
MAGMA
Matrix Algebra on GPU and Multicore Architectures

Mark Gates
February 2012

1

Berkeley ParLab

But Clock Frequency Scaling Has Been
Replaced by Scaling Cores / Chip

3

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1970 1975 1980 1985 1990 1995 2000 2005 2010

Transistors (in Thousands)
Frequency (MHz)
Cores

Data from Kunle Olukotun, Lance Hammond, Herb Sutter,
Burton Smith, Chris Batten, and Krste Asanoviç

• Scale # cores instead of clock speed

• Hardware issue became software issue

• Multicore

• Hybrid

Hardware trends

2

Figure from Kathy Yelick, “Ten Ways to Waste a Parallel Computer.”
Data from Kunle Olukotun, Lance Hammond, Herb Sutter, Burton
Smith, Chris Batten, and Krste Asanoviç.

1e7

1e6

1e5

1e4

1000

100

10

1

0.1

Future systems
• Most likely hybrid design

• Multicore + GPU accelerators

• Today accelerators attached

• Future accelerators integrated
• Intel’s MIC Knight’s Corner

• AMD’s Fusion

• Nvidia’s Project Denver

3

Challenges of GPUs
• High levels of parallelism

• Hybrid architecture
• Small, non-parallelizable tasks on CPU

• Large, parallel tasks on GPU

• Compute vs. communication gap growing
• Tesla C2070 has 515 Gflops, 8 GB/s PCIe

4

 Chapter 1. Introduction

CUDA C Programming Guide Version 4.0 3

The reason behind the discrepancy in floating-point capability between the CPU and
the GPU is that the GPU is specialized for compute-intensive, highly parallel
computation – exactly what graphics rendering is about – and therefore designed
such that more transistors are devoted to data processing rather than data caching
and flow control, as schematically illustrated by Figure 1-2.

Figure 1-2. The GPU Devotes More Transistors to Data
Processing

More specifically, the GPU is especially well-suited to address problems that can be
expressed as data-parallel computations – the same program is executed on many
data elements in parallel – with high arithmetic intensity – the ratio of arithmetic
operations to memory operations. Because the same program is executed for each
data element, there is a lower requirement for sophisticated flow control, and
because it is executed on many data elements and has high arithmetic intensity, the
memory access latency can be hidden with calculations instead of big data caches.

Data-parallel processing maps data elements to parallel processing threads. Many
applications that process large data sets can use a data-parallel programming model
to speed up the computations. In 3D rendering, large sets of pixels and vertices are
mapped to parallel threads. Similarly, image and media processing applications such
as post-processing of rendered images, video encoding and decoding, image scaling,
stereo vision, and pattern recognition can map image blocks and pixels to parallel
processing threads. In fact, many algorithms outside the field of image rendering
and processing are accelerated by data-parallel processing, from general signal
processing or physics simulation to computational finance or computational biology.

1.2 CUDA™: a General-Purpose Parallel
Computing Architecture
In November 2006, NVIDIA introduced CUDA™, a general purpose parallel
computing architecture – with a new parallel programming model and instruction
set architecture – that leverages the parallel compute engine in NVIDIA GPUs to

Cache

ALU Control

ALU

ALU

ALU

DRAM

CPU

DRAM

GPU

 Chapter 1. Introduction

CUDA C Programming Guide Version 4.0 3

The reason behind the discrepancy in floating-point capability between the CPU and
the GPU is that the GPU is specialized for compute-intensive, highly parallel
computation – exactly what graphics rendering is about – and therefore designed
such that more transistors are devoted to data processing rather than data caching
and flow control, as schematically illustrated by Figure 1-2.

Figure 1-2. The GPU Devotes More Transistors to Data
Processing

More specifically, the GPU is especially well-suited to address problems that can be
expressed as data-parallel computations – the same program is executed on many
data elements in parallel – with high arithmetic intensity – the ratio of arithmetic
operations to memory operations. Because the same program is executed for each
data element, there is a lower requirement for sophisticated flow control, and
because it is executed on many data elements and has high arithmetic intensity, the
memory access latency can be hidden with calculations instead of big data caches.

Data-parallel processing maps data elements to parallel processing threads. Many
applications that process large data sets can use a data-parallel programming model
to speed up the computations. In 3D rendering, large sets of pixels and vertices are
mapped to parallel threads. Similarly, image and media processing applications such
as post-processing of rendered images, video encoding and decoding, image scaling,
stereo vision, and pattern recognition can map image blocks and pixels to parallel
processing threads. In fact, many algorithms outside the field of image rendering
and processing are accelerated by data-parallel processing, from general signal
processing or physics simulation to computational finance or computational biology.

