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Berkeley ParLab 

But Clock Frequency Scaling Has Been 
Replaced by Scaling Cores / Chip 
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• Scale # cores instead of clock speed

• Hardware issue became software issue

• Multicore

• Hybrid

Hardware trends
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Figure from Kathy Yelick, “Ten Ways to Waste a Parallel Computer.”
Data from Kunle Olukotun, Lance Hammond, Herb Sutter, Burton 
Smith, Chris Batten, and Krste Asanoviç.
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Future systems
• Most likely hybrid design

• Multicore + GPU accelerators

• Today accelerators attached

• Future accelerators integrated
• Intel’s MIC Knight’s Corner

• AMD’s Fusion

• Nvidia’s Project Denver
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Challenges of GPUs
• High levels of parallelism

• Hybrid architecture
• Small, non-parallelizable tasks on CPU

• Large, parallel tasks on GPU

• Compute vs. communication gap growing
• Tesla C2070 has 515 Gflops, 8 GB/s PCIe
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The reason behind the discrepancy in floating-point capability between the CPU and 
the GPU is that the GPU is specialized for compute-intensive, highly parallel 
computation – exactly what graphics rendering is about – and therefore designed 
such that more transistors are devoted to data processing rather than data caching 
and flow control, as schematically illustrated by Figure 1-2. 

 

 

Figure 1-2. The GPU Devotes More Transistors to Data 
Processing 

 

More specifically, the GPU is especially well-suited to address problems that can be 
expressed as data-parallel computations – the same program is executed on many 
data elements in parallel – with high arithmetic intensity – the ratio of arithmetic 
operations to memory operations. Because the same program is executed for each 
data element, there is a lower requirement for sophisticated flow control, and 
because it is executed on many data elements and has high arithmetic intensity, the 
memory access latency can be hidden with calculations instead of big data caches. 

Data-parallel processing maps data elements to parallel processing threads. Many 
applications that process large data sets can use a data-parallel programming model 
to speed up the computations. In 3D rendering, large sets of pixels and vertices are 
mapped to parallel threads. Similarly, image and media processing applications such 
as post-processing of rendered images, video encoding and decoding, image scaling, 
stereo vision, and pattern recognition can map image blocks and pixels to parallel 
processing threads. In fact, many algorithms outside the field of image rendering 
and processing are accelerated by data-parallel processing, from general signal 
processing or physics simulation to computational finance or computational biology. 

1.2 CUDA™: a General-Purpose Parallel 
Computing Architecture 
In November 2006, NVIDIA introduced CUDA™, a general purpose parallel 
computing architecture – with a new parallel programming model and instruction 
set architecture – that leverages the parallel compute engine in NVIDIA GPUs to 
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Software generations
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critical
path

LINPACK (70’s)
vector operations

Level-1 BLAS

LAPACK (80’s)
blocked, cache friendly

Level-3 BLAS

ScaLAPACK (90’s)
distributed memory

PBLAS
message passing

PLASMA
tiled, multicore

DAG + scheduler

MAGMA
hybrid

hybrid kernels



Nvidia’s CUBLAS
• Level 1, 2, 3 BLAS kernels

• cublasDgemv

• cublasDgemm

• Copy between CPU ↔ GPU
• cublasSetMatrix

• cublasGetMatrix

• Stream support
• cublasSetKernelStream, magmablasSetKernelStream
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MAGMA 1.1
• LAPACK column-wise layout

• LAPACK-like C and Fortran interfaces

• CPU and GPU interfaces
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MAGMA 1.1
• 50+ hybrid LAPACK algorithms

• 4 precisions (single, double, single complex, double complex)

• 3 mixed precision algorithms

• MAGMA BLAS
• Supplements CUBLAS

• Improves some routines
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Naming: magma_zgesv_gpu
• magma_ or magmablas_ prefix

• Precision (single, double, single complex, “z” double complex).
Mixed precision (ds and zc)

• Matrix type
general
 symmetric
 hermetian
 positive definite
orthogonal
 unitary
 triangular

• Operation
sv
 solve
trf
 triangular factorization
ev
 eigenvalue problem
gv
 generalized eigenvalue problem

• Interface _gpu suffix
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• Solve entire problem

Driver routines
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InterfaceInterface
Matrix type Operation Routine CPU GPU
General Solve dgesv dsgesv ✓ ✓
SPD Solve dposv dsposv ✓ ✓
Least squares Solve dgeqrs dsgeqrsv ✓

General SVD dgesvd ✓
Eigenvalues dgeev ✓

Symmetric Eigenvalues dsyevd* / zheevd* ✓ ✓
Generalized 
eigenvalues

dsygvd* / zhegvd* ✓

* Additional variants; complete list at http://icl.eecs.utk.edu/magma/

http://icl.eecs.utk.edu/magma/
http://icl.eecs.utk.edu/magma/


Computational routines
• Solve one part of problem
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InterfaceInterface
Matrix type Operation Routine CPU GPU
General LU dgetrf ✓ ✓

