on Tall Skinny Matrices Performance of MAGMA QR with 1 GPU and all Available Cores
Comparing Different Algorithms Comparing Precisions

12 Cores (2 x 6-cores) 2.8 GHz X5660, 23 GB, 270 Gflop/s Peak [keeneland] 48 Cores (8 x 6-cores), 2.8 GHz-AMD Opteron 8439 SE, 129 GB, Peak 1080 Gflop/s [ig]
Tesla M2070, 1.1 GHz, 5.4 GB, 1.03 Tflop/s Peak 1 GeForce GTX 480 - 1.041 GHz Clock - Theoretical Peak: 1.401 * 2 * 480 = 1.34496 Tflop/s
Single Node, Single GPU numactl --interleave=all
900
20 * *
" 800 i
}s/“ » SN 700 .
15 e ez *
* * 600 P
2 * e x 2 50 ® .
/ 300
5 {k; 200 . g R :
/ Recursive —*— * ¥ " Single -
Left Looking Execution 100 ¥ Double ---*
Left Looking Insertion ---:- % Complex Single
o Parallel MKL % o = Complex Double
0 5000 10000 15000 20000 0 5000 10000 15000 20000 25000
Matrix Size Matrix Size
Figure 4. Panel Factorization Technique Comparison Figure 5. New Approach Performance on 48 Core Machine,
Comparing Precisions
. . . Performance of MAGMA QR with 1 GPU and all Available Cores
Stored Ina |00kup table and are avallable at runtlme Hence 12 Cores (2 x 6-cores) 2.8 gﬂ?;@%@%%cgéonzsm Gflop/s Peak [keeneland]
the user is not required to provide parameter values in order T T e Node, Singie GpU e
to get a good first approximation at optimal performance. ** e
The usercan provide parameter values at runtime but it is 70 e
not a requirement. o0 s
VIl. PANEL FACTORIZATION OPTIMIZATION 500
Four different panel factorization flavors were compareds “° ;
left looking subtask insertion, left looking subtask examui, 300 2 . g e
recursive, and parallel MKL. The difference between left "o o
looking subtask insertion and left looking subtask exexuti // itie
lies only in that for left looking subtask execution the ® / Complex Single =
subtasks are prioritized in order to enforce left looking-ex 0 complox ok -
cution. The recursive technique uses one level of recursion ° 5000 0 e 20000

fort_he right half of the panel in place of th_e callXGEQR2. Figure 6. New Approach Performance on 12 Core Machine,
Figure (4) shows the results for two six-core Intel Xeon Comparing Precisions

X5660 Westmere @2.8 GHz processors. Note that the num-

ber of cores used for the pane| factorization is the optimal Performance ufMAGCMAQRwithlGPU and all Availab(lje Cu[es‘ Double Precision

omparing Against MAGMA 1.0 and MKI
12 Cores (2 x 6-cores) 2.8 GHz X5660, 23 GB, 270 Gflop/s Peak [keeneland]

number of cores when the panel factorization is used as part Tesla M2070, 11 Gz, 5.4 GB, 1.03 Thopls Peak
of the new approach for QR factorization: 6 cores on the ol o, Shole G2
left side of the graph, 2 cores on the right side of the graph, ** ——
and 3 or 4 cores in the middle. - / — - -
VIIl. RESULTS 200 //j -
Figure (5) shows how the new approach performs at fou§ .
precisions using a single NVIDIA GeForce GTX480 GPU® ** /
with fifteen cores @1.401 GHz connected to eight six- K e KA SRR
core Intel Xeon X5660 Westmere @2.8 GHz processors. '
Figure (6) shows how the new approach performs at four /§§ O B Sockel, MAGATD
precisions using the machine described in Section (IV). | & O hUs, T Sockel. ML =
Figure (7) shows how the new approach performs compared o 5000 10000 15000 20000
to MAGMA 1.0 and MKL for the same machine. Matrx Size
Figure 7. New Approach Performance on 12 Core Machine,
IX. SUMMARY AND FUTURE WORK Compared to MAGMA 1.0 and MKL

