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1.1 Introduction

The HPC Challenge (HPCC)1 benchmark suite was initially developed for
the DARPA’s HPCS program [Kep04] to provide a set of standardized hard-
ware probes based on commonly occurring computational software kernels.
The HPCS program has initiated a fundamental reassessment of how we de-
fine and measure performance, programmability, portability, robustness and,
ultimately, productivity in the high-end domain. Consequently, the suite was
aimed to both provide conceptual expression of the underlying computation
as well as be applicable to a broad spectrum of computational science fields.
Clearly, a number of compromises must have lead to the current form of the
suite given such a broad scope of design requirements. HPCC was designed
to approximately bound computations of high and low spatial and temporal
locality (see Figure 1.1 which gives the conceptual design space for the HPCC
component tests). In addition, because the HPCC tests consist of simple math-
ematical operations, this provides a unique opportunity to look at language

1This work was supported in part by the DARPA, NSF, and DOE through the DARPA
HPCS program under grant FA8750-04-1-0219 and SCI-0527260.
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Memory Performance Required

Hierarchy Benchmarks Targets Improvement�� ��Registers
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Lines m STREAM 2 PB/s 4000%�� ��Local Memory
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m b eff�� ��Remote Memory

Buffers m�� ��Disk

FIGURE 1.2: HPCS program benchmarks and performance targets.

and parallel programming model issues. As such, the benchmark is to serve
both the system user and designer communities [Kah97].

Finally, Figure 1.2 shows a generic memory subsystem and how each level
of the hierarchy is tested by the HPCC software and what are the design
goals of the future HPCS system – these are the projected target performance
numbers that are to come out of the wining HPCS vendor designs.

1.2 The TOP500 Influence

Most commonly known ranking of supercomputer installations around the
world is the TOP500 list [MSDS06]. It uses the equally famous LINPACK
Benchmark [DLP03] as a single figure of merit to rank 500 of the world’s
most powerful supercomputers. The often raised issue of the relation between
TOP500 and HPCC can simply be addressed by recognizing all the positive
aspects of the former. In particular, the longevity of TOP500 gives an un-
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1 BlueGene/L 280.6 259.2 4665.9 160 2311 35.47 5.92 0.16

2 BlueGene W 91.3 83.9 171.5 50 1235 21.61 4.70 0.16

3 ASC Purple 75.8 57.9 553.0 44 842 1.03 5.11 3.22

4 Columbia 51.9 46.8 91.3 21 230 0.25 4.23 1.39

9 Red Storm 36.2 33.0 1813.1 44 1118 1.02 7.97 1.15

TABLE 1.1: All of the top-10 entries of the 27th TOP500 list that have
results in the HPCC database.

precedented view of the high-end arena across the turbulent times of Moore’s
law [Moo65] rule and the process of emerging of today’s prevalent computing
paradigms. The predictive power of TOP500 will have a lasting influence in
the future as it did in the past. While building on the legacy information,
HPCC extends it the context of the HPCS goals and can already serve as a
valuable tool for performance analysis. Table 1.1 shows an example of how
the data from the HPCC database can augment the TOP500 results.

1.3 Short History of the Benchmark

The first reference implementation of the code was released to the pub-
lic in 2003. Year 2004 marked two important milestones for the benchmark:
1 Tflop/s was exceeded on HPCC’s HPL test and the first submission with
over 1000 processors was recorded in the public submission database. The first
optimized submission came in April 2004 from Cray using then recent X1 in-
stallation at the Oak Ridge National Laboratory. Ever since then Cray has
championed the list of optimized submissions. By the time the first HPCC
birds-of-feather at the Supercomputing conference in 2004 in Pittsburgh, the
public database of results already featured major supercomputer makers –
a sign that vendors noticed the benchmark. At the same time, a bit behind
the scenes, the code was also tried by government and private institutions for
procurement and marketing purposes.