Solve (given LU) dgetrs ✓
Inverse dgetri ✓

SPD Cholesky dpotrf ✓ ✓
Solve (given LLT) dpotrs ✓
Inverse dpotri ✓

General QR dgeqrf ✓
Generate Q dorgqr   / zungqr ✓ ✓
Multiply by Q dormqr  / zunmqr ✓ ✓

Selected routines; complete list at http://icl.eecs.utk.edu/magma/

http://icl.eecs.utk.edu/magma/
http://icl.eecs.utk.edu/magma/
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Trailing matrix
A = QA

One-sided factorization
• LU, Cholesky, QR factorizations for solving linear systems

12

Level 2
BLAS on

CPU

Level 3 
BLAS on 

GPU

DAG



Panel Look 
ahead

Trailing matrix
A = QA

One-sided factorization
• LU, Cholesky, QR factorizations for solving linear systems

12

Level 2
BLAS on

CPU

Level 3 
BLAS on 

GPU

Look
aheadPanel

Trailing matrix

DAG



Panel Look 
ahead

Trailing matrix
A = QA

One-sided factorization
• LU, Cholesky, QR factorizations for solving linear systems

12

Level 2
BLAS on

CPU

Level 3 
BLAS on 

GPU

Look
aheadPanel

Trailing matrix

DAG



Panel Look 
ahead

Trailing matrix
A = QA

One-sided factorization
• LU, Cholesky, QR factorizations for solving linear systems

12

Level 2
BLAS on

CPU

Level 3 
BLAS on 

GPU

Look
aheadPanel

Trailing matrix

Trailing
matrixPanel

DAG



Panel Look 
ahead

Trailing matrix
A = QA

One-sided factorization
• LU, Cholesky, QR factorizations for solving linear systems

12

Level 2
BLAS on

CPU

Level 3 
BLAS on 

GPU

Look
aheadPanel

Trailing matrix

Trailing
matrixPanel
Panel

DAG



Panel Look 
ahead

Trailing matrix
A = QA

critical
path

One-sided factorization
• LU, Cholesky, QR factorizations for solving linear systems
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Keeneland system, using one node
3 Nvidia GPUs (M2070 @ 1.1 GHz, 5.4 GB)
2 x 6 Intel Cores (X5660 @ 2.8 GHz, 23 GB)



Mixed-precision solvers

• Factor in single precision

• Iterative refinement yields
double precision accuracy
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Two-sided factorization
• Hessenberg, tridiagonal factorizations for eigenvalue problems
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Autotuning kernels

• Parameterize code,
e.g., blocksize

• Test 100 – 500 kernels

• Improved zgemm from
308 to 341 Gflops/s

• Improved up to 2x on 
specific rectangular shapes
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MAGMA BLAS matrix multiply



Scheduling DAGs
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48 cores
Matrix is 4000 x 4000, tile is 200 x 200.



Dynamic scheduling
• Parallelism using DAG-based runtime scheduler

• One-sided factorizations and solvers using StarPU
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// Sequential Tile Cholesky
for k = 1 .. ntiles
! dpotrf( Akk )
! for i = k+1 .. ntiles
! ! dtrsm( Akk, Aik )       
! for i = k+1 .. ntiles
! ! dsyrk( Aik, Aii )
! ! for j = i+1 .. ntiles
! ! ! dgemm( Ajk, Aik, Aij )

// Hybrid Tile Cholesky
for k = 1 .. ntiles
! Insert_Task( dpotrf, ... )
! for i = k+1 .. ntiles
! ! Insert_Task( dtrsm, ... )       
! for i = k+1 .. ntiles
! ! Insert_Task( dsyrk, ... )
! ! for j = i+1 .. ntiles
! ! ! Insert_Task( dgemm, ... )



Documentation
• Nvidia Guides

http://developer.nvidia.com/nvidia-gpu-computing-documentation

• MAGMA
http://icl.eecs.utk.edu/magma

• PLASMA
http://icl.eecs.utk.edu/plasma

• BLAS and LAPACK index
http://web.eecs.utk.edu/~mgates3/docs/lapack.html

21

http://developer.nvidia.com/nvidia-gpu-computing-documentation
http://developer.nvidia.com/nvidia-gpu-computing-documentation
http://icl.cs.utk.edu/magma/
http://icl.cs.utk.edu/magma/
http://icl.cs.utk.edu/plasma/
http://icl.cs.utk.edu/plasma/
http://web.eecs.utk.edu/~mgates3/docs/lapack.html
http://web.eecs.utk.edu/~mgates3/docs/lapack.html
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