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Abstract—In the field of dense linear matrix computations
on distributed memory systems, ScaLAPACK has established
its importance over the years with its high performance and
scalability. Since the introduction of CUDA based GPGPU
computing in 2008, methods to efficiently use such computing
power on distributed memory systems equipped with multicore
CPUs, have attracted much attention. In this work we integrate
the CUDA computing directly into the ScaLAPACK framework
and demonstrate that good speedup could be achieved on routines
like LU and QR by carefully managing the GPU-CPU data
transfers. The objective is to eventually convert most of the
ScaLAPACK routines to support GPU computing so that current
application codes that already utilize ScaLAPACK get a “free”
(automatic) speedup when GPUs are present.

I. INTRODUCTION

Dense linear algebra computations such as the LU and QR
factorizations are widely used in scientific computation. For
instance, dense linear system of equations are normally solved
by the LU factorization. The AORSA fusion energy simulation
program [6] and the High Performance LINPACK (HPL)
benchmark [12] are such examples. The QR factorization
can be used to solve the linear least squares and eigenvalue
problems.

In order to get better performance, ScaLAPACK [13]
was introduced in 1997 for distributed memory cluster sys-
tems. By using block algorithms that are normally seen in
BLAS/LAPACK [2], high computing performance is achieved
by casting computations to level 3 BLAS operation like
matrix-matrix multiplication [4]. Also, the two-dimensional
block-cyclic distribution allows the performance to scale
well on large scale systems. ScaLAPACK uses a modular
design which is built on top of HPC packages such as
BLAS/LAPACK. On multicore machines, high performance
implementations such as Intel’s Math Kernel Library (MKL)
can be used. For inter-node communication, BLACS [11]
is developed which packs MPI communications into matrix
oriented interface. And on top of BLACS, similar to to the
way in which LAPACK uses BLAS, ScaLAPACK relies on
the PBLAS [10] library for basic matrix operations. Till today,
ScaLAPACK is still under active development.

In 2008, NVIDIA introduced the Compute Unified Device
Architecture (CUDA) [20]. With CUDA, programming the
graphics processing unit (GPU) became much less painful
and CUDA gained the attention of the HPC community
immediately. Powered by CUDA, the NVIDIA’s GPU un-

leashes the significant computing “horsepower” which used
to be exclusively enjoyed by graphics related application like
gaming and video rendering. In 2009, the Fermi architecture
was introduced which further improved the GPU’s capability
in both performance and dependability [19]. Many cluster
system, including large scale system such as the Kraken Super-
computer at the Oak Ridge National Lab, are being equipped
with the GPUs. In 2010, the “Tianhe-1A” supercomputer from
China won the first place on the TOP500 [17] achieving a
performance level of 2.57 petaflop/s with the help of 7,168
NVIDIA Tesla M2050 general purpose GPUs running the HPL
benchmark.

Despite the great rate of integration, the matching devel-
opment in software has not been as fast. Several methods
have been proposed to port certain routines to use the GPU
on cluster systems, but a good way to provide as many of
routines as those supported by ScaLAPACK still has not
come to shape. In this work, by integrating the GPU support
directly into the framework of ScaLAPACK, we attempt to
convert the majority of ScaLAPACK routines to support GPUs
so that ScaLAPACK users can benefit from the speedup
on cluster systems automatically and instantly when GPUs
become available. Minimizing the amount of code changes is
also a design requirement for this work. Further, the routines’
interfaces are not changed so that all the users must do is
to re-compile their code and link with the appropriate CUDA
libraries. LU and QR are selected as the testbed because they
represent two typical categories of computational routines in
ScaLAPACK. GPU’s global memory can be viewed as another
level of the memory hierarchy of a system, and because of
the relatively low CPU-GPU bandwidth, it is important that
the CPU-GPU data transfers be minimized or hidden. The
QR factorization, similar to the Cholesky factorization, has
a predictable memory access pattern while the pivoting in
LU requires more “random” inter-process communication that
is dictated by the input matrix, leading to more difficulty to
amortize the data transfer latency.

