
Performance Counter Monitoring for the

Blue Gene/Q Architecture

Heike McCraw

Innovative Computing Laboratory

University of Tennessee, Knoxville

1 Introduction and Motivation

With the increasing scale and complexity of large computing systems the effort of performance optimization

grows more and more and so does the responsibility of performance analysis tool developers. To be of value

to the High Performance Computing (HPC) community, performance analysis tools have to be customized

as quick as possible in order to support new processor generations as well as changes in system designs.

The Blue Gene/Q (BG/Q) system is the third generation in the IBM Blue Gene line of massively parallel,

energy efficient supercomputers, and it has been scheduled to be released in 2012. BG/Q will be capable

of scaling to over a million processor cores while making the trade-off of lower power consumption over

raw processor speed [5]. BG/Q increases not only in size but also in complexity compared to its Blue Gene

predecessors. Consequently, gaining insight into the intricate ways in which software and hardware are

interacting requires richer and more capable performance analysis methods in order to be able to improve

efficiency and scalability of applications that utilize this advanced system.

Unfortunately, very little effort has been put into hardware performance monitoring tools for the BG/Q

predecessor Blue Gene/P (BG/P). The HPC community was left behind with rather poor and incomplete

methods which made it more or less impractical to collect hardware performance counter data on this system.

To eliminate this limitation, an extensive effort has been made which includes careful planning long before

the BG/Q release as well as close collaboration with IBM. This paper provides detailed information about

the expansion of PAPI to support hardware performance monitoring for the BG/Q platform. It offers insight

into relevant implementation designs as well as supported monitoring features. As of today, this project is

still ongoing and under non-disclosure agreement (NDA) with IBM.

This customization of PAPI to support BG/Q also includes a growing number of PAPI components to provide

valuable performance data that not only originates from the processing cores but also from compute nodes

and the system as a whole. These additional components allow hardware performance counter monitoring

of the network, the I/O system and the Compute Node Kernel in addition to the CPU component.

This paper is organized as follows. The coming section provides a brief overview of the BG/Q hardware and

software architecture with focus on the features that are particularly relevant for this project. Section 3 goes

into detail on how PAPI has been expanded with 5 components to support hardware performance counter

monitoring on the BG/Q platform. A summary and sketch of future work is provided in Section 4.

1



2 Overview of the Blue Gene/Q Architecture

2.1 Hardware Architecture

The BG/Q processor is an 18-core CPU and only 16 cores are used to perform mathematical calculations.

The 17th core is used for node control tasks such as offloading I/O operations which ”talk” to Linux running

on the I/O node. (Note, the I/O nodes are separate from the compute nodes; so, Linux is not actually running

on the 17th core.) The 18th core is a spare core which is used when there are corrupt cores on the chip. The

corrupt core is swapped and software transparent.

The processor uses PowerPC A2 cores, operating at a moderate clock frequency of 1.6 GHz and consuming

a modest 55 watts at peak [2]. The Blue Gene line has always been known for throughput and energy

efficiency, and so emphasizes the A2 architecture. Despite the low power consumption, the chip delivers a

very respectable 204 Gflops [2]. This is due to a combination of features like the tight core count, support

for up to four threads per core, and a quad floating-point unit. I will elaborate on those features later in

the chapter. Just for comparison reason, the Power7 at 3.5 GHz and 8 cores delivers about 256 Gflops, but

consumes 200 watts, which makes the BG/Q chip approximately three times more energy efficient per peak

Flop (3.72 Gflops/watt for A2 versus 1.28 Gflops/watt for Power7) [2].

Even compared to its Blue Gene predecessors, BG/Q represents a big change in performance, thanks to a

large raise in both, core count and clock frequency. The BG/Q chip delivers 15 times as many peak FLOPS

as its BG/P counterpart and 36 times as many as the original BG/L design (see Table 1 for comparison).

