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< Future Computer Systems

* Most likely to be a hybrid design

 Think standard multicore chips and
accelerator (GPUs)

- Today accelerators are attached
* Next generation more integrated

* Intel’s MIC architecture “Knights Ferry” and
“Knights Corner” to come.

« 48 x86 cores
. AMD’s Fusion in 2012 - 2013 AMD
« Multicore with embedded graphics AT| [RUCRCUYCISHIE & :

* Nvidia’s Project Denver plans to develop
an integrated chip using ARM
architecture in 2013.
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<= Major Changes to Software

* Must rethink the design of our
algorithms and software

= Manycore architectures are another
disruptive technology

« Similar to what happened with cluster
computing and message passing

* Rethink and rewrite the applications,
algorithms, and software

* Data movement is expensive
= Flops are cheap
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- Software Libraries at DoD HPCMP

[ must provide support for manycore and hybrid architectures ]

LAPACK (including vendor optimized)

ScaLAPACK

BLAS (ATLAS, GotoBLAS, vendor)
PAPI, ScaLASCA, TAU

PETSc

SuperLU

[ more at http://www.ors.hpc.mil/software/ ]

Dense
Linear
Algebra
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< The Need for HP Linear Algebra

Electronic structure calculations

e Density functional theory

Many-body Schrodinger equation (exact but exponential scaling)
* Nuclei fixed, generating external potential

‘ W(r,. Ty E¥(r,. Ty (system dependent, non-trivial)
{2 'ElrrIZIrRI}(l )= B 1)

* N is number of electrons

Kohn Sham Equation: The many body problem of interacting
electrons is reduced to non-interacting electrons (single particle
problem) with the same electron density and a different effective
potential (cubic scaling).

~_

V2 de 2 +V. . J.(r)=Ew.(r) - V. represents effects of the Coulomb interactions
xcI¥i ivi
lr—rl lr- R, | between electrons
_ 2_ 2
p(r) = 2 |¢,~(r) =l lp(,] ="’:\') | * p is the density (of the original many-body system)
i

V.. is not known except special cases = use approximation, e.g. Local Density Approximation (LDA)
where V, . depends only on p
. A model leading to self-consistent iteration computation with need
for HP LA (e.g, diagonalization and orthogonalization)
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<= A Next Generation of DLA Software

Software/Algorithms follow hardware evolution in time

LINPACK (70’s)
(Vector operations)

LAPACK (80’s)
(Blocking, cache
friendly)

ScalLAPACK (90’s)
(Distributed Memory)

PLASMA (00’s)
New Algorithms
(many-core friendly)

MAGMA
Hybrid Algorithms
(heterogeneity friendly)
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Critical Path

Rely on
- Level-1 BLAS
operations

Rely on
- Level-3 BLAS
operations

Rely on
- PBLAS Mess Passing

Rely on
- a DAG/scheduler
- block data layout
- some extra kernels

Rely on
- hybrid scheduler (of DAGS)
- hybrid kernels

(for nested parallelism)

- existing software infrastructure7
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< Challenges for Software Libraries

1. Synchronization
= Break Fork-Join model

2. Communication
= Use methods which have lower bound on communication

3. Mixed precision methods
= 2x speed of ops and 2x speed for data movement

4. Autotuning

» Today’s machines are too complicated, build “smarts” into
software to adapt to the hardware

5. Fault resilient algorithms
= Implement algorithms that can recover from failures/bit flips

6. Reproducibility of results
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< Real Crisis with HPC is with the Software

« Our ability to configure the next hardware s¥stem is
without question just a matter of time and $

« A supercomputer application and software are usually much more
long-lived than a hardware

= Hardware life typically five years at most.... Apps 20-30 years
= Fortran and C are the main programming models (still!!)

- The REAL CHALLENGE is Software
» Programming hasn’t changed since the 70’s
» HUGE manpower investment
 MPIL... is that all there is?
= Often requires HERO programming
* Investments in the entire software stack is required (OS, libs, etc.)