The rest of the paper is organized as follows: Section II
discusses the related work in this field. Section III introduces
the ScaLAPACK framework. Section IV describes the inte-
gration of the GPU support in the ScaLAPACK. Performance
experiment results are shown in section V, and section VI
concludes the work.



II. RELATED WORK

Dense linear algebra routines for single-GPU have been
developed with great performance speedups, for example [28],
[27], [1], [18] focus on shared memory machines with both
multicore CPU and GPUs. In [25], by treating a heterogeneous
system as a distributed-memory machine, hybrid methods
are proposed that can utilize all CPU cores and all GPUs
on heterogeneous multicore and multi-GPU systems. A new
runtime system has also been designed for the Cholesky
and QR factorization, which has shown great scalability and
performance on either single node or clusters.

For distributed memory platforms, the HPL banchmark
was among the first targets converted to use GPUs [5],
[21], [15]. [29] describes the efforts that turned HPL for the
Tianhe-1A Petascale Supercomputer. Specifically, a software
pipelining technique is proposed to hide the communication
overhead caused by the low-bandwidth between the CPU and
GPU communication. GPU is also considered as an energy
efficient alternative to using multicore CPUs [22]. HPL is
the linear system solver based on the right-looking version
of the LU factorization. Special techniques like lookahead
are used to reduce the performance impact from the slow
panel factorization by overlapping it with the trailing matrix
update. Lookahead is not implemented in the ScaLAPACK LU
but in our work we adopt its hybridization version. In [14],
three methods of designing parallel LU factorization on cluster
systems are discussed, including a “thunking” approach that
links ScaLAPACK LU with CUBLAS using a software em-
ulation layer; This method exhibits worse performance than
the existing ScaLAPACK LU using only CPUs because of
the large data transfer latency overhead between the CPU and
GPU. Even replacing CUBLAS with MAGMA BLAS did not
help the GPU version to win out. An out-of-core version of LU
is also discussed to solve large problems that can not fit into
the GPU’s global memory. This method requires major change
to the code, although great speedup was obtained compared
to the CPU version. With a start-from-scratch but highly
scalable runtime system, [24] proposed a tile-based design to
run dense linear algebra algorithms on GPU-based heteroge-
neous clusters efficiently. Hybrid-size tasks are generated by
running the serial version of the algorithm, which are then
distributed through the runtime system powered by a novel
distributed task-assignment protocol. This method, showing
unprecedented performance on cluster systems with the GPUs,
demands an inside-out redesign of both the mathematical
algorithm and software implementation, which has yet shown
wide extendability to other routines in the field.

In our work, we attempt to make a compromise by sacrific-
ing some of the performance speedup that comes from using
GPUs for better extendability, which will allow large quantity
of dense linear algebra routines to benefit from using GPUs
on cluster systems with much less pain in code transitioning.

III. THE SCALAPACK FRAMEWORK

ScaLAPACK is designed to work on cluster systems, which
nowadays normally comprise of computing nodes that have
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Fig. 1: The ScaLAPACK calling stack

multi-core CPUs connected by high-speed interconnect such
as InfiniBand, and high computing performance relies on the
usage of fast single-node dense linear algebra library, efficient
inter-node communication algorithm, and well-balanced com-
puting load. To achieve high performance on each node, fast
BLAS implementation such as MKL is usually used. The CPU
cores on each node are utilized by spawning threads on each
core in a fork-join fashion[8]. The inter-node communication
performance is at the mercy of MPI implementation. For the
sake of load balancing, two-dimensional block-cyclic distribu-
tion is adopted.