At the time, Jack Dongarra described the goals of the HPC Challenge
Benchmarks: “The HPC Challenge Benchmarks will examine the performance
of HPC architectures using kernels with more challenging memory access pat-
terns than just the High Performance LINPACK (HPL) benchmark used in the
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TOP500 list. The HPC Challenge Benchmarks are being designed to augment
the TOP500 list, provide benchmarks that bound the performance of many
real applications as a function of memory access characteristics - e.g., spa-
tial and temporal locality, and provide a framework for including additional
benchmarks.” HPCC is already up to par with the TOP500 in terms of HPL
performance and it also offers a far richer view of today’s High End Comput-
ing (HEC) landscape as well as giving an unprecedented array of performance
metrics for various analyses and comparison studies.

The FFT test was introduced in version 0.6 in May 2004 and the first
submission with the new test was recorded in July the same year. As of early
October 2005, the fastest system in the database obtained nearly 1 Tflop/s in
the Global FFT test (three orders of magnitude increase over time). At the
same time, the fastest (in terms of HPL) system was listed at position 11 on
June’s edition of TOP500 list, but the result recorded in the HPCC database
was four percentage points higher in terms of efficiency. Today all of these
achievements have been superseded by submissions from TOP500’s highest
ranking machines including the number one entry.

Another highlight of 2005 was announcement of a contest: the HPCC
Awards. The two complementary categories of the competition emphasized
performance and productivity – the very goals of the sponsoring HPCS pro-
gram. The performance-emphasizing Class 1 award draw attention of the
biggest players in the supercomputing industry which resulted in populat-
ing the HPCC database with most of the top-10 entries of TOP500 (some of
which even exceeding performance reported on TOP500 – a tribute to HPCC’s
continuous results’ update policy). The contestants competed to achieve high-
est raw performance in one of the four tests: HPL, STREAM, RandomAccess,
and FFT. The Class 2 award by solely focusing on productivity introduced
subjectivity factor to the judging but also to the submitter criteria of what is
appropriate for the contest. As a result a wide range of solutions were submit-
ted spanning various programming languages (interpreted and compiled) and
paradigms (with explicit and implicit parallelism). It featured openly avail-
able as well as proprietary technologies some of which were arguably confined
to niche markets and some that are widely used. The financial incentives for
entering turned out to be all but needed as the HPCC seemed to have enjoyed
enough recognition among the high-end community. Nevertheless, HPCwire
kindly provided both: press coverage as well as cash rewards for four win-
ning contestants of Class 1 and the winner of Class 2. At the HPCC’s second
birds-of-feather session during the SC|05 conference in Seattle, the former class
was dominated by IBM’s BlueGene/L from Lawrence Livermore National Lab
while the latter was split among MTA pragma-decorated C and UPC codes
from Cray and IBM, respectively.

Over the years, HPCC has received exposure in numerous news outlets
including Business Wire, Cnet, eWeek, HPCwire, and Yahoo!. The website
often receives over 100,000 hits per month and the source code download
rates exceed 1,000 downloads per year. A different kind of publicity comes
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from the acquisition procedures as supercomputer centers around the world
choose HPCC for their required performance testing from bidding vendors.

June 2010 marked the release of version 1.4.1 of the benchmark code. And
in 2011, the HPCC Awards competition continued with two classes of sub-
missions; Class 1: Best Performance and Class 2: Most Productivity. While
the former still invites submissions from large HPC installations around the
globe and awards four winners in four categories (HPL, STREAM, FFT, Ran-
domAccess). The latter evolved over time to invite source code submissions of
tests not included in HPCC and implemented in various languages. It stressed
the productivity aspect of programming languages and HEC architectures.
Usually more than one winner is awarded. The competition results are cus-
tomarily announced during a BOF session at SC conference series. Additional
information about the awards competition can be found on the HPCC Awards
website: http://www.hpcchallenge.org/.