This paper shows how to redesign the QR factorization to
enhance it's performance in the context of a single GPU and

many CPU cores. Using a single NVIDIA GPU (fourteen [11] Aug. 2011, Euro-Par 2011. http://feuropar2011.boudearia.

cores @1.15 GHz) connected to two six-core Intel Xeon
X5660 Westmere @2.8 GHz processors, the new approa
achieves 315 GFlop/s in double precision. This is an inerea
of 19% over MAGMA 1.0. The increase is due to a better use

of all available CPU cores and reuses concepts developed 3]

the MAGMA library and the QUARK dynamic scheduler.

Although this paper focused on the QR factorization, the
framework is in place to extend the algorithm to LU and[14)

Cholesky factorizations. The new approach will eventyalll

be included in a future release of MAGMA and can be used

for a full high-performance linear solver.
From Figure (3) it can be seen that only one core is use
to compute the«LARFT and it is often the case that all the

factorizations to compute thelL ARFT in parallel.

Another thing that can be seen is that replacing thgi7)
synchronous memory copy corresponding to the yellow
rectangles in the trace with an asynchronous memory copht8

would free up one CPU core for useful work.

REFERENCES

[1] A. Buttari, J. Langou, J. Kurzak, and J. Dongarra, “A slas

(2]

(3]

[4] Apr.

of parallel tiled linear algebra algorithms for multiconelai-
tectures,”Parallel Computing vol. 35, pp. 38-53, 2009.

M. Baboulin, J. Dongarra, and S. Tomov, “Some issues

in dense linear algebra for mulitcore and special purposg21]

architectures,” University of Tennessee, Tech. Rep., May 6
2008, technical Report UT-CS-08-200 (also LAPACK Work-
ing Note 200).

H. Ltaif, S. Tomov, R. Nath, P. Du, and J. Dongarra, “A
scalable high performant Cholesky factorization for multi
core with GPU accelerators,” University of Tennessee, Tech

Rep., Nov. 25, 2009, technical Report UT-CS-09-646 (also[23]

LAPACK Working Note 223).

2011, NVIDIA CUDA Compute Unified
Device Architecture - Programming
http://developer.download.nvidia.com/compute/cuda/3
toolkit/docs/CUDA C_ProgrammingGuide.pdf.

[5] Apr. 2011, http://www.top500.0rg/lists/2010/11/higyhts.

[6] Jul. 2011, the 2011 International Conference on Highfd?er

[7] Apr. 2011, Many-Core and Reconfigurable Supercomputing[27]

(8]

mance Computing & Simulation. http://hpcs11.cisedu/info

Conference. http://www.mrsc2011.eu/.

May 2011, 25th International Conference on Supercoingut
http://ics11.cs.arizona.edu/.

[9] Apr. 2012, GPU Technology Conference 2012. http://www.

[10]

nvidia.com/object/gpuechnology conference.html.

Jun. 2011, the 20th International ACM Symposium on High
Performance Parallel and Distributed Computing. httput
hpdc.org/2011/.

G2

S

s

other CPU cores are waiting on that core to finish. Speedufi.6]
could be obtained by using all the cores dedicated to panel

Guide. [24]

fr/.

May 2011, 25th IEEE International Parallel & Distrileat
Processing Symposium. http://www.ipdps.org/.

Dec. 2011, the 9th ACS/IEEE International Conference o
Computer Systems and Applications (AICCSA 2011). http:
/laiccsa2011.hpcl.gwu.edu.

Jul. 2011, 2011 Symposium on Application Accelerators
High Performance Computing (SAAHPC'11). http://saahpc.
ncsa.illinois.edu.

Sep. 2011, 9th International Conference on Parallet&ss-
ing and Applied Mathematics. http://www.ppam.pl/.

Apr. 2011, 9th annual workshop on Charm++ and its appli-
cations. http://charm.cs.illinois.edu/charmWorksipopgram.
php.