1.2 CUDA™: a General-Purpose Parallel
Computing Architecture
In November 2006, NVIDIA introduced CUDA™, a general purpose parallel
computing architecture – with a new parallel programming model and instruction
set architecture – that leverages the parallel compute engine in NVIDIA GPUs to

Cache

ALU Control

ALU

ALU

ALU

DRAM

CPU

DRAM

GPU

PCIe

Figure from NVIDIA CUDA C Programming Guide

Software generations

5

critical
path

LINPACK (70’s)
vector operations

Level-1 BLAS

LAPACK (80’s)
blocked, cache friendly

Level-3 BLAS

ScaLAPACK (90’s)
distributed memory

PBLAS
message passing

PLASMA
tiled, multicore

DAG + scheduler

MAGMA
hybrid

hybrid kernels

Nvidia’s CUBLAS
• Level 1, 2, 3 BLAS kernels

• cublasDgemv

• cublasDgemm

• Copy between CPU ↔ GPU
• cublasSetMatrix

• cublasGetMatrix

• Stream support
• cublasSetKernelStream, magmablasSetKernelStream

6

MAGMA 1.1
• LAPACK column-wise layout

• LAPACK-like C and Fortran interfaces

• CPU and GPU interfaces

7

MAGMA 1.1
• 50+ hybrid LAPACK algorithms

• 4 precisions (single, double, single complex, double complex)

• 3 mixed precision algorithms

• MAGMA BLAS
• Supplements CUBLAS

• Improves some routines

8

Naming: magma_zgesv_gpu
• magma_ or magmablas_ prefix

• Precision (single, double, single complex, “z” double complex).
Mixed precision (ds and zc)

• Matrix type
general
 symmetric
 hermetian
 positive definite
orthogonal
 unitary
 triangular

• Operation
sv
 solve
trf
 triangular factorization
ev
 eigenvalue problem
gv
 generalized eigenvalue problem

• Interface _gpu suffix

9

• Solve entire problem

Driver routines

10

InterfaceInterface
Matrix type Operation Routine CPU GPU
General Solve dgesv dsgesv ✓ ✓
SPD Solve dposv dsposv ✓ ✓
Least squares Solve dgeqrs dsgeqrsv ✓

General SVD dgesvd ✓
Eigenvalues dgeev ✓

Symmetric Eigenvalues dsyevd* / zheevd* ✓ ✓
Generalized
eigenvalues

dsygvd* / zhegvd* ✓

* Additional variants; complete list at http://icl.eecs.utk.edu/magma/

http://icl.eecs.utk.edu/magma/
http://icl.eecs.utk.edu/magma/

Computational routines
• Solve one part of problem

11

InterfaceInterface
Matrix type Operation Routine CPU GPU
General LU dgetrf ✓ ✓

Solve (given LU) dgetrs ✓
Inverse dgetri ✓

SPD Cholesky dpotrf ✓ ✓
Solve (given LLT) dpotrs ✓
Inverse dpotri ✓

General QR dgeqrf ✓
Generate Q dorgqr / zungqr ✓ ✓
Multiply by Q dormqr / zunmqr ✓ ✓

Selected routines; complete list at http://icl.eecs.utk.edu/magma/

http://icl.eecs.utk.edu/magma/
http://icl.eecs.utk.edu/magma/

Panel Look
ahead

Trailing matrix
A = QA

One-sided factorization
• LU, Cholesky, QR factorizations for solving linear systems

12

Level 2
BLAS on

CPU

Level 3
BLAS on

GPU

DAG

Panel Look
ahead

Trailing matrix
A = QA

One-sided factorization
• LU, Cholesky, QR factorizations for solving linear systems

12

Level 2
BLAS on

CPU

Level 3
BLAS on

GPU

Look
aheadPanel

Trailing matrix

DAG

Panel Look
ahead

Trailing matrix
A = QA

One-sided factorization
• LU, Cholesky, QR factorizations for solving linear systems

12

Level 2
BLAS on

CPU

Level 3
BLAS on

GPU

Look
aheadPanel

Trailing matrix

DAG

Panel Look
ahead

Trailing matrix
A = QA

One-sided factorization
• LU, Cholesky, QR factorizations for solving linear systems