ScaLAPACK is built on top of several software modules,
and maintains a close code appearance to the LAPACK
counterparts. Fig. 1 shows the software stack of ScaLAPACK.
The blue boxes represent the original software packages that
run on CPUs only. Because the majority of the computation
takes place in BLAS/LAPACK routines on each node, in this
work some of these routines are replaced by their counterparts
in CUDA directly to run on the GPU, which introduces another
level of memory space in addition to the CPU memory space.
Since data transfer to and from the GPU takes non-negligible
time, careful design is required to remove or hide this overhead
within the ScaLAPACK framework. This section discusses the
two-dimensional data distribution and the block algorithms for
LU and QR that are implemented with in ScaLAPACK. The
GPU support based on such framework will be introduced in
section IV.

A. Two-Dimensional Block-cyclic Distribution

Data layout plays an important role in the performance of
parallel matrix operations on distributed memory systems [9],
[16]. In 2D block-cyclic distributions, data is divided into
equally sized blocks, and all computing units are organized
into a virtual two-dimensional grid of size P by Q. Data blocks
are distributed to computing units in round robin following the
two dimensions of the virtual grid. This layout helps with
load balancing and reduces data communication frequency
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Fig. 2: Example of 2D block-cyclic data distribution

since in each step of the algorithm as many computing units
can be engaged in computations and most of the time, each
computing unit only works on its local data. Fig. 2 is an
example of P = 2,Q = 3 and a global matrix of 4×4 blocks.
The same color represents the same process and numbering in
Ai j indicates the location in the global matrix. ScaLAPACK
assumes input data is already in 2D block-cyclic distribution.
Mapping between local blocks and their global locations can
be found in [13].

B. Block Algorithm for LU and QR

On top of the 2D block-cyclic data distribution, ScaLA-
PACK also implements dense linear algebra routines using the
block algorithm. The block algorithm casts more computation
into level 3 BLAS operations such as matrix-matrix multipli-
cations. These operations have high data/cache reuse due to
their O(N3) floating point operation counts versus O(N2) data
counts, and hence a high performance.

1) LU Factorization: For a dense matrix A, the LU fac-
torization of A produces PA = LU , where P is a pivoting
matrix, L is a unit lower triangular matrix, and U is upper
triangular matrix. The LU factorization is popular for solving
systems of linear equations. Having the L and U factors, the
linear system Ax = b is solved by first solving Ly = b and then
Ux = y. ScaLAPACK implements the right-looking version of
LU with partial pivoting based on a block algorithm and 2D
block-cyclic data distribution.

We split A an N×N into 2×2 blocks. A11 has size NB×
NB, A12 is NB× (N−NB), A21 is (N−NB)×NB, and A22 is
(N−NB)× (N−NB), where NB is known as blocking size
and A22 as the “trailing matrix”. Decompose A as[

A11 A12
A21 A22

]
=

[
L11 0
L21 L22

][
U11 U12

0 L22

]
and therefore

[
A11
A21

]
=

[
L11
L21

]
U11 → PDGET F2

A12 = L11U12 → PDT RSM
L22U22 = A22−L21U12 → PDGEMM

(1)

PDGETF2, PDTRSM, and PDGEMM are the names of the
ScaLAPACK routines that perform the corresponding oper-
ations on the left. This poses as one iteration (step) of the
factorization, and pivoting is applied on the left and right of

Panel 
Factorizatoin

Triangular 
Solver

Trailing 
Update 

Pivoting to 
the Left

Pivoting to 
the Right

Fig. 3: LU factorization diagram; Green: Just finished; Red
& Orange: being processed; Gray: Finished in previous
steps

the current panel. The routines names in the ScaLAPACK LU
are listed after “→”.

Fig. 3 is a diagram of the components of LU . QR factor-
ization has a similar recursive execution process.

2) QR Factorization: The QR factorization decomposes a
matrix A into a product A = QR, where Q is an orthogonal
matrix and R is an upper triangular matrix. QR factorization
is often used to solve the linear least squares problem, and also
in the QR algorithm – an eigenvalue algorithm to calculate the
eigenvalues and eigenvectors of a matrix.