May 2011, parallel CFD 2011. http://parcfd2011.bst.e

] May 2011, NAFEMS World Congress 2011. http://www.

nafems.org/congress/.

May 2011, LS-DYNA 8th European Users Conference.
http://www.Isdynaeuc.alyotech.fr/web/guest;jsessian
e43b16332e9d80fee2f6d17a57ce.

[20] Oct. 2011, GPU Technology Summit. http://sagivteom¢

gpu-technology-summit.htm.

May 2011, International Symposium: Computer Simula-
tions on GPU. www.cond-mat.physik.uni-mainzeekigel/
GPU2011/home/.

Jun. 2011, International Supercomputing Conference.
http://www.supercomp.de/isclap/php/HTML/eventdetail.
php?evid=157&requestiay _id=11.

Jul. 2011, The 2011 International Conference of Parall
and Distributed Computing. http://www.iaeng.org/WCE201
ICPDC2011.html.

Sep. 2011, ENUMATH Conference 2011. http://www2.te.a
uk/departments/mathematics/research/enumath2011.

Apr. 2012, InPar 2012 - Innovative Parallel Computihgp:
/linnovativeparallel.org/.

Oct. 2011, Accelerated HPC Symposium 2011. http://www
lanl.gov/conferences/AHPCS/.

Feb. 2012, 20th Euromicro International ConferencePamn-
allel, Distrubuted and Network-based Processing. htimnfl
laas.frIGPU/.

May 2011, GPGPU Computing for Scientific
Applications. http://www.famaf.unc.edu.ar/grupos/GRG
EscuelaGPGPU2011/.

[29] Jun. 2011, 2011 IEEE Intelligent Vehicles Symposium. .

[30] Jul. 2011, Genetic and Evolutionary Computation Cogriee

2011. http://www.sigevo.org/gecco-2011/index.html.

[31] Jul. 2011, The 2011 World Congress in Computer Sciencg46] S. Tomov and J. Dongarra, “Accelerating the reductmup-

Computer Engineering and Applied Computing. http://www.

world-academy-of-science.org/worldcompl1/ws.

[32] Sep. 2011, SPIE Conference on High-Performance
http://spie.org/app/[47]

Computing in Remote Sensing.
program/index.cfm?fuseaction=conferencedetail&eixpor
id=x12522&ID=x6267&redir=x6267.xml&conferencel=
952872&eventid=948125.

[33] Feb. 2012, SIAM Conference on Parallel Processing for

Scientific Computing. http://www.siam.org/meetings/ppl

[34] Apr. 2011, NVIDIA CUDA ZONE. http://www.nvidia.com/
object/cudahome.html.

[35] Apr. 2011, General-purpose computation using graphard-
ware. http://www.gpgpu.org/.

[36] Apr. 2011, CUDA Toolkit 4.0 CUBLAS Library.
http://developer.download.nvidia.com/compute/cudé/4
rc2/toolkit/docs/CUBLASLibrary.pdf.

[37] V. Wolkov and J. Demmel, “Benchmarking gpus to tune

dense linear algebra,” iI$C 08: Proceedings of the 2008

ACMI/IEEE title=Conference on Supercomputing. Piscat-

away, NJ, USA: IEEE Press, 2008, pp. 1-11.

[38] S. Tomov, R. Nath, P. Du, and J. Dongarra, “MAGMA version

0.2 users’s guide,” Tech. Rep., Nov. 2009, http://icl.ags
edu/magma/.

[39] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. &rg

A. E. Lefohn, and T. J. Purcell, “A survey of general-purpose

computation on graphics hardwar€&bomputer Graphics Fo-
rum, vol. 26, no. 1, pp. 80-113, 2007.

[40] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone,

and J. C. Phillips, “GPU computingProceedings of IEEE
vol. 96, no. 5, pp. 879-899, 2008.

