
1

•  Motivation
•  Challenges
•  Current approaches
•  Specific examples
•  Conclusions

2

•  Most likely to be a hybrid design
•  Think standard multicore chips and

accelerator (GPUs)
•  Today accelerators are attached
•  Next generation more integrated
•  Intel’s MIC architecture “Knights Ferry” and

“Knights Corner” to come.
•  48 x86 cores

•  AMD’s Fusion in 2012 - 2013
•  Multicore with embedded graphics ATI

•  Nvidia’s Project Denver plans to develop
an integrated chip using ARM
architecture in 2013.

3

•  Must rethink the design of our
algorithms and software
 Manycore architectures are another

disruptive technology
•  Similar to what happened with cluster

computing and message passing
 Rethink and rewrite the applications,

algorithms, and software

 Data movement is expensive
  Flops are cheap

4

•  LAPACK (including vendor optimized)
•  ScaLAPACK
•  BLAS (ATLAS, GotoBLAS, vendor)

•  PAPI, ScaLASCA, TAU
•  PETSc
•  SuperLU

…

[more at http://www.ors.hpc.mil/software/]

[must provide support for manycore and hybrid architectures]

Dense
Linear
Algebra

5

  A model leading to self-consistent iteration computation with need
for HP LA (e.g, diagonalization and orthogonalization) 6

Software/Algorithms follow hardware evolution in time

LINPACK (70’s)

(Vector operations)

Rely on

 - Level-1 BLAS

operations

LAPACK (80’s)

(Blocking, cache

friendly)

Rely on

 - Level-3 BLAS

operations

ScaLAPACK (90’s)

(Distributed Memory)

Rely on

 - PBLAS Mess Passing

PLASMA (00’s)

New Algorithms

(many-core friendly)

Rely on

 - a DAG/scheduler

 - block data layout

 - some extra kernels

Those new algorithms
 - have a very low granularity, they scale very well (multicore, petascale computing, …)
 - removes of dependencies among the tasks, (multicore, distributed computing)
 - avoid latency (distributed computing, out-of-core)
 - rely on fast kernels
 Those new algorithms need new kernels and rely on efficient scheduling algorithms.

 MAGMA
 Hybrid Algorithms 
 (heterogeneity friendly)

Rely on
 - hybrid scheduler (of DAGs)
 - hybrid kernels  
 (for nested parallelism)
 - existing software infrastructure 7

1.  Synchronization
  Break Fork-Join model

2.  Communication
  Use methods which have lower bound on communication

3.  Mixed precision methods
  2x speed of ops and 2x speed for data movement

4.  Autotuning
  Today’s machines are too complicated, build “smarts” into

software to adapt to the hardware

5.  Fault resilient algorithms
  Implement algorithms that can recover from failures/bit flips

6.  Reproducibility of results

8

•  Our ability to configure the next hardware system is
without question just a matter of time and $$

•  A supercomputer application and software are usually much more
long-lived than a hardware
  Hardware life typically five years at most…. Apps 20-30 years
  Fortran and C are the main programming models (still!!)

•  The REAL CHALLENGE is Software
  Programming hasn’t changed since the 70’s
  HUGE manpower investment

•  MPI… is that all there is?
  Often requires HERO programming
  Investments in the entire software stack is required (OS, libs, etc.)

•  Software is a major cost component of modern technologies
  The tradition in HPC system procurement is to assume that the software

is free… SOFTWARE COSTS (over and over)
9

•  Fork-join, bulk synchronous processing 27

Step 1 Step 2 Step 3 Step 4 . . .

23

  fork join
  bulk synchronous processing

10

  Idea: break into smaller tasks and remove dependencies

  Objectives: high utilization of each core, scaling to large number of cores

  Methodology: Arbitrary DAG scheduling, Fine granularity / block data layout

Asynchronous
tiled execution

Algorithms as DAGs 
[example ‒ Cholesky]

Execution trace example 
[reduces idle time]

11

•  Observations
•  DAG too large to be

generated ahead of
time

•  Generate it dynamically
•  HPC is about distributed

heterogeneous
resources

•  Have to get involved in
message passing

•  Distributed management of
the scheduling

•  Dynamically deal with
heterogeneity

[example ‒ a Cholesky factorization DAG]
12

48 cores
POTRF, TRTRI and LAUUM.
The matrix is 4000 x 4000,tile size is 200 x 200,

13

•  Exponentially
growing gaps
with time

•  A comparison

•  Flops are cheap
Need algorithms of reduced communication

Annual improvements

Time per
flop

Bandwidth Latency

Network 26% 15%

DRAM 23% 5%
59%

14

•  New algorithms
  To attain lower bounds on communication
  Attain large speedups in theory and practice

•  Blocking for data reuse
  Split computation in tasks of small enough memory footprint

to allow cache reuse (all levels of memory hierarchy)