- Software is a major cost component of modern technologies

* The tradition in HPC system procurement is to assume that the software
is free... SOFTWARE COSTS (over and over)

9
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<= 1. Synchronization (in LAPACK LU)
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< Synchronization-avoiding (PLASMA)

> Idea: break into smaller tasks and remove dependencies
> Objectives: high utilization of each core, scaling to large number of cores
> MethOdOlOgy: Arbitrary DAG scheduling, Fine granularity / block data layout

Algorithms as DAGs
[ example — Cholesky ]

Execution trace example
[ reduces idle time ]

-
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= e - DAG scheduled
Fu 'E-- u_ g.‘%_g- - parallelism
~= Time >
Asynchronous
tiled execution
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Algorithms as DAGs
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[ example — a Cholesky factorization DAG]

Have to get involved in
message passing

Distributed management of
the scheduling

Dynamically deal with
heterogeneity
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< Scheduling Algo

POTRF = or bl
:Tli T hblpu o n--';¥¥;
LR .I-.:l-.-. """"
: 1 Lh o aee B

TRTRI

=18

LAUUM

48 cores
POTRF, TRTRI and LAUUM.
The matrix is 4000 x 4000.tile size is 200 x 200,
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2. Communication

° Exponentia"y Annual improvements
. Time per Bandwidth Latency
growing gaps flop
. . Network 26% 15%
with time 59% |orw | x|

* FPS-164 and VAX (1976)
= 11 Mflop/s; transfer rate 44 MB/s

¢ A com pa rison = Ratio of flops to bytes of data movement:

1 flop per 4 bytes transferred

* Nvidia Fermi and PCI-X to host
= 500 Gflop/s; transfer rate 8 GB/s

62 flops per 1 byte transferred

= Ratio of flops to bytes of data movement:

* Flops are cheap
Need algorithms of reduced communication

14
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« Ways to reduce communication

* New algorithms

= To attain lower bounds on communication
= Attain large speedups in theory and practice

* Blocking for data reuse

= Split computation in tasks of small enough memory footprint
to allow cache reuse (all levels of memory hierarchy)

* Delayed update

= Accumulate inefficient transformations (e.g., Level 2 BLAS)
into more efficient (e.g., Level 3 BLAS)

* Mixed precision techniques

= E.g., mixed-precision for sparse iterative solvers

15
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« An Example

TSQR: QR factorization of a tall skinny

matrix using Householder transformations
* QR decomposition of m x b matrix W, m >> b, on P processors

« Usual parallel algorithm (ScaLAPACK)
= Compute Householder vector for each column
» Number of massages ~ b log P
« Communication avoiding algorithm
= Reduction operation, with QR as an operator
* Number of massages ~ log P

W, | > | Rw| 2R
v Rpq
w= Wi | 7| Ry T R,
W, :: R0 ;‘, R,, —
W, > LR,

J. Demmel, L. Grigori, M. Hoemmen, J. Langou ‘08

16
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“ Hybrid Algorithms (Challenges 1 & 2)

A methodology to use all available resources:
+ MAGMA uses HYBRIDIZATION methodology based on

- Representing linear algebra algorithms as collections
of TASKS and DATA DEPENDENCIES among them

—  Properly SCHEDULING tasks' execution over
multicore and GPU hardware components

Hybrid CPU+GPU algorithms
(small tasks for multicores and large
tasks for GPUs)

+ Successfully applied to fundamental N

linear algebra algorithms V
- One and two-sided factorizations and solvers
— lterative linear and eigen-solvers | /GPU

+ Productivity
- High-level
- Leveraging prior developments
- Exceeding in performance homogeneous solutions

17
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“Hybrid Algorithms

One-Sided Factorizations (LU, QR, and Cholesky)
+ Hybridization

- Panels (Level 2 BLAS) are factored on CPU using LAPACK

- Trailing matrix updates (Level 3 BLAS) are done on the
GPU using “look-ahead”

TRAILING
MATRIX

rmZ>»T
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= A hybrid algorithm example

. Left-looking hybrid Cholesky factorization in MAGMA 1.0

1| for (j = 0; j < *n; j += nb) {

2 jb = min(nb, xn—j);

3 cublasSsyrk(’1’,’n’, jb, j, —1, da(j,0),xlda, 1, da(j,j),xlda);

4 cudaMemcpy2DAsync(work, jbxsizeof(float), da(j,j), *xldaxsizeof(float),
5 sizeof (float )x*jb, jb, cudaMemcpyDeviceToHost, stream [1]) ;
6 if (j + jb < =xn)