Development of the HPC Challenge Benchmarks is being funded by the
Defense Advanced Research Projects Agency (DARPA) High Productivity
Computing Systems (HPCS) Program. Dr. Charles Holland is the current
HPCS program manager. According to him: “The HPCS program is interested
in both improved performance and ease of programming. Combining these
two will give us the productivity that the national security community needs.
For performance, the HPC Challenge benchmarks augment LINPACK with
benchmarks that use more challenging memory access patterns, providing a
more accurate evaluation of HPC systems.”

1.4 The Benchmark Tests’ Details

Extensive discussion and various implementations of the HPCC tests were
given elsewhere [DL05, LD07, TK06, PBV+06, GS06]. However, for the sake
of completeness, this section lists the most important facts pertaining to the
HPCC tests’ definitions.

All calculations use double precision floating-point numbers as described by
the IEEE 754 standard [75485] and no mixed precision calculations [LLL+06]
are allowed. All the tests are designed so that they will run on an arbitrary
number of processors (usually denoted as p). Figure 1.3 shows a more detailed
definition of each of the seven tests included in HPCC. In addition, it is possible
to run the tests in one of three testing scenarios to stress various hardware
components of the system. The scenarios are shown in Figure 1.4.

1.4.1 General Guidelines

1. The use of high level languages is encouraged.
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HPL

A x = b Compute x from the system of linear equa-
tions Ax = b.

DGEMM

C ← α A B + β C Compute update to matrix C with a product
of matrices A and B.

STREAM

a ← β b + α c Perform simple operations on vectors a, b,
and c.

PTRANS

A ← AT + B Compute update to matrix A with a sum of
its transpose and another matrix B.

RandomAccess

T

↘
...

↗

⊕ ↗
...

↘

T Perform integer update of random vector T
locations using pseudo-random sequence.

FFT

x

→
〉〈
→

z Compute vector z to be the Fast Fourier
Transform (FFT) of vector x.

b eff

• →
← • →

← •
↑↓ ↑↓
• →

← • →
← •

Perform ping-pong and various communica-
tion ring exchanges.

FIGURE 1.3: Detail description of the HPCC component tests (A, B, C –
matrices, a, b, c, x, z – vectors, α, β – scalars, T – array of 64-bit integers).

2. Calls to tuned library routines could be used in the submission but
explicit and “elegant” coding of all aspects of the benchmark is preferred.

3. The entire benchmark could be expressed by using a few built-in oper-
ators of an hypothetical programming language. However, such submis-
sions are strongly discouraged as they only show operator overloading
and funciton call syntax and say nothing about the language. In partic-
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Global

P1
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Pi
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PN
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Interconnect

FIGURE 1.4: Testing scenarios of the HPCC components.

ular, how it deals with issues critical to HPC like expressing parallelism
and hiding latency.

1.4.2 HPL

HPL (High Performance Linpack) is an implementation of the Linpack
TPP (Toward Peak Performance) variant of the original Linpack benchmark
which measures the floating point rate of execution for solving a linear system
of equations.

1.4.2.1 Description

HPL solves a linear system of equations of order n:

Ax = b; A ∈ Rn×n; x, b ∈ Rn (1.1)

by first computing LU factorization with row partial pivoting of the n by n+1
coefficient matrix:

P [A, b] = [[L,U ], y]. (1.2)

Since the row pivoting (represented by the permutation matrix P ) and the
lower triangular factor L are applied to b as the factorization progresses, the



HPC Challenge: Design, History, and Implementation Highlights 9

solution x is obtained in one step by solving the upper triangular system:

Ux = y. (1.3)

The lower triangular matrix L is left unpivoted and the array of pivots is not
returned.

1.4.2.2 Data Size

A is n by n double precision (in IEEE 754 sense) matrix, b is n-element
vector. The size of the A matrix (8n2 bytes) should be at least half of the
system memory.

1.4.2.3 Initialization

Both A and b should contain values produced by a reasonable pseudo-
random generator with an expected mean of zero. “Reasonable” in this context
means compact, fast, and producing independent and identically distributed
elements.