•  Delayed update
  Accumulate inefficient transformations (e.g., Level 2 BLAS)

into more efficient (e.g., Level 3 BLAS)

•  Mixed precision techniques
  E.g., mixed-precision for sparse iterative solvers

15

•  QR decomposition of m x b matrix W, m >> b, on P processors
•  Usual parallel algorithm (ScaLAPACK)

  Compute Householder vector for each column
  Number of massages ~ b log P

•  Communication avoiding algorithm
  Reduction operation, with QR as an operator
  Number of massages ~ log P

J. Demmel, L. Grigori, M. Hoemmen, J. Langou ‘08

TSQR: QR factorization of a tall skinny
 matrix using Householder transformations

16

  MAGMA uses HYBRIDIZATION methodology based on
–  Representing linear algebra algorithms as collections

of TASKS and DATA DEPENDENCIES among them
–  Properly SCHEDULING tasks' execution over

multicore and GPU hardware components

  Successfully applied to fundamental
linear algebra algorithms
–  One and two-sided factorizations and solvers
–  Iterative linear and eigen-solvers

  Productivity
–  High-level
–  Leveraging prior developments
–  Exceeding in performance homogeneous solutions

Hybrid CPU+GPU algorithms 
(small tasks for multicores and large  
 tasks for GPUs)

17

  Hybridization
–  Panels (Level 2 BLAS) are factored on CPU using LAPACK
–  Trailing matrix updates (Level 3 BLAS) are done on the

GPU using “look-ahead”

18

  Left-looking hybrid Cholesky factorization in MAGMA 1.0

  The difference with LAPACK – the 3 additional lines in red
  Line 10 (done on CPU) is overlapped with work on the GPU (line 7)

19

20

21

// Sequential Tile Cholesky
FOR k = 0..TILES-1
 DPOTRF(A[k][k])
 FOR m = k+1..TILES-1

 DTRSM(A[k][k], A[m][k])
 FOR n = k+1..TILES-1
 DSYRK(A[n][k], A[n][n])

 FOR m = n+1..TILES-1
 DGEMM(A[m][k], A[n][k], A[m][n])

// Hybrid Tile Cholesky
FOR k = 0..TILES-1
 Insert_Task(DPOTRF, …)
 FOR m = k+1..TILES-1
 Insert_Task(DTRSM, …)
 FOR n = k+1..TILES-1
 Insert_Task(DSYRK, …)
 FOR m = n+1..TILES-1
 Insert_Task(DGEMM, …)

  Productivity - develop parallel multicore + multiGPU algorithms from
 sequential algorithms using DAG-based runtime systems

  Tile kernels and one-sided factorizations and solvers (using StarPU)
 are released in MAGMA 1.1

22

Parallel
Compilers

HPC Applications

Runtime system

Operating System

CPU

Parallel Libraries   do dynamically what
would be difficult to do
statically

  Library that provides
-  Task scheduling
-  Memory management

The need for runtime systems

GPU …
http://runtime.bordeaux.inria.fr/StarPU/

23

•  Distribute the DAG analysis
  The DAG is never completely unrolled
  Each node only unrolls it’s own portion of the DAG

•  Minimize the data transfers
•  Overlap communication and computations
•  Let the user describe the algorithms based on

data dependencies between tasks

24

42 DPLASMA

 0

 1

 2

 3

 4

 5

 6

 7

 13k
 26k

 40k
 53k

 67k
 80k

 94k
107k

120k
130k

T
F

lo
p

/s

Matrix size (N)

DPOTRF performance problem scaling
648 cores (Myrinet 10G)

Theoretical peak
Practical peak (GEMM)
DAGuE
DSBP
ScaLAPACK

(a) Cholesky Factorization

 0

 1

 2

 3

 4

 5

 6

 7

 13k
 26k

 40k
 53k

 67k
 80k

 94k
107k

120k
130k

T
F

lo
p

/s

Matrix size (N)

DGETRF performance problem scaling
648 cores (Myrinet 10G)

Theoretical peak
Practical peak (GEMM)
DAGuE
HPL
ScaLAPACK

(b) LU Factorization

 0

 1

 2

 3

 4

 5

 6

 7

 13k
 26k

 40k
 53k

 67k
 80k

 94k
107k

120k
130k

T
F

lo
p

/s

Matrix size (N)

DGEQRF performance problem scaling
648 cores (Myrinet 10G)

Theoretical peak
Practical peak (GEMM)
DAGuE
ScaLAPACK

(c) QR Factorization

Figure 33.13: Performance comparison on the Griffon platform with 648 cores.

All three of these operations are implemented in the ScaLAPACK numerical li-

brary [39]. In addition, some of these factorizations have more optimized versions,

we used the state of the art version for each of the existing factorizations to measure

against. The Cholesky factorization has been implemented in a more optimized way

in the DSBP software [16], using static scheduling of tasks, and a specific, more

efficient, data distribution. The LU factorization with partial pivoting is also solved

by the well known High Performance LINPACK benchmark (HPL) [40], used to

measure the performance of high performance computers. We have distributed the

initial data following a classical 2D-block cyclic distribution used by ScaLAPACK,

and used the DAGUE runtime engine to schedule the operations on the distributed

data. The kernels consist of the BLAS operations referenced by the sequential codes,

and their implementation was the most efficient available on each of the machine.

Figure 33.13 presents the performance measured for DAGUE and ScaLAPACK,

and when applicable DSBP and HPL, as a function of the problem size. 648 cores

on 81 multi-core nodes have been used for the distributed run, and the data was

distributed according to a 9× 9 2D block-cyclic grid for DAGUE. A similar dis-

tribution was used for ScaLAPACK, and the other benchmarks when appropriate,

and the block size was tuned to provide the best performance on each setup. As the

figures illustrate, on all benchmarks, and for all problem sizes, the DAGUE frame-

work was able to outperform ScaLAPACK, and perform as well as the state of the

D R A F T January 24, 2012, 1:09pm D R A F T

Hardware: 81 dual socket Intel Xeon L5420 quad core nodes @2.5 GHz => 648 cores

 DAGuE & PLASMA teams @ ICL; For more information, see http://icl.cs.utk.edu/dague/;
25

•  Mixed precision, use the lowest
precision required to achieve a given
accuracy outcome
  Improves runtime, reduce power

consumption, lower data movement
 Reformulate to find correction to

solution, rather than solution
[Δx rather than x].

26

FERMI Tesla C2050: 448 CUDA cores @ 1.15GHz 
 SP/DP peak is 1030 / 515 GFlop/s

MAGMA LU-based solvers on Fermi (C2050)

"  Similar results for Cholesky & QR

27

•  Host: Xeon E5630 2.53GHz (4cores*2sockets), DDR3 6GB
•  CentOS6.0, CUDA4.0

0	

100	

200	

300	

400	

1024	
 3072	
 5120	
 7168	

G
Fl

op
s	

N	

Performance on TeslaM2050
SGESV	

DSGESV	

DGESV	

WDGESV	

•  High-precision (quadruple):
Double-double precision (WP)

•  WP flops are expensive!
1 WP flop ~ 20 DP flops

•  Up to 20x speedup
over direct WP solver

w/ Daichi Mukunoki
University of Tsukuba, Japan

28

C = α A B + β C

!"#$

%"#$

&"#$

&"#$

%'()&'()

&'()

!'()

!

"

#

•  To empirically find best
implementations

•  Parameters influencing
performance are selected

•  Code is parameterized
•  Search engine

automatically finds best
version

Left figure: Example parameterization of  
 matrix-matrix multiplication  
 for NVIDIA GPUs

29

!
"
!
!

#
!
!

$
!
!

%
!
!

&
!
!

'
(
)

*
+
,-
.
/-
0
1
,2
1
'
34

!
""
"!

"#

!
""
"!

"#
$

!
$
"!

"#
$

!
$
"!

"#

!
""
"!

"#

!
""
"!

"#
$

!
$
"!

"#
$

!
$
"!

"#

!
""
"!

"#

!
""
"!

"#
$

!
$
"!

"#
$

!
$
"!

"#

!
""
"!

"#

!
""
"!

"#
$

!
$
"!

"#
$

!
$
"!

"#

5
6
7
8

8

9
6
7
8

8

:
6
7
8

8

;
6
7
8

8

  Number of GEMM variants 
 generated and tested 
 - automatically from “stencils”  
 (parameterized code)

 w/ Jakub Kurzak, UTK

30

! "!!! #!!! $!!! %!!! &!!!!

!

&!!

"!!

'!!

#!!

(!!

$!!

)!!

%!!

*!!

+,-./012/34

5
67
8
9
:2

;5<==

>5<==

?5<==

@5<==

  Performance on Fermi
 (C2050) in Gflop/s  

  ZGEMM improved significantly 
 compared to CUBLAS

  from 308 to 341 Gflop/s

  Improvement up to 2x on  
 some specific matrices 
 (e.g., of “rectangular” shape)

 w/ Jakub Kurzak, UTK

31

•  For the last decade or more, the research
investment strategy has been
overwhelmingly biased in favor of hardware

•  This strategy needs to be rebalanced -
barriers to progress are increasingly on the
software side

•  High Performance Ecosystem out of balance
  Hardware, OS, Compilers, Software, Algorithms, Applications

•  No Moore’s Law for software, algorithms and applications

32

  MAGMA team
http://icl.cs.utk.edu/magma/

  PLASMA team
http://icl.cs.utk.edu/plasma

  DAGuE team
http://icl.cs.utk.edu/dague/

  Collaborating partners
 University of Tennessee, Knoxville

University of California, Berkeley
University of Colorado, Denver

INRIA, France
KAUST, Saudi Arabia

33