Version Core Architecture Instruction Set FPU Clock Speed Core Count Interconnect Peak Performance

Blue Gene/L PowerPC 440 32-bit dual 64-bit 700 MHz 2 3D torus 5.6 Gigaflops

Blue Gene/P PowerPC 450 32-bit dual 64-bit 850 MHz 4 3D torus 13.6 Gigaflops

Blue Gene/Q PowerPC A2 64-bit quad 64-bit 1600 MHz 18 5D torus 204.8 Gigaflops

Table 1: Brief summary of the three Blue Gene versions

This PowerPC A2 core has a 64-bit instruction set compared to the 32-bit chips used in the prior BG/L and

BG/P supercomputers. As mentioned earlier, each A2 core has support for up to four threads but what’s

interesting, it has in-order dispatch, execution and completion instead of out-of-order execution which is

common in many RISC processor designs [3]. The A2 core has a 16 KB private L1 data cache and another 16

KB private L1 instruction cache, as well as 32 MB of embedded dynamic random access memory (eDRAM)

acting as a L2 cache, and 8 GB (or 16 GB) of main memory [4]. The L2 cache as well as the main memory

are shared between the cores on the chip.

The quad double-precision Floating Point Unit (FPU) (available on each core) has four pipelines which can

be used to execute scalar floating point instructions, four SIMD instructions, or two complex arithmetic

SIMD instructions [3]. These instructions are extensions of the Power instruction set. The FPU has a

six-stage pipeline and has permutation instructions to reorganize vector data on the fly; it can perform a

maximum of eight concurrent floating point operations per clock cycle plus a load and a store [3].

Every BG/Q processor has two DDR3 memory controllers, each interfacing with eight slices of the L2

cache to handle their cache misses (one controllers for each half of the 16 cores on the chip) [1, 3]. This is

2



an important feature to know and I will come back to it in more detail when I talk about the PAPI L2Unit

component in section 3.2.

BG/Q peer-to-peer communication between compute nodes is performed over a 5-dimensional (5D) Torus

network (note that BG/L and P feature a 3D Torus). Each node has 11 links and each link can transmit data

at 2 GB/s and simultaneously receive at 2 GB/s for a total bandwidth of 44 GB/s. While 10 links connect

the compute nodes, the 11th link provides connection to the I/O nodes.

By default a custom lightweight operating system called Compute Node Kernel (CNK) is loaded on the

compute nodes while I/O nodes run Linux OS [5]. The I/O architecture is significantly different from

previous BG generations since it is separated from the compute nodes and moved to independent I/O racks.

2.2 Performance Monitoring Architecture

This section focuses on two for this project relevant system information. It provides a brief summary of the

features provided by the Blue Gene Performance Monitoring API (BGPM) and the Universal Performance

Counting (UPC) hardware.

BGPM implements a programming interface for the BG/Q UPC hardware, while the PAPI implementation

for BG/Q accesses the BGPM interface under the cover to allow users and third-party programs to monitor

and sample hardware performance counters in a traditional way. The term “traditional” here refers to the

advantage that no code modifications are necessary if a code that includes PAPI functions is ported to the

BG/Q architecture. BGPM provides multiple hardware and software units that can be monitored, like the P

Unit (CPU related events), L2 Unit (L2 cache related), I/O Unit, Network Unit, and Compute Kernel Node

Unit. Each unit supplies separate control of events and counters.

The BG/Q UPC hardware programs and counts performance events from multiple hardware modules within

a BG/Q node [1]. The following list provides more details on those hardware modules and also summarizes

which BGPM unit interfaces with a module:

• Each of the 18 A2 CPU cores has a local UPC module. Each of these modules provides 24 counters

(14-bit) to sample A2 events, L1 cache related events, floating point operations, etc. The BGPM

PUnit interfaces with these modules.

– Also, the local UPC module is broken down into 5 internal sub-modules: FU, XU, IU, LSU

and MMU. The sub-modules are transparently identifiable from the PUnit event names. See

Table 2 for an example selection of PUnit events.

• Furthermore, each of the 16 L2 memory slices (per chip) has a L2 UPC module that provides 6

counters. The BGPM L2Unit interfaces with these modules.

• The Message, PCIe, and DevBus module - which are collectively referred to as I/O modules - provide

together 43 counters. The BGPM IOUnit interfaces with these I/O modules. The three I/O sub-

modules are transparently identifiable from the IOUnit event names. See Table 6 for an example

selection of IOUnit events.

3



The counters from each of the UPC modules mentioned above, are periodically accumulated into a corre-

sponding 64-bit counter, which is located in the central UPC module. The central UPC module is responsi-

ble for overflow detection and counter aggregation [1].