12

Level 2
BLAS on

CPU

Level 3
BLAS on

GPU

Look
aheadPanel

Trailing matrix

Trailing
matrixPanel

DAG

Panel Look
ahead

Trailing matrix
A = QA

One-sided factorization
• LU, Cholesky, QR factorizations for solving linear systems

12

Level 2
BLAS on

CPU

Level 3
BLAS on

GPU

Look
aheadPanel

Trailing matrix

Trailing
matrixPanel
Panel

DAG

Panel Look
ahead

Trailing matrix
A = QA

critical
path

One-sided factorization
• LU, Cholesky, QR factorizations for solving linear systems

12

Level 2
BLAS on

CPU

Level 3
BLAS on

GPU

Look
aheadPanel

Trailing matrix

Trailing
matrixPanel
Panel

DAG

13

14

Keeneland system, using one node
3 Nvidia GPUs (M2070 @ 1.1 GHz, 5.4 GB)
2 x 6 Intel Cores (X5660 @ 2.8 GHz, 23 GB)

Mixed-precision solvers

• Factor in single precision

• Iterative refinement yields
double precision accuracy

15

960 3200 5120 7040 8960 11200 13120
0

50

100

150

200

250

300

350

400

450

500
Single Prec
Double Prec
Iter Ref

Matrix size

G
Fl

op
/s

MAGMA solve

Two-sided factorization
• Hessenberg, tridiagonal factorizations for eigenvalue problems

16

Level 2
BLAS on

GPU

Level 2
BLAS on

CPU

Level 3
BLAS on

GPU

Panel Trailing matrix
A = QTAQyi = Avi

column ai

17

0

20

40

60

80

100

120

140

160

180

2048 5184 10112 20000

3 GPUs
2 GPUs
1 GPU (MAGMA 1.1)
CPU (MKL)

MAGMA Hessenberg in double precision

G
flo

p/
s

Matrix size

Keeneland system, using one node
3 Nvidia GPUs (M2070 @ 1.1 GHz, 5.4 GB)
2 x 6 Intel Cores (X5660 @ 2.8 GHz, 23 GB)

Autotuning kernels

• Parameterize code,
e.g., blocksize

• Test 100 – 500 kernels

• Improved zgemm from
308 to 341 Gflops/s

• Improved up to 2x on
specific rectangular shapes

18

� ���� ���� ���� ���� �����

�

���

���

���

���

���

���

	��

���

��

��
��������

�
��
�
�
��

�����

�����

�����

 ����

MAGMA BLAS matrix multiply

Scheduling DAGs

19

48 cores
Matrix is 4000 x 4000, tile is 200 x 200.

Dynamic scheduling
• Parallelism using DAG-based runtime scheduler

• One-sided factorizations and solvers using StarPU

20

// Sequential Tile Cholesky
for k = 1 .. ntiles
! dpotrf(Akk)
! for i = k+1 .. ntiles
! ! dtrsm(Akk, Aik)
! for i = k+1 .. ntiles
! ! dsyrk(Aik, Aii)
! ! for j = i+1 .. ntiles
! ! ! dgemm(Ajk, Aik, Aij)

// Hybrid Tile Cholesky
for k = 1 .. ntiles
! Insert_Task(dpotrf, ...)
! for i = k+1 .. ntiles
! ! Insert_Task(dtrsm, ...)
! for i = k+1 .. ntiles
! ! Insert_Task(dsyrk, ...)
! ! for j = i+1 .. ntiles
! ! ! Insert_Task(dgemm, ...)

Documentation
• Nvidia Guides

http://developer.nvidia.com/nvidia-gpu-computing-documentation

• MAGMA
http://icl.eecs.utk.edu/magma

• PLASMA
http://icl.eecs.utk.edu/plasma

• BLAS and LAPACK index
http://web.eecs.utk.edu/~mgates3/docs/lapack.html

21

http://developer.nvidia.com/nvidia-gpu-computing-documentation
http://developer.nvidia.com/nvidia-gpu-computing-documentation
http://icl.cs.utk.edu/magma/
http://icl.cs.utk.edu/magma/
http://icl.cs.utk.edu/plasma/
http://icl.cs.utk.edu/plasma/
http://web.eecs.utk.edu/~mgates3/docs/lapack.html
http://web.eecs.utk.edu/~mgates3/docs/lapack.html

Collaborators / Support

• University of Tennessee, Knoxville

• University of California, Berkeley

• University of Colorado, Denver

• INRIA, France

• KAUST, Saudi Arabia

22

23

