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•  Most likely to be a hybrid design 
•  Think standard multicore chips and 

accelerator (GPUs) 
•  Today accelerators are attached 
•  Next generation more integrated 
•  Intel’s MIC architecture “Knights Ferry” and 

“Knights Corner” to come. 
•  48 x86 cores 

•  AMD’s Fusion in 2012 - 2013 
•  Multicore with embedded graphics ATI 

•  Nvidia’s Project Denver plans to develop               
an integrated chip using ARM                      
architecture in 2013. 
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•  Must rethink the design of our 
algorithms and software 
 Manycore architectures are another 

disruptive technology 
•  Similar to what happened with cluster 

computing and message passing 
 Rethink and rewrite the applications, 

algorithms, and software 

 Data movement is expensive 
  Flops are cheap 
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•  LAPACK (including vendor optimized) 
•  ScaLAPACK 
•  BLAS (ATLAS, GotoBLAS, vendor) 

•  PAPI, ScaLASCA, TAU 
•  PETSc 
•  SuperLU 

… 

[ more at http://www.ors.hpc.mil/software/ ] 

[ must provide support for manycore and hybrid architectures ]  

Dense 
Linear 
Algebra 
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  A model leading to self-consistent iteration computation with need 
for HP LA (e.g, diagonalization and orthogonalization) 6 



Software/Algorithms follow hardware evolution in time 

LINPACK (70’s) 

(Vector operations) 

Rely on  

   - Level-1 BLAS 

operations 

LAPACK (80’s) 

(Blocking, cache 

friendly) 

Rely on  

   - Level-3 BLAS 

operations 

ScaLAPACK (90’s) 

(Distributed Memory) 

Rely on  

   - PBLAS Mess Passing 

PLASMA (00’s) 

New Algorithms  

(many-core friendly) 

Rely on  

   - a DAG/scheduler 

   - block data layout 

   - some extra kernels 

Those new algorithms  
    - have a very low granularity, they scale very well (multicore, petascale computing, … ) 
    - removes of dependencies among the tasks, (multicore, distributed computing) 
    - avoid latency (distributed computing, out-of-core) 
    - rely on fast kernels  
 Those new algorithms need new kernels and rely on efficient scheduling algorithms. 

 MAGMA 
 Hybrid Algorithms 
 (heterogeneity friendly)  

Rely on 
 - hybrid scheduler (of DAGs) 
 - hybrid kernels  
    (for nested parallelism) 
 - existing software infrastructure 7 



1.  Synchronization 
  Break Fork-Join model 

2.  Communication 
  Use methods which have lower bound on communication 

3.  Mixed precision methods 
  2x speed of ops and 2x speed for data movement 

4.  Autotuning 
  Today’s machines are too complicated, build “smarts” into 

software to adapt to the hardware 

5.  Fault resilient algorithms 
  Implement algorithms that can recover from failures/bit flips 

6.  Reproducibility of results 
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•  Our ability to configure the next hardware system is  
without question just a matter of time and $$ 

•  A supercomputer application and software are usually much more 
long-lived than a hardware 
  Hardware life typically five years at most…. Apps 20-30 years 
  Fortran and C are the main programming models (still!!) 

•  The REAL CHALLENGE is Software 
  Programming hasn’t changed since the 70’s 
  HUGE manpower investment 

•  MPI… is that all there is? 
  Often requires HERO programming 
  Investments in the entire software stack is required (OS, libs, etc.) 

•  Software is a major cost component of modern technologies 
  The tradition in HPC system procurement is to assume that the software 

is free… SOFTWARE COSTS (over and over) 
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•  Fork-join, bulk synchronous processing 27 

Step 1 Step 2 Step 3 Step 4 . . . 