[41] S. Tomov, M. Baboulin, J. Dongarra, S. Moore, V. Natoli,
G. Peterson, and D. Richie, “Special-purpose hardware an

algorithms for accelerating dense linear algebra,” Palrall

Processing for Scientific Computing, Tech. Rep., Mar. 12,

2008, http://iwww.cs.utk.edutomov/PP0O8Tomov.pdf.

[42] V. Volkov and J. W. Demmel, “LU, QR and Cholesky factor- [58]

izations using vector capabilities of gpus,” EECS Departine

University of California, Berkeley,, Tech. Rep., may 2008,

tech. Report UCB/EECS-2008-49.

[43] J. Dongarra, S. Moore, G. Peterson, S. Tomov, J. Allred,
V. Natoli, and D. Richie, “Exploring new architectures in [59]

accelerating CFD for Air Force applicatons,” Rroceedings
of HPCMP Users Group Conference 2Q0&8ul. 14, 2008,
http://www.cs.utk.edu/ tomov/ugc2008 final.pdf.

[44] S. Tomov, J. Dongarra, and M. Baboulin, “Towards dense[60]
linear algebra for hybrid GPU accelerated manycore systems

Oct. 2008, LAPACK Working Note 210.

[45] M. Fatica, “Acclerating Linpack with CUDA on heterogmus
clusters,”"GPGPU-2 pp. 46-51, 2009, washington, DC.

per Hessenberg form through hybrid GPU-based computing,”
May 2009, technical Report 219, LAPACK Working Note
219.

D. B. Kirk and W.-m. W. Hwu,Programming Massively Par-
allel Processors: a Hands-on ApproachMorgan Kaufmann,
2010.

J. Sanders and E. KandrafEUDA by Example: an Intro-
duction to General-Purpose GPU ProgrammingAddison-
Wesley Professional, 2010.

W.-m. W. Hwu, GPU Computing Gems Emerald Edition
Morgan Kaufmann, 2011.

Apr. 2011, PGI CUDA Fortran Compiler. http://www.pgno.
com/resources/cudafortran.htm.

Apr. 2011, HMPP Workbench. http://www.caps-entrepri
com/fr/page/index.php?id=49&p=36.

Apr. 2011, R-Stream - high level compiler. https://www
reservoir.com/rstream.

Apr. 2011,
openmp-compilers/.

OpenMP. http://openmp.org/wp/

Apr. 2011, Exascale Roadmap. http://www.exascaig.or
mediawiki/images/2/20/IESP-roadmap.pdf.

May 2011, Supercomputing and High Per-
formance See Growing GPU Adoption. http:
/Iblogs.forbes.com/tomgroenfeldt/2011/05/06/

supercomputing-and-high-performance-see-growing-aghption/.

D. Patterson, “NVIDIA's next-generation CUDA compute
and graphics architecture, code-named Fermi, adds muscle
for parallel processing,” Tech. Rep., Apr. 12, 2011,
http://www.nvidia.com/content/PDF/fermwhite_papers/T.
Halfhill_Looking Beyond Graphics.pdf.

T. Halfhill, “The top 10 innovations in the
new NVIDIA Fermi architecture, and the top
3 next challenges,” Tech. Rep., Apr. 12, 2011,
http://www.nvidia.com/content/PDF/fernwhite_papers/
D.PattersonToplOInnovationsInNVIDIAFermi.pdf.

P. Glaskowsky, “NVIDIA’'s Fermi: the first complete
GPU computing architecture,” Tech. Rep., Apr. 12, 2011,
http://www.nvidia.com/content/PDF/fermwhite_papers/P.
Glaskowsky NVIDIA's _Fermi-The First Complete GPU_
Architecture.pdf.

N. Brookwood, “NVIDIA solves the GPU computing
puzzle,” Tech. Rep., Apr. 12, 2011, http://www.nvidia.dom
content/PDF/fermiwhite_papers/N.Brookwood\VIDIA _
Solves the GPU_Computing Puzzlel.pdf.