Several methods exist for computing the QR factorization,
such as the Gram-Schmidt process, Householder transforma-
tions, and Givens rotations. In today’s high performance math
libraries, for instance, LAPACK [3], ScaLAPACK [9], and
MAGMA, a block version of the Householder transformations
is adopted to achieve high performance. In particular, given an
input matrix A, a Householder matrix Q1 is multiplied to A
such that

Q1A =


r11 r12 · · ·r1n
0
... A′

0


This zeros out the elements under the diagonal in the first

column. The next step is carried out on the trailing matrix A′

with

Q2
′ =


1 0 · · · 0
0
... Q2
0


ScaLAPACK uses a block version of the QR factorization

by accumulating a few steps of the Householder matrix. This
method is rich in level 3 BLAS operations and therefore can
achieve high performance. Q is stored the lower triangular
matrix below the diagonal of the input matrix in the form
of a WY representation of the Householder transformation
products[23], [7].

ScaLAPACK implements the block QR factorization as
follow. At step i , an m×m submatrix Ai is partitioned and
factorized as

Ai =
[
A1 A2

]
=

[
A11 A12
A21 A22

]
= Q×

[
R11 R12
0 R22

]
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Fig. 4: The run time breakdown of PDGETRF
2×3 MPI process grid, 1 process (8 MKL threads)/node

Here A11 is of size NB×NB, where NB is the block size.
A21 is of size (m−NB)×NB. A1 = [A11,A12]

T constitutes
the area for the panel QR factorization. Since ScaLAPACK
uses the Householder method, Q is expressed as a series of
Householder transformations in the form Hi = I− τivivT

i , i =
1 · · ·NB. vi has 0 for the first i− 1 entries, 1 on the i− th
entry and τi = 2/vT

i vi. In ScaLAPACK, vi is stored below the
diagonal of A and when Q is applied to the trailing matrix A2 =
[A21,A22]

T , Q is computed by Q = H1 · · ·HNB = I −V TV T ,
where T is an upper triangular matrix of size NB×NB, and
V has vi as its i− th column. With this expression, the trailing
matrix update becomes

Ã2 =

[
Ã12
Ã22

]
= QT A2 = (I−V T TV T )A2. (2)

This finishes one iteration of the block QR factorization.
This process is repeated from Ã22 until the whole matrix is
factorized.

IV. SHIFTING COMPUTING LOAD TO THE GPU

In this section, we discuss the procedure of adding GPU
support within the ScaLAPACK framework.

The GPU memory is added to the cluster system as another
level of memory space. All data that is to be operated needs to
be transferred to the GPU global memory before computation,
and the result needs to be transferred back to the CPU memory.
The computation on the GPU takes place mostly in the GPU’s
shared memory and register space. However since these are
similar to the space of the cache hierarchy of multicore CPU
and we adopt the CUBLAS library from NVIDIA as the GPU
implementation of BLAS, only the data transfer between CPU
and the GPU global memory is considered as the level of extra
memory space that requires optimization.
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Fig. 5: The hybrid version of PDGETRF

A. LU Factorization

We start by understanding the run time of ScaLAPACK
routines. Fig. 4 shows the breakdown of PDGETRF, obtained
on the Dancer cluster (details in Section V). As shown in
Section III, QR has a similar code structure and therefore the
breakdown analysis for LU also applies to it. Both the panel
factorization PDGETF2 and pivoting PDLASWP take roughly
10% of the run time while the triangular solver PDTRSM and
the trailing update in the form of matrix-matrix multiplication
PDGEMM occupy the rest. At large size, trailing matrix
updates account for more than 50% of the computational time.
Because PDTRSM and PDGEMM are both level 3 BLAS, they
are more likely to benefit from using the CUBLAS library to
run on the GPU. In this work we replace the PDGEMM, and
PDTRSM will be converted in future work