1.4.2.4 Timed Region

The timed portion of the code performs steps given by equations (1.2)
and (1.3) and does not include time to generate A and b.

1.4.2.5 Duration

Until solution to (1.1) is obtained.

1.4.2.6 Verification

Correctness of the solution is ascertained by calculating the following
scaled residual:

r =
‖Ax− b‖∞

ε(‖A‖∞‖x‖∞ + ‖b‖∞)n
(1.4)

where ε is machine precision for 64-bit floating-point values and n is the size
of the problem. The solution is valid if the following holds:

r < 16 (1.5)

1.4.2.7 Performance

The operation count for the factorization phase is 2
3n

3− 1
2n

2 and 2n2 for the
solve phase thus if the time to solution is tS the formula for performance (in
Gflop/s) is:

pHPL =
2
3n

3 + 3
2n

2

tS
10−9. (1.6)
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1.4.2.8 Alternative Implementations

If an alternative algorithm is chosen it should be able to deal with zeros
on the diagonal (some sort of pivoting needs to be used) and the precision of
the calculations needs to be preserved.

1.4.3 RandomAccess

1.4.3.1 Description

Let T [·] be a table of size 2n.
Let {ai} be a stream of 64-bit integers of length NU = 2n+2 generated by the
primitive polynomial over GF(2)2:
x2 + x+ 1.
For each ai, set

T [ai〈63, 64− n〉]← T [ai〈63, 64− n〉]⊕ ai (1.7)

where:

• ⊕ denotes addition in GF(2) i.e. ”exclusive or” (XOR)

• ai〈l, k〉 denotes the sequence of bits within ai, e.g. 〈63, 64 − n〉 are the
highest n bits.

1.4.3.2 Data Size

The parameter m(= 2n) is defined such that:
m is the largest power of 2 that is less than or equal to half of the system
memory. Since the elements of the main table are 64-bit quantities, the table
occupies 8m bytes of memory.

1.4.3.3 Initialization

Table elements are set such that:

∀0≤i<2nT [i] ≡ i (1.8)

1.4.3.4 Timed Region

The timed region consists of computation (1.7). The initialization (1.8) is
not timed.

2Galois Field of order 2 – The elements of GF(2) can be represented using the integers
0 and 1, i.e., binary operands.
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1.4.3.5 Duration

Ideally, 2n+2 updates should be performed to the main table (NU = 2n+2).
However, the computation can be prematurely stopped after 25% of the time
of the HPL run (but not shorter than 1 minute). Thus:

NU ≤ 2n+2 (1.9)

1.4.3.6 Verification

The update defined by (1.7) should be repeated by an alternative method
that is safe (does not generate errors resulting from, for example, race condi-
tions in memory updates). If the benchmarked update was correct, the table
should return to its initial state defined by (1.8). However, 1% of entries may
have incorrect values, i.e. given a function:

f(i) =

{
0 if T [i] = i
1 otherwise

(1.10)

the following should hold:

NU∑
i=0

f(i) ≤ 10−2NU (1.11)

1.4.3.7 Performance

Let tRandomAcccess be the time it took to finish the timed portion of the
test (including NU updates) then peroformance (in GUPS: Giga Updates Per
Second) is defined as:

pRandomAcccess =
NU

tRandomAcccess
10−9. (1.12)

1.4.3.8 Alternative Implementations

Constraints on the look-ahead and storage before processing on distributed
memory multi-processor systems is limited to 1024 per process (or processing
element). The pseudo-random number generator that generates sequence {ai}
has to be used.

1.4.4 Global EP-STREAM-Triad

1.4.4.1 Description

EP-STREAM-Triad is a simple benchmark program that measures sustain-
able memory bandwidth (in Gbyte/s) and the corresponding computation rate
for a simple vector kernel operation that scales and adds two vectors:

a ← b+ α c (1.13)
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where:
a, b, c ∈ Rm; α ∈ R.

The computation is peformed simultaneously on each computing element
on its local data set.