Apr. 2011, NVIDIA Announces Project Denver to Build
Custom CPU Cores Based on ARM Architecture,
Targeting Personal Computers to Supercomputers.
http://pressroom.nvidia.com/easyir/customrel.dogieds
AOD622CE9F579F09&version=live&releasejsp=release
157&xhtml=true&prid=705184.

[61] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abras [76] A. Buttari, J. Dongarra, J. Kurzak, J. Langou, P. Luskcz

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

P. Dubey, S. Junkins, A. Lake, J. Sugerman, R. Cavin, R. Es-
pasa, E. Grochowski, T. Juan, and P. Hanrahan, “Larrabee:
a many-core x86 architecture for visual computingCM
Trans. Graph, vol. 27, no. 3, pp. 1-15, 2008.

S. Dighe, S. Vangal, N. Borkar, and S. Borkar, “Lessons
learned from the 80-core tera-scale research procedate!”
Technology Journalvol. 13, no. 4, pp. 118-129, 2009.

(78]

K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, PsHu
bands, K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf,
S. W. Williams, and K. A. Yelick, “The landscape of par-
allel computing research: A view from berkeley,” EECS
Department, University of California, Berkeley, Tech. Rep
UCB/EECS-2006-183, dec 2006, http://www.eecs.berkeley.
edu/Pubs/TechRpts/2006/EECS-2006-183.html.

S. Tomov and J. Dongarra, “Dense linear algebra for iaybr
gpu-based systems,” i8cientific computing with multicore
and acclerators J. Kurzak, D. A. Bader, and J. Dongarra,
Eds. CRC Press, 2011, pp. 37-55.

Z. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. W.
Demmel, J. J. Dongarra, J. Du Croz, A. Greenbaum, S. Ham-
marling, A. McKenney, and D. Sorensen, “LAPACK users’
guide.” SIAM, Philadelphia, PA, Tech. Rep., 1992, http:
/Iwww.netlib.org/lapack/lug/.

A. YarKhan, J. Kurzak, and J. Dongarra, “QUARK users’
guide: QUeueing And Runtime for Kernels,” Tech. Rep.,
University of Tennessee Innovative Computing Laboratory
Technical Report, ICL-UT-11-02.

A. Buttari, J. Langou, J. Kurzak, and J. J. Dongarra,r&fal
tiled QR factorization for mulitcore architectures,” Teétep.,
Jul. 2007, LAPACK Working Note 190, UT-CS-07-598.

G. Golub and C. Van LoanMatrix Computations 3rd ed.
Baltimore, MD: Johns Hopkins University Press, 1996.

R. Schreiber and C. van Loan, “A storage-efficient WY
representation for products of Householder transformafio
SIAM J. Sci. Stat. Computvol. 10, no. 1, pp. 53-57, 1989.

L. N. Trefethen and D. BauNumerical Linear Algebra
SIAM, 1997.

C. Bischof and C. Van Loan, “The WY representation for
products of Householder matrices3IAM J. of Sci. Stat.
Computing vol. 8, pp. s2—s13, 1987.

G. W. Stewart,Matrix Algorithms Volume II: Eigensystems
SIAM, 2001.

J. W. Demmel Applied Numerical Linear Algebra SIAM,
1997.

G. W. Stewart,Introduction to Matrix Computations Aca-
demic Press, 1973.

J. Dongarra, P. Luszczek, and A. Petitet, “The LINPACK
benchmark: Past, present, and futu@ghcurrency and Com-
putation: Practice and Experiengeol. 15, no. 820, pp. 1-18,
2003.

[77]

and S. Tomov, “The impact of multicore on math software,”
in PARA 2006 Umea Sweden, 2006.

J. Kurzak and J. Dongarra, “Implementing linear algebr
routines on multicore processors with pipelining and a look
ahead,” Tech. Rep., Sep. 2006, LAPACK Working Note 178.
Also available as UT-CS-06-581.

J. Kurzak, R. Nath, P. Du, and J. Dongarra, “An implemen-
tation of the tile QR factorization for a GPU and multiple
CPUs,” Sep. 2010, LAPACK Working Note 229.