7 cublasSgemm (’n’,’t’, *xn—j—jb, jb, j, —1, da(j+jb,0), =xlda, da(j,0),
8 xlda, 1, da(j+jb,j), xlda);

9 cudaStreamSynchronize (stream [1]) ;

10 spotrf_(”Lower” , &jb, work, &jb, info);

11 if (xinfo != 0)

12 *info = xinfo 4+ j, break;

13 cudaMemcpy2DAsync(da(j,j), *ldaxsizeof(float), work, jbxsizeof(float),
14 sizeof (float )x*jb, jb, cudaMemcpyHostToDevice, stream [0]) ;
15 if (j + jb < #n)

16 cublasStrsm (’r’,’1’,’t’,’n’, *xn—j—jb, jb, 1, da(j,j), =lda,

17 da(j+jb,j), *lda);

18 | }

. The difference with LAPACK - the 3 additional lines in red

. Line 10 (done on CPU) is overlapped with work on the GPU (line 7)

19
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MAGMA Performance (single GPU)

MAGMA LU in double precision on single GPU (C2050)

o 1,090 MFlop/W
180
d
2 120
B
50 55 MFlop/W?
0
1024 2048 3072 4032 5184 6016 7040 8064 9088 10112
Matrix Size
Fermi C2050 (448 CUDA Cores @ 1.15 GHz) AMD Istanbul
+ Intel Q9300 (4 cores @ 2.50 GHz) [ 8 sockets x 6 cores (48 cores) @2.8GHz |
DP peak 515 + 40 GFlop/s DP peak 538 GFlop/s
Power * ~220 W Power* ~1,022 W

* Computation consumed power rate (total system rate minus idle rate), measured with KILL A WATT PS, Model P430
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MAGMA Performance (scaling)

MAGMA LU in double precision on multi-GPUs (Fermi C2070)

500 o s GPUs.
600
—o HI{
]
S 400
o
sl 1GPU_
200
0
0 6000 12000 18000 24000 30000

Matrix Size

Keeneland system, using one node
3 NVIDIA GPUs (M2070 @ 1.1 GHz, 5.4 GB)
2 x 6 Intel Cores (X5660 @ 2.8 GHz, 23 GB)

21
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“ Productivity: sequential to hybrid code

« Productivity - develop parallel multicore + multiGPU algorithms from
sequential algorithms using DAG-based runtime systems

Il Sequential Tile Cholesky Il Hybrid Tile Cholesky
FOR k =0..TILES-1 FOR k =0..TILES-1
DPOTRF(A[K][K]) Insert_Task(DPOTREF, ...)
FOR m = k+1..TILES-1 FOR m = k+1..TILES-1
DTRSM(A[k][k], A[m][k]) Insert_Task(DTRSM, ...)
FOR n = k+1..TILES-1 FOR n = k+1..TILES-1
DSYRK(A[n][k], A[n][n]) Insert_Task(DSYRK, ...)
FOR m = n+1..TILES-1 FOR m = n+1..TILES-1
DGEMM(A[m][k], A[n][k], A[m][n]) Insert_Task(DGEMM, ...)

. Tile kernels and one-sided factorizations and solvers (using StarPU)
are released in MAGMA 1.1

22
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“ The StarPU runtime system

The need for runtime systems

. do dynamically what
would be difficult to do
statically

. Library that provides
- Task scheduling
- Memory management

http://runtime.bordeaux.inria.fr/StarPU/

HPC Applications

Parallel
Compilers

Parallel Libraries

Runtime system

Operating System

CPU

GPU

23
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The DAGUE runtime system

* Distribute the DAG analysis

* The DAG is never completely unrolled
= Each node only unrolls it’s own portion of the DAG

Minimize the data transfers
Overlap communication and computations

Let the user describe the algorithms based on
data dependencies between tasks

24
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< Performance

DPOTRF performance problem scaling
648 cores (Myrinet 10G)

7 . r r T T T
----------- Theoretical peak
I Practical peak (GEMM)
—»— DAGUE
DSBP
5 p —+— ScaLAPACK ———t—|
(7]
~ 4 i
5 /‘/
I'|_I' 3 / —t
/ T
2 —
.
'L/

0
N A6 QF N AE OF B¢ O O5OF
AT 997 BT 90 oY ¥ oAD' ATTND

Matrix size (N)

(a) Cholesky Factorization

TFlop/s

6 M DAGUE

DGETRF performance problem scaling
648 cores (Myrinet 10G)