1.4.4.2 Data Size

a, b, and c are m-element double precision vectors. The combined size of
the vectors (24m bytes) should be at least quarter of the system memory.

1.4.4.3 Initialization

Vectors b and c should contain values produced by a reasonable pseudo-
random number generator.

1.4.4.4 Timed Region

The timed portion of the code should perform operation given by (1.13)
at least 10 times.

1.4.4.5 Duration

The kernel operation should be repeated at least 10 times.

1.4.4.6 Verification

The norm of the difference between reference and computed vectors is
used to verify the result: ‖a − â‖. The reference vector â is obtained by an
alternative implementation.

1.4.4.7 Performance

The benchmark measures Gbyte/s and the number of items transferred
is 3m. The minimum time tmin is taken of all the repetitions of the kernel
operation. Performance is thus defined as:

pEP-STREAM-Triad = 24
m

tmin
10−9 (1.14)

1.4.4.8 Alternative Implementations

1.4.5 Global FFT

1.4.5.1 Description

FFT measures the floating point rate of execution of double precision com-
plex one-dimensional Discrete Fourier Transform (DFT) of size m:

Zk ←
m∑
j

zje
−2πi jkm ; 1 ≤ k ≤ m (1.15)
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where:
z, Z ∈ Cm.

1.4.5.2 Data Size

Z and z are m-element double precision complex vectors. The combined
size of the vectors (32m bytes) should be at least quarter of the system mem-
ory. The size m of the vectors can be implementation-specific, e.g. be an
integral power of 2.

1.4.5.3 Initialization

Vector z should contain values produced by a reasonable pseudo-random
number generator. The real and imaginary parts of z should be generated
independently. The layout of vectors z and Z should not be scrambled either
before or after the computation.

1.4.5.4 Timed Region

The computation implied by (1.15) is timed together with the portion of
code that unscrambles (if necessary) the resulting vector data. Timing for
computation and unscrambling can be given separately for informational pur-
poses but the combined time is used for calculating performance.

1.4.5.5 Duration

Until the transform defined by (1.15) is obtained.

1.4.5.6 Verification

Verification is done by acertainig the following bound on the residual:

‖z − ẑ‖∞
ε lnm

< 16 (1.16)

where ẑ is the result of applying a reference implementation of the inverse
transform to the outcome of the benchmarked code (in infinite-precision arith-
metic the residual should be zero):

ẑk ←
m∑
j

Zje
2πi jkm ; 1 ≤ k ≤ m (1.17)

1.4.5.7 Performance

The operation count is taken to be 5m log2m for the calculation of the
computational rate (in Gflop/s) in time t:

pFFT = 5
m log2m

t
10−9 (1.18)
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FIGURE 1.5: Sample kiviat diagram of results for three different intercon-
nects that connect the same processors.

1.4.5.8 Alternative Implementations

The reference implementation splits the algorithm into computational and
communication portions which do not overlap. Valid submsissions may choose
other methods that take advantage of language and architectural features.

The number of processors may be implementation-specific, e.g. be an in-
tegral power of 2.

1.5 Benchmark Submission Procedures and Results

The reference implementation of the benchmark may be obtained free of
charge at the benchmark’s web site3. The reference implementation should be
used for the base run: it is written in portable subset of ANSI C [KR78] using
hybrid programming model that mixes OpenMP [Ope, CDK+01] threading

3http://icl.cs.utk.edu/hpcc/
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with MPI [For94, For95, For97] messaging. The installation of the software re-
quires creating a script file for Unix’s make(1) utility. The distribution archive
comes with script files for many common computer architectures. Usually, few
changes to one of these files will produce the script file for a given platform.
The HPCC rules allow only standard system compilers and libraries to be used
through their supported and documented interface and the build procedure
should be described at submission time. This ensures repeatability of the re-
sults and serves as educational tool for end users that wish to use the similar
build process for their applications.