23 

  fork join 
  bulk synchronous processing 
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  Idea: break into smaller tasks and remove dependencies 

  Objectives: high utilization of each core, scaling to large number of cores 

  Methodology: Arbitrary DAG scheduling, Fine granularity / block data layout 

Asynchronous 
tiled execution 

Algorithms as DAGs 
[ example ‒ Cholesky ] 

Execution trace example 
[ reduces idle time ] 
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•  Observations 
•  DAG too large to be 

generated ahead of 
time 

•  Generate it dynamically 
•  HPC is about distributed 

heterogeneous 
resources 

•  Have to get involved in 
message passing 

•  Distributed management of 
the scheduling 

•  Dynamically deal with 
heterogeneity 

[ example ‒ a Cholesky  factorization DAG] 
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48 cores 
POTRF, TRTRI and LAUUM. 
The matrix is 4000 x 4000,tile size is 200 x 200, 
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•  Exponentially  
growing gaps  
with time 

•  A comparison 

•  Flops are cheap 
Need algorithms of reduced communication 

Annual improvements 

Time per 
flop 

Bandwidth Latency 

Network 26% 15% 

DRAM 23% 5% 
59% 
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•  New algorithms 
  To attain lower bounds on communication 
  Attain large speedups in theory and practice 

•  Blocking for data reuse 
  Split computation in tasks of small enough memory footprint 

to allow cache reuse (all levels of memory hierarchy) 

•  Delayed update 
  Accumulate inefficient transformations (e.g., Level 2 BLAS) 

into more efficient (e.g., Level 3 BLAS) 

•  Mixed precision techniques 
  E.g., mixed-precision for sparse iterative solvers 
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•  QR decomposition of m x b matrix W, m >> b, on P processors 
•  Usual parallel algorithm (ScaLAPACK) 

  Compute Householder vector for each column 
  Number of massages ~ b log P 

•  Communication avoiding algorithm 
  Reduction operation, with QR as an operator 
  Number of massages ~ log P 

J. Demmel, L. Grigori, M. Hoemmen, J. Langou ‘08 

TSQR: QR factorization of a tall skinny       
            matrix using Householder transformations 
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  MAGMA uses HYBRIDIZATION methodology based on 
–  Representing linear algebra algorithms as collections  

of TASKS and DATA DEPENDENCIES among them 
–  Properly SCHEDULING tasks' execution over  

multicore and GPU hardware components 

  Successfully applied to fundamental 
linear algebra algorithms 
–  One and two-sided factorizations and solvers 
–  Iterative linear and eigen-solvers 

  Productivity 
–  High-level 
–  Leveraging prior developments 
–  Exceeding in performance homogeneous solutions 

Hybrid CPU+GPU algorithms 
(small tasks for multicores and large  
      tasks for GPUs) 
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  Hybridization 
–  Panels (Level 2 BLAS) are factored on CPU using LAPACK 
–  Trailing matrix updates (Level 3 BLAS) are done on the  

GPU using “look-ahead”  
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  Left-looking hybrid Cholesky factorization in MAGMA 1.0 

  The difference with LAPACK – the 3 additional lines in red 
  Line 10 (done on CPU) is overlapped with work on the GPU (line 7)  
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// Sequential Tile Cholesky 
FOR k = 0..TILES-1 
     DPOTRF(A[k][k]) 
     FOR m = k+1..TILES-1 

    DTRSM(A[k][k], A[m][k])        
   FOR n = k+1..TILES-1 
         DSYRK(A[n][k], A[n][n]) 

              FOR m = n+1..TILES-1 
     DGEMM(A[m][k], A[n][k], A[m][n]) 

// Hybrid Tile Cholesky 
FOR k = 0..TILES-1 
    Insert_Task(DPOTRF, …) 
    FOR m = k+1..TILES-1 
        Insert_Task(DTRSM, …) 
        FOR n = k+1..TILES-1 
            Insert_Task(DSYRK, …) 
            FOR m = n+1..TILES-1 
                Insert_Task(DGEMM, …) 

  Productivity - develop parallel multicore + multiGPU algorithms from 
                        sequential algorithms using DAG-based runtime systems 

  Tile kernels and one-sided factorizations and solvers (using StarPU) 
   are released in MAGMA 1.1 
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Parallel 
Compilers 

HPC Applications 

Runtime system 

Operating System 

CPU 

Parallel Libraries   do dynamically what 
would be difficult to do 
statically 

   Library that provides 
-  Task scheduling 
-  Memory management 

The need for runtime systems 

GPU … 
http://runtime.bordeaux.inria.fr/StarPU/ 
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•  Distribute the DAG analysis 
  The DAG is never completely unrolled 
  Each node only unrolls it’s own portion of the DAG 

•  Minimize the data transfers 
•  Overlap communication and computations 
•  Let the user describe the algorithms based on 

data dependencies between tasks 
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(a) Cholesky Factorization
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(b) LU Factorization
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(c) QR Factorization

Figure 33.13: Performance comparison on the Griffon platform with 648 cores.