Practical peak (GEMM)

----- @ HPL
—+— ScaLAPACK

f o
izt

0
& _QE.Q¢
,\Q,‘& qg,* b‘g‘& 6@,‘& 6\‘l~ %Q‘l~ g&b \6\ "19\"50

\

Matrix size (N)

(b) LU Factorization

TFlop/s

DGEQRF performance problem scaling
648 cores (Myrinet 10G)

Practical peak (GEMM)

6 M DAGUE
—+— ScaLAPACK

b

3
12D

1

l

0
& Q& Q%
\rer qg)‘l~ D&Q\b 6:5‘4‘ 6\‘& Q)Q\b Q’Sl‘ \6\ ,\‘29,\‘50

Matrix size (N)

(¢) QR Factorization

Hardware: 81 dual socket Intel Xeon L5420 quad core nodes @2.5 GHz => 648 cores

DAGUE & PLASMA teams @ ICL; For more information, see http://icl.cs.utk.edu/dague/;
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3. Mixed Precision Methods

* Mixed precision, use the lowest
precision required to achieve a given
accuracy outcome

* Improves runtime, reduce power
consumption, lower data movement

» Reformulate to find correction to
solution, rather than solution
[ Ax rather than x ].

26
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Mixed Precision Solvers
MAGMA LU-based solvers on Fermi (C2050)
500
450 48 Single Prec
<-Double Prec FERMI  Tesla C2050: 448 CUDA cores @ 1.15GHz
400 V' |ter Ref SP/DP peak is 1030 / 515 GFlop/s
350
300 # Direct solvers
o - Factor and solve in working precision
o 250 » Mixed Precision Iterative Refinement
B 200 - Factor in single (i.e. the bulk of the computation
in fast arithmetic) and use it as preconditioner
150 in simple double precision iteration, e.g.
X, =X +(LU,)" P (b-Ax)
100
50 » Similar results for Cholesky & QR
v
0
960 3200 5120 7040 8960 11200 13120

Matrix size
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« Mixed-precision solvers

Performance on TeslaM2050

00 1 - sGESY * High-precision (quadruple):
-o-ggggiv Double-double precision (WP)
300  -e~WpGESV WP flops are expensive!

1 WP flop ~ 20 DP flops

- Upto 20x speedup
over direct WP solver

GFlops

100

0

1024 3072 5120 7168 w/ Daichi Mukunoki
N University of Tsukuba, Japan

 Host: Xeon E5630 2.53GHz (4cores*2sockets), DDR3 6GB
« Cent0S6.0, CUDA4.0 08
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< 4. Autotuning

C=aAB+BC To empirically find best
implementations

- Parameters influencing
performance are selected

., [ - Code is parameterized

- Search engine
automatically finds best

Y

- e version

Left figure: Example parameterization of
Mgey matrix-matrix multiplication
for NVIDIA GPUs

29
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- Autotuning in MAGMA 1.1

(an}
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, O
! LN
[ | S S |
1 5 £ « Number of GEMM variants
1 _ =  generated and tested
R N [ S £ -automatically from “stencils’
| B (parameterized code)
ffffffffffffffffffffff ‘ > 3
| I N
| I =
| | =
| | o F
— — - - + — — — — O
I | =
| = | S
MM MMM A MM
P X X X P X X X X
! ~ ! ~ e
LT LTS w/ Jakub Kurzak, UTK

SGEMM
CGEMM
DGEMM
ZGEMM
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Autotuning in MAGMA 1.1
900
+ Performance on Fermi
800 (C2050) in Gflop/s
700 « ZGEMM improved significantly
600 compared to CUBLAS
+ from 308 to 341 Gflop/s
«»n 900
= « Improvement up to 2x on
% 400 some specific matrices
300 (e.g., of “rectangular” shape)
200
100 w/ Jakub Kurzak, UTK
0

0 2000 4000 6000 8000 10000

matrix size 31
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Conclusions

 For the last decade or more, the research

investment strategy has been
overwhelmingly biased in favor of hardware

* This strategy needs to be rebalanced -
barriers to progress are increasingly on the

software side
* High Performance Ecosystem out of balance

= Hardware, OS, Compilers, Software, Algorithms, Applications
* No Moore’s Law for software, algorithms and applications

32
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