After, a successful compilation the benchmark is ready to run. However,
it is recommended that changes be made to the benchmark’s input file that
describes the sizes of data to use during the run. The sizes should reflect
the available memory on the system and number of processors available for
computations.

There must be one baseline run submitted for each computer system en-
tered in the archive. There may also exist an optimized run for each computer
system. The baseline run should use the reference implementation of HPCC
and in a sense it represents the scenario when an application requires use of
legacy code – a code that can not be changed. The optimized run allows to
perform more aggressive optimizations and use system-specific programming
techniques (languages, messaging libraries, etc.) but at the same time still
gives the verification process enjoyed by the base run.

All of the submitted results are publicly available after they have been
confirmed by email. In addition to the various displays of results and raw data
export the HPCC website also offers a kiviat chart display to visually compare
systems using multiple performance numbers at once. A sample chart that
uses actual HPCC results’ data is shown in Figure 1.5.

Figure 1.6 show performance results of currently operating clusters and
supercomputer installations. Most of the results come from the HPCC public
database.

1.6 Performance Trends

HPCC Awards ever since their introduction in 2005 sparked interest in
the HPCC Suite and contributed many new submissions, most importantly,
from the largest supercomputer installations in the world. Figures 1.7, 1.8,
1.9, and 1.10 show performance trends for the first, second, and third places
in the competition over the 7-year period. In 2011, the K computer from
Japan has become an undisputed winner for all four tests tracked by the
Performance Category of HPCC Awards. This had not been the case in the
prior years. In 2009 and 2010, Jaguar supercomputer from Oak Ridge National
Laboratory (ORNL) did not dominate all four tests.
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FIGURE 1.6: Sample interpretation of the HPCC results.

One of the important observations in Figure 1.7 is the fact that the HPL
performance from the HPCC Suite is usually lower than the number recorded
by TOP500. This is no accident as the code used for HPCC submission usually
does not match exactly what was used for TOP500. The former has to satisfy
the HPCC submission rules including data layout software interfaces. On the
contrary, the TOP500 code is only to fulfill “paper-and-pencil” description of
the High Performance LINPACK. But importantly, optimization of HPCC has
to focus on all components of the suite which might not necessarily benefit the
HPL component. Finally, the competive pressure from all the TOP500 submis-
sions is much greater incentive to maximize the HPL score. This may be most
visible for the K Computer and its 2011 HPCC result of 2118 Tflop/s. This
is nearly 80% lower result than the 10510 Tflop/s reported on the TOP500
list. The easiest explanation is the lack of competition – the second fastest
system is ORNL’s Jaguar at 1534 Tflop/s and so the result reported by the
K Computer is sufficent to put it as the winner for the HPL test. Clearly, if K
Computer reported only 1600 Tflop/s it still would have been a winner. The
reason for going all the way to over 2000 Tflop/s was the RandomAccess test.
The second place contender for RandomAccess is a Blue Gene/P system at
Lawrence Livermore National Laboratory at 117 GUPS. For the K Computer
the reported value was 121 GUPS, only about 3% better result but a sufficient
one to win. From our analysis we conclude that large enough partition of the
K Computer was used to give it a winning score in all four tests tracked by
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HPL n2 n3 n2 n2 p−1

DGEMM n2 n3 n2 1 p−1

STREAM m m 1 m p−1

PTRANS n2 n2 n2 n2 p−1

RandomAccess m m m m p−1

FFT m m log2m m m log2m p−1

b eff 1 1 p2 1 1

TABLE 1.2: Time complexity formulas for various phases of the HPCC
tests (m and n correspond to the appropriate vector and matrix sizes, p is
the number of processors.)

the HPCC Awards in the Performance Category. The partition used for the
winning submission consisted of 18432 nodes with 8 cores per node and 147456
cores total. This is far less (almost 80% less) than the 705024 cores used for
the TOP500 submission.