• Furthermore, the network provides a local UPC network module with 66 counters (each of the 11

links has 6 counters) (64-bits). The BGPM NWUnit interfaces with the network modules.

• And the memory controller provides a module with 32-bit counters

The counters of those 2 modules are kept separate from the central UPC module.

3 PAPI BGPM Components

In general, hardware performance event monitoring requires user code instrumentation with either the native

BGPM API or a tool like PAPI which uses BGPM under the cover. The following five sections talk about the

5 different components that have been implemented in PAPI to allow users to monitor hardware performance

counters on the BG/Q architecture through the standard Performance API interface. Prior to this is a short

description on how the configuration has been designed to make the installation of PAPI with its 5 different

BG/Q components as easy and transparent as possible to the user community.

Configuration: PAPI can be configured with one, multiple or all BGPM components. However, if no

additional BGPM component has been added to the configure line (means, the --with-components

configure option is omitted) then by default, PAPI will be configured with the PUnit component. The

following shows how to configure PAPI with all 5 BGPM components. Note that the order of the components

does not matter. The configure option --with-OS=bgq takes care of all the BG/Q-specific settings that

are necessary behind the scene - like compiler flags, correctness of the BGPM header and library paths, bit

mode, cross-compiling etc. - to ensure a successful compilation of PAPI on BG/Q.

./configure --prefix=<PAPI INSTALL PATH> \

--with-OS=bgq \

--with-bgpm_installdir=/bgsys/drivers/ppcfloor \

CC=/bgsys/drivers/ppcfloor/gnu-linux/bin/powerpc64-bgq-linux-gcc \

F77=/bgsys/drivers/ppcfloor/gnu-linux/bin/powerpc64-bgq-linux-gfortran \

--with-components="bgpm/L2unit bgpm/CNKunit bgpm/IOunit bgpm/NWunit"

Compilation and Linking: An application that makes calls to PAPI functions can be compiled and linked

with PAPI either statically or dynamically on the BG/Q system. It is important to note that the use of

the static PAPI library on BG/Q requires explicit linking with the Realtime Extensions library (-lrt) as

well as the Standard C++ library (-lstdc++) (in addition to the PAPI library (-lpapi)). The reason

for the additional linking steps is, we are not able to include the Realtime Extensions and Standard C++

libraries - which are both required by BGPM - without generating legal issues. We are not allowed to extract

4



any contents from libraries we do not own. Below are the required steps in order to compile and link an

application with static PAPI on BG/Q:

CC = /bgsys/drivers/ppcfloor/gnu-linux/bin/powerpc64-bgq-linux-gcc

PAPIINCLUDE = <install_path>/papi4bgq/include

PAPILIB = <install_path>/papi4bgq/lib

INCLUDE = -I. -I$(PAPIINCLUDE)

LIBS := -L$(PAPILIB) -lpapi -lrt -lstdc++

A user will not have to add these additional libraries if the dynamic PAPI library is used on BG/Q. Below

are the required steps in order to compile and link an application with dynamic PAPI on BG/Q. Note the

additionally required compiler flag dynamic:

CC = /bgsys/drivers/ppcfloor/gnu-linux/bin/powerpc64-bgq-linux-gcc

CCFLAGS = -dynamic

PAPIINCLUDE = <install_path>/papi4bgq/include

PAPILIB = <install_path>/papi4bgq/lib

INCLUDE = -I. -I$(PAPIINCLUDE)

LIBS := -L$(PAPILIB) -lpapi

3.1 P Unit Component

The PAPI PUnit component is handled as component 0 in PAPI - which is the default CPU component.

This implies that no additional configure options are necessary in order for a user to be able to access the

local UPC module counters. Table 2 shows an example selection of native PUnit events provided by the

PAPI utility papi_native_avail. The five internal sub-modules of the local UPC module (described

in Section 2.2) are easily identifiable through the event names.

In addition to native events, a user can select predefined events for the PUnit component on BG/Q. The

implementation part is almost entirely finished and working. However, some of the currently available

predefined events for the BG/Q architecture will need to be redefined. This is work in progress and the

correctness of some of the event definitions are currently in discussion with IBM. Table 3 shows a list of

predefined events that a user can choose from on BG/Q. Out of 107 possible predefined events, there are

currently 41 events available of which 12 are derived events.

Overflow: Only the local UPC module, L2 and IO UPC hardware support performance monitor interrupts

when a programmed counter overflows [1]. For that reason, only the PUnit, L2Unit, and IOUnit

provide overflow support in BGPM. PAPI offers overflow support for the CPU component (which in case

of BG/Q is the PUnit component). Also the extension of overflow support to the PAPI L2Unit as well as

IOUnit is completed and tested.

In general, a PAPI user assigns a decimal threshold value to the PAPI_overflow() function. Within

PAPI this value is then subtracted from the maximum counter value (in addition to adding 1) and loaded

into the counter. The counter then counts up to 0 and generates an overflow signal if the assigned threshold

value is reached for the given event(s).

5



PUnit Event Description

PEVT_AXU_INSTR_COMMIT A valid AXU (non-load/store) instruction is in EX6, past the last flush point.

- AXU uCode sub-operations are also counted by PEVT_XU_ COMMIT instead.

PEVT_AXU_CR_COMMIT A valid AXU CR updater instruction is in EX6, past the last flush point.

PEVT_AXU_IDLE No valid AXU instruction is in the EX6 stage.

... ...

PEVT_IU_IL1_MISS A thread is waiting for a reload from the L2.

- Not when CI=1.

- Not when thread held off for a reload that another thread is waiting for.

- Still counts even if flush has occurred.

PEVT_IU_IL1_MISS_CYC Number of cycles a thread is waiting for a reload from the L2.

- Not when CI=1.

- Not when thread held off for a reload that another thread is waiting for.

- Still counts even if flush has occurred.

PEVT_IU_IL1_RELOADS_DROPPED Number of times a reload from the L2 is dropped, per thread

- Not when CI=1

- Does not count when not loading cache due to a back invalidate to that address

... ...

PEVT_XU_BR_COMMIT_CORE Number of Branches committed

PEVT_XU_BR_MISPRED_COMMIT_CORE Number of mispredicted Branches committed (does not include target address mispredicted)

PEVT_XU_PPC_COMMIT Number of instructions committed. uCode sequences count as one instruction.

... ...

PEVT_LSU_COMMIT_STS Number of completed store commands.

- Microcoded instructions will count more than once.

- Does not count syncs,tlb ops,dcbz,icswx, or data cache management instructions.

- Includes stcx, but does not wait for stcx complete response from the L2.

- Includes cache-inhibited stores

PEVT_LSU_COMMIT_ST_MISSES Number of completed store commands that missed the L1 Data Cache.

Note that store misses are pipelined and write through to the L2, so the store time typically

has less impact on performance than load misses.

- Microcoded instructions may be counted more than once.

- Does not count syncs,tlb ops, dcbz, icswx, or data cache management instructions.

- Includes stcx, but does not wait for stcx complete response from the L2.

- Does not includes cache-inhibited stores

PEVT_LSU_COMMIT_LD_MISSES Number of completed load commands that missed the L1 Data Cache.

- Microcoded instructions may be counted more than once.

- Does not count dcbt[st][ls][ep].

- Include larx.

- Does not includes cache-inhibited loads

... ...

PEVT_MMU_TLB_HIT_DIRECT_IERAT TLB hit direct entry (instruction, ind=0 entry hit for fetch)

PEVT_MMU_TLB_MISS_DIRECT_IERAT TLB miss direct entry (instruction, ind=0 entry missed for fetch)

PEVT_MMU_TLB_MISS_INDIR_IERAT TLB miss indirect entry (instruction, ind=1 entry missed for fetch, results in i-tlb exception)

... ...

Table 2: Small selection of PUnit events, available on the BG/Q architecture (it also shows different events

from PUnit’s 5 internal sub-units mentioned in section 2.2). Currently, there are 269 PUnit events available.

On the other hand, the overflow implementation within BGPM is handled slightly differently. Here the

threshold is the value that is actually programmed into the counter. However, we do not want PAPI to expose

this value (that is programmed into the counter) to user space for the reason that different platforms have

different widths of the counters, hence this value would differ from platform to platform. In order to keep

6



Name Code Avail Deriv Description (Note)

PAPI_L1_ICM 0x80000001 Yes No Level 1 instruction cache misses

PAPI_FXU_IDL 0x80000011 Yes No Cycles integer units are idle

PAPI_TLB_DM 0x80000014 Yes Yes Data translation lookaside buffer misses

PAPI_TLB_IM 0x80000015 Yes No Instruction translation lookaside buffer misses

PAPI_TLB_TL 0x80000016 Yes Yes Total translation lookaside buffer misses

PAPI_L1_LDM 0x80000017 Yes No Level 1 load misses

PAPI_L1_STM 0x80000018 Yes No Level 1 store misses

PAPI_BTAC_M 0x8000001b Yes No Branch target address cache misses

PAPI_PRF_DM 0x8000001c Yes No Data prefetch cache misses

PAPI_TLB_SD 0x8000001e Yes No Translation lookaside buffer shootdowns

PAPI_CSR_FAL 0x8000001f Yes No Failed store conditional instructions

PAPI_CSR_SU 0x80000020 Yes Yes Successful store conditional instructions

PAPI_CSR_TOT 0x80000021 Yes No Total store conditional instructions

PAPI_MEM_RCY 0x80000023 Yes No Cycles Stalled Waiting for memory Reads

PAPI_STL_CCY 0x80000027 Yes Yes Cycles with no instructions completed

PAPI_HW_INT 0x80000029 Yes No Hardware interrupts

PAPI_BR_UCN 0x8000002a Yes No Unconditional branch instructions

PAPI_BR_CN 0x8000002b Yes No Conditional branch instructions

PAPI_BR_TKN 0x8000002c Yes Yes Conditional branch instructions taken

PAPI_BR_NTK 0x8000002d Yes Yes Conditional branch instructions not taken

PAPI_BR_MSP 0x8000002e Yes No Conditional branch instructions mispredicted

PAPI_BR_PRC 0x8000002f Yes Yes Conditional branch instructions correctly predicted

PAPI_FMA_INS 0x80000030 Yes Yes FMA instructions completed

PAPI_TOT_INS 0x80000032 Yes No Instructions completed

PAPI_INT_INS 0x80000033 Yes No Integer instructions

PAPI_FP_INS 0x80000034 Yes No Floating point instructions

PAPI_LD_INS 0x80000035 Yes Yes Load instructions

PAPI_SR_INS 0x80000036 Yes No Store instructions

PAPI_BR_INS 0x80000037 Yes No Branch instructions

PAPI_RES_STL 0x80000039 Yes No Cycles stalled on any resource

PAPI_FP_STAL 0x8000003a Yes No Cycles the FP unit(s) are stalled

PAPI_TOT_CYC 0x8000003b Yes No Total cycles

PAPI_LST_INS 0x8000003c Yes Yes Load/store instructions completed

PAPI_SYC_INS 0x8000003d Yes No Synchronization instructions completed

PAPI_L1_DCR 0x80000043 Yes No Level 1 data cache reads

PAPI_L1_ICR 0x8000004f Yes No Level 1 instruction cache reads

PAPI_FML_INS 0x80000061 Yes Yes Floating point multiply instructions

PAPI_FAD_INS 0x80000062 Yes Yes Floating point add instructions

PAPI_FDV_INS 0x80000063 Yes No Floating point divide instructions

PAPI_FSQ_INS 0x80000064 Yes No Floating point square root instructions

PAPI_FP_OPS 0x80000066 Yes No Floating point operations

Table 3: Selection of predefined events, available on the BG/Q architecture. Out of 107 possible events,

currently 41 are available, of which 12 are derived. Note, events that are not defined yet for BG/Q are

omitted from this table.

the input parameters for the PAPI_overflow() function unchanged, and still support overflow through

BGPM, we convert the threshold value that is assigned by the PAPI user to the value that is programmed

into the counter. This new value is then used as input parameter by BGPM_overflow()within PAPI. This

workaround has been tested and works reliably with the standard PAPI interface.

Furthermore, when an event is set for overflow the Bpm_SetOverflowHandler() function is used

to register a function to be called within a private signal hander. There is a handler for each event set.

On overflow, the user’s handler will be called with the event set handler, instruction counter, and context

structure. This implementation has been validated with multiple PAPI tests that emphasize on counter

7



overflow.

In addition, the HPCToolkit [6] from Rice University uses PAPI overflow to get interrupts from the hardware

performance counters. To expand the test suite, we ran tests that target just those features in PAPI that

the HPCToolkit depends on. We were able to get sustained interrupts for non-threaded as well as threaded

programs over a wide range of interrupt rates. The interrupts were stable even at 50,000/seconds. In addition,

this has been tested and validated for PAPI predefined events for cycles, idle cycles, integer instructions,

branch instructions, flops and L1 cache misses. Tests that use L2 and L3 cache events were omitted since

those events are currently not available for overflow on BG/Q. Also testing overflow with multiple events

succeeded. Table 4 shows the result of an HPCToolkit test that generates a list of PAPI predefined events that

are available for overflow on BG/Q. Note that “Failed” only means that the test program did not trigger that

event, not that PAPI_overflow() is broken for that event. Most of the “Failed” events are instruction

cache misses. To trigger an instruction cache miss, one would need a large program with lots of lines of

code, which is not given by the small, targeted HPCToolkit tests. Also, reason for the square root event

failure is, the test program does not compute square roots.

Name Result Description (Note)

PAPI_L1_ICM Failed Level 1 instruction cache misses

PAPI_TLB_IM Failed Instruction translation lookaside buffer misses

PAPI_BTAC_M Failed Branch target address cache misses

PAPI_PRF_DM Failed Data prefetch cache misses

PAPI_TLB_SD Failed Translation lookaside buffer shootdowns

PAPI_CSR_FAL Failed Failed store conditional instructions

PAPI_CSR_TOT Failed Total store conditional instructions

PAPI_HW_INT Failed Hardware interrupts

PAPI_FSQ_INS Failed Floating point square root instructions

PAPI_FXU_IDL Passed Cycles integer units are idle

PAPI_L1_LDM Passed Level 1 load misses

PAPI_L1_STM Passed Level 1 store misses

PAPI_MEM_RCY Passed Cycles Stalled Waiting for memory Reads

PAPI_BR_UCN Passed Unconditional branch instructions

PAPI_BR_CN Passed Conditional branch instructions

PAPI_BR_MSP Passed Conditional branch instructions mispredicted

PAPI_TOT_INS Passed Instructions completed

PAPI_INT_INS Passed Integer instructions

PAPI_FP_INS Passed Floating point instructions

PAPI_SR_INS Passed Store instructions

PAPI_BR_INS Passed Branch instructions

PAPI_RES_STL Passed Cycles stalled on any resource

PAPI_FP_STAL Passed Cycles the FP unit(s) are stalled

PAPI_TOT_CYC Passed Total cycles

PAPI_SYC_INS Passed Synchronization instructions completed

PAPI_L1_DCR Passed Level 1 data cache reads

PAPI_L1_ICR Passed Level 1 instruction cache reads

PAPI_FDV_INS Passed Floating point divide instructions

PAPI_FP_OPS Passed Floating point operations

Table 4: A summary of the predefined events that are available for overflow on BG/Q. Total PAPI Presets:

107, Available: 41, Overflow: 29, Passed: 20

It is important to note that BGPM comes with another restriction that freezes an event set after it has been

applied. That means that no more changes - including setting the event set for overflow - can be made. Since

8



PAPI does not carry this kind of restriction and in order to maintain PAPI’s flexibility, we implemented a

workaround to eliminate this constraint. PAPI_overflow() now checks if an event set has been applied

before enabling it for overflow. If that’s the case, the BGPM event set is deleted, a new one is created and

rebuilt as it was prior to deletion, it then is set for overflow and finally applied. This implementation has

been validated and stress-tested with various overflow tests.

Fast versus Slow Overflow: Punit counters freeze on overflow until the overflow handling is complete.

However L2 and I/O units do not freeze on overflow. The L2 and I/O counts will be stopped when the

interrupt is handled. The signal handler restarts L2 and I/O counting when done [1].

PUnit counters can detect a counter overflow and raise an interrupt within a few cycles (O(4)) of the

overflowing event [1]. However, according to the BGPM documentation it takes up to O(800) cycles before

the readable counter value is updated. This latency does not effect the overflow detection, and so we refer

to a PUnit overflow as a ”Fast Overflow”.

The IOUnit and L2Unit take up to 800 processor cycles to accumulate an event and detect an overflow

[1]. Hence, we refer to this as a ”Slow Overflow”, and the program counters may alter up to 800 cycles or

more after the event.

Multiplexing: PAPI supports multiplexing for the BG/Q platform. The BGPM Punit does not directly

implement multiplexing of event sets [1]. However, it does indirectly support multiplexing by supporting

a multiplexed event set type [1]. A multiplexed event set type will maintain sets of events which can be

counted simultaneously, while pushing conflicting events to other internal sets [1]. BGPM comes with some

restrictions that an event set has to be empty before the activation of multiplexing is possible. In order to

maintain PAPI’s flexibility, we implemented a workaround to eliminate this constraint. If an event set is not

empty before converting the event set into a multiplexed set, PAPI now deletes the BGPM event set, creates

a new empty BGPM event set, enables multiplexing by calling Bgpm_SetMultiplex(), and rebuilds

the BGPM event set as it was prior to deletion. This implementation has been validated with multiple PAPI

tests that emphasize on multiplexing.

Profiling: The PAPI tests that stress profiling do not work yet on the grounds that the executable regions

require reading the “/proc/PID/maps” file. However, the “/proc” file system does not de facto exist on the

Blue Gene systems - at least not in a useful fashion since what is seen is “/proc” on the I/O node that

is associated with the compute node, but this contains information only for processes running on the I/O

node. There is a “/jobs” that contains a subset of the “/proc” information for processes on the compute

node, but it does not contain the “maps” file. Clearly there is more work required in finding out if there

is another way to get access to the required information other than using the BG/Q personality function

Kernel_GetPersonality(). Since we are looking for the memory map information for a process we

might be able to try the Linux call dl_iterate_phdr() which walks through a list of shared objects

[7]. However, this is currently work in progress.

9



3.2 L2 Unit Component

The shared L2 cache on the BG/Q system is split into 16 separate slices. Each of the 16 slices has a L2

UPC module that provides 6 counters. Those 6 counters are node-wide, and cannot be isolated to a single

core or thread [1]. As mentioned earlier, every BG/Q processor has two DDR3 memory controllers, each

interfacing with eight slices of the L2 cache to handle their cache misses (one controllers for each half of

the 16 cores on the chip) [1, 3]. The counting hardware can either keep the counts from each slice separate,

or combine the counts from each slice into single values (which is the default). The combined counts are

significantly important if a user wants to sample on overflows. Actually, the separate slice counts are not

particularly interesting except for perhaps investigating cache imbalances because consecutive memory lines

are mapped to a separate slices. The node-wide ”combined” or ”sliced” operation is selected by creating

an event set from the ”combined” (default), or ”sliced” group of events. Hence a user cannot assign events

from both groups. See Table 5 for a small selection of L2Unit events. Currently, there are 32 L2Unit

events available on the BG/Q architecture.

Overflow: If L2Unit event overflow is desired, the overflow signal is ”slow” (see the end of Section 3.1

for details that describe the difference between fast and slow overflow). As mentioned before, PAPI does

support overflow for PUnit events as well as L2Unit and IOUnit events.

L2Unit Event Description

PEVT_L2_HITS hits in L2, both load and store. Network Polling store operations from

core 17 on BG/Q pollute in this count during normal use

PEVT_L2_MISSES cacheline miss in L2 (both loads and stores

PEVT_L2_PREFETCH fetching cacheline ahead of L1P prefetch

... ...

Table 5: Small selection of L2Unit events, available on the BG/Q architecture. Currently, there are 32

L2Unit events available.

3.3 I/O Unit Component

The I/O module provides a total of 43 counters for the Message, PCIe, and DevBus module. These counters

are node-wide and cannot be isolated to any particular core or thread [1]. See Table 6 for a small selection

of IOUnit events. Currently, there are 44 IOUnit events available on the BG/Q architecture. The three

I/O sub-modules are transparently identifiable from the IOUnit event names.

Overflow: If IOUnit event overflow is desired, the overflow signal is ”slow” (see the end of Section 3.1

for details that describe the difference between fast and slow overflow). As mentioned before, PAPI does

support overflow for PUnit events as well as L2Unit and IOUnit events.

10



IOUnit Event Description

PEVT_MU_PKT_INJ A new packet has been injected (Packet has been stored to ND FIFO

PEVT_MU_MSG_INJ A new message has been injected (All packets of the message have been stored to ND FIFO

PEVT_MU_FIFO_PKT_RCV A new FIFO packet has been received (The packet has been stored to L2.

There is no pending switch request)

... ...

PEVT_PCIE_INB_RD_BYTES Inbound Read Bytes Request

PEVT_PCIE_INB_RDS Inbound Read Request

PEVT_PCIE_INB_RD_CMPLT Inbound Read Completion

... ...

PEVT_DB_PCIE_INB_WRT_BYTES PCIe inbound write bytes written

PEVT_DB_PCIE_OUTB_RD_BYTES PCIe outbound read bytes requested

PEVT_DB_PCIE_OUTB_RDS PCIe outbound read request

... ...

Table 6: Small selection of I/OUnit events, available on the BG/Q architecture. Currently, there are 44

I/OUnit events available.

3.4 NW Unit Component

The 5D Torus network provides a local UPC network module with 66 counters - each of the 11 links has

6 64-bit-counters. As of right now, a PAPI user cannot select which network link to attach to. Currently,

all network links are attached and this is hard-coded in the PAPI NWUnit component. We are discussing

options for supporting the other enumerations for network links as well. One possible option to try may be

using event attribute strings for that purpose.

See Table 7 for a small selection of NWUnit events. Currently, there are 31 NWUnit events available on

the BG/Q architecture.

NWUnit Event Description

PEVT_NW_USER_PP_SENT Number of 32 byte user point to point packet chunks sent.

Includes packets originating or passing through the current node

PEVT_NW_USER_DYN_PP_SENT Number of 32 byte user dynamic point to point packet chunks sent.

Includes packets originating or passing through the current node

PEVT_NW_USER_ESC_PP_SENT Number of 32 byte user escape point to point packet chunks sent.

Includes packets originating or passing through the current node

... ...

Table 7: Small selection of NWUnit events, available on the BG/Q architecture. Currently, there are 31

NWUnit events available.

3.5 CNK Unit Component

CNK is the lightweight Compute Node Kernel and it is the only kernel that runs on all the 16 compute

cores. In general, on Linux kernels the “/proc” file system is the usual access method for kernel counts.

Since BG/Q does not have a “/proc” filesystem (as mentioned earlier), BGPM offers a “virtual” CNKUnit

11



that has software counters collected by the kernel. The kernel counter values are read via a system call that

requests the data from the lightweight compute node kernel that’s running on all the compute cores.

Also, there is a read operation to get the raw value since the system has been booted. See Table 8 for a small

selection of CNKUnit events. Currently, there are 29 CNKUnit events available on the BG/Q architecture.

CNKUnit Event Description

PEVT_CNKHWT_SYSCALL External Input Interrupt

PEVT_CNKHWT_CRITICAL Critical Input Interrupt

PEVT_CNKHWT_FIT Fixed Interval Timer Interrupt

... ...

Table 8: Small selection of CNKUnit events, available on the BG/Q architecture. Currently, there are 29

CNKUnit events available.

4 Summary and Future Work

Performance analysis tools for parallel applications running on large scale computing systems typically rely

on hardware performance counters to gather performance relevant data from the system. In order to allow

the HPC community to collect hardware performance counter data on IBM’s latest Blue Gene system BG/Q,

PAPI has been extended with 5 additional components.

The PAPI customization for BG/Q accesses the BGPM interface under the cover, allowing users and third-

party programs to monitor and sample hardware performance counters in a traditional way using the default

PAPI interface. The added PAPI components allow hardware performance counter monitoring not only for

the processing units but also for the 5D Torus network, the I/O system, and the Compute Node Kernel.

Future efforts will focus on a further improved NWUnit component that is supposed to allow a user to select

which of the 11 network links to attach an event set to.

References

[1] BGPM Documentation

[2] http://www.hpcwire.com/hpcwire/2011-08-22/ibm_specs_out_blue_gene_q_chip.html

[3] http://www.theregister.co.uk/2011/08/22/ibm_bluegene_q_chip

[4] http://www.multicoreinfo.com/2011/02/bluegeneq

[5] T. Budnik, et al., “Blue Gene/Q Resource Management Architecture”, IEEE MTAGS 2010, New Or-

leans, USA, 2010

[6] http://hpctoolkit.org

[7] http://linux.die.net/man/3/dl_iterate_phdr

12