All three of these operations are implemented in the ScaLAPACK numerical li-

brary [39]. In addition, some of these factorizations have more optimized versions,

we used the state of the art version for each of the existing factorizations to measure

against. The Cholesky factorization has been implemented in a more optimized way

in the DSBP software [16], using static scheduling of tasks, and a specific, more

efficient, data distribution. The LU factorization with partial pivoting is also solved

by the well known High Performance LINPACK benchmark (HPL) [40], used to

measure the performance of high performance computers. We have distributed the

initial data following a classical 2D-block cyclic distribution used by ScaLAPACK,

and used the DAGUE runtime engine to schedule the operations on the distributed

data. The kernels consist of the BLAS operations referenced by the sequential codes,

and their implementation was the most efficient available on each of the machine.

Figure 33.13 presents the performance measured for DAGUE and ScaLAPACK,

and when applicable DSBP and HPL, as a function of the problem size. 648 cores

on 81 multi-core nodes have been used for the distributed run, and the data was

distributed according to a 9× 9 2D block-cyclic grid for DAGUE. A similar dis-

tribution was used for ScaLAPACK, and the other benchmarks when appropriate,

and the block size was tuned to provide the best performance on each setup. As the

figures illustrate, on all benchmarks, and for all problem sizes, the DAGUE frame-

work was able to outperform ScaLAPACK, and perform as well as the state of the

D R A F T January 24, 2012, 1:09pm D R A F T

Hardware: 81 dual socket Intel Xeon L5420 quad core nodes @2.5 GHz  =>  648 cores 

 DAGuE & PLASMA teams @ ICL; For more information, see http://icl.cs.utk.edu/dague/;  
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•  Mixed precision, use the lowest 
precision required to achieve a given 
accuracy outcome 
  Improves runtime, reduce power 

consumption, lower data movement 
 Reformulate to find correction to 

solution, rather than solution 
[ Δx rather than x ]. 
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FERMI       Tesla C2050: 448 CUDA cores @ 1.15GHz 
                  SP/DP peak is 1030 / 515 GFlop/s 

MAGMA LU-based solvers on Fermi (C2050) 

"   Similar results for Cholesky & QR 

27 



•  Host: Xeon E5630 2.53GHz (4cores*2sockets), DDR3 6GB 
•  CentOS6.0, CUDA4.0 
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•  High-precision (quadruple): 
Double-double precision (WP) 

•  WP flops are expensive! 
1 WP flop ~ 20 DP flops 

•  Up to  20x speedup  
over direct WP solver 

w/ Daichi Mukunoki 
University of Tsukuba, Japan 
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C = α A B + β C 
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•  To empirically find best 
implementations 

•  Parameters influencing  
performance are selected 

•  Code is parameterized 
•  Search engine 

automatically finds best 
version 

Left figure: Example parameterization of  
                  matrix-matrix multiplication  
                  for NVIDIA GPUs 
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  Number of GEMM variants 
   generated and tested 
   - automatically from “stencils”  
     (parameterized code)   

  w/  Jakub Kurzak, UTK   
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  Performance on Fermi 
   (C2050) in Gflop/s  

  ZGEMM improved significantly 
   compared to CUBLAS 

  from 308 to 341 Gflop/s 

  Improvement up to 2x on  
   some specific matrices 
   (e.g., of “rectangular” shape) 

  w/  Jakub Kurzak, UTK   
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•  For the last decade or more, the research 
investment strategy has been 
overwhelmingly biased in favor of hardware  

•  This strategy needs to be rebalanced - 
barriers to progress are increasingly on the 
software side   

•  High Performance Ecosystem out of balance 
  Hardware, OS, Compilers, Software, Algorithms, Applications 

•  No Moore’s Law for software, algorithms and applications 
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  MAGMA team 
http://icl.cs.utk.edu/magma/ 

  PLASMA team 
http://icl.cs.utk.edu/plasma 

  DAGuE team 
http://icl.cs.utk.edu/dague/ 

  Collaborating partners 
     University of Tennessee, Knoxville 

University of California, Berkeley 
University of Colorado, Denver 

INRIA, France 
KAUST, Saudi Arabia 
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