1.7 Scalability Considerations

There are a number of issues to be considered for benchmarks such as
HPCC that have scalable input data to allow for arbitrary sized system to
be properly stressed by the benchmark run. Time to run the entire suite is a
major concern for institutions with limited resource allocation budgets. Each
component of HPCC has been analyzed from the scalability standpoint and
Table 1.2 shows the major time complexity results. In the following, it is
assumed that:

• M is the total size of memory,

• m is the size of the test vector,

• n is the size of the test matrix,

• p is the number of processors,
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FIGURE 1.7: Historical trends for winners of the performance category of
the HPCC Awards for Global HPL.

• t is the time to run the test.

Clearly any complexity formula that grows faster than linearly with respect
to any of the system sizes is a cause of potential problem time scalability issue.
Consequently, the following tests have to be addressed:

• HPL because it has computational complexity O(n3).

• DGEMM because it has computational complexity O(n3).

• b eff because it has communication complexity O(p2).

The computational complexity of HPL of order O(n3) may cause excessive
running time because the time will grow proportionately to a high power of
total memory size:

tHPL ∼ n3 = (n2)
3/2 ∼M

3/2 =
√
M3 (1.19)

To resolve this problem we have turned to the past TOP500 data and analyzed
the ratio of Rpeak to the number of bytes for the factorized matrix for the
first entry on all the lists. It turns out that there are on average 6± 3 Gflop/s
for each matrix byte. We can thus conclude that performance rate of HPL
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FIGURE 1.8: Historical trends for winners of the performance category of
the HPCC Awards for Global RandomAccess.

remains constant over time (rHPL ∼M) which leads to:

tHPL ∼
n3

rHPL
∼
√
M3

M
=
√
M (1.20)

which is much better than (1.19).

There seems to be a similar problem with the DGEMM as it has the same
computational complexity as HPL but fortunately, the n in the formula related
to a single process memory size rather than the global one and thus there is
no scaling problem.

Lastly, the b eff test has a different type of problem: its communication
complexity is O(p2) which is already prohibitive today as the number of pro-
cesses of the largest system in the HPCC database is almost 150 thousand.
This complexity comes from the ping-pong component of b eff that attempts
to find the weakest link between all nodes and thus, theoretically, needs to
look at the possible process pairs. The problem was remedied in the reference
implementation by adapting the runtime of the test to the size of the system
tested.
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FIGURE 1.9: Historical trends for winners of the performance category of
the HPCC Awards for Global FFT.

1.8 Conclusions and Future Directions

No single test can accurately compare the performance of any of today’s
high-end system let alone any of those envisioned by the HPCS program in
the future. Thusly, the HPCC suite stresses not only the processors, but the
memory system and the interconnect. It is a better indicator of how a super-
computing system will perform across a spectrum of real-world applications.
Now that the more comprehensive, HPCC suite is available, it could be used in
preference to comparisons and rankings based on single tests. The real utility
of the HPCC benchmarks are that architectures can be described with a wider
range of metrics than just flop/s from HPL. When looking only at HPL perfor-
mance and the TOP500 list, inexpensive build-your-own clusters appear to be
much more cost effective than more sophisticated parallel architectures. But
the tests indicate that even a small percentage of random memory accesses in
real applications can significantly affect the overall performance of that ap-
plication on architectures not designed to minimize or hide memory latency.
The HPCC tests provide users with additional information to justify policy
and purchasing decisions. We expect to expand and perhaps remove some
existing benchmark components as we continue learning about the collection.
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FIGURE 1.10: Historical trends for winners of the performance category of
the HPCC Awards for Global EP-STREAM-Triad.

Looking forward into the High End Computing hardware trends, HPCC
has a role to play in testing supercomputer installations that draw major-
ity of their performance from hardware accelerators. The trend started with
TOP500’s first Peta-FLOP computer: Roadrunner based on IBM Cell proces-
sors. Currently, GPU-based computers have noticable presence at the presit-
iguous spots of TOP500. HPCC is well positioned to offer a rich view of such
systems and their increased complexity. Hence, we are actively looking into
extending HPCC availability for hardware-accelerated machines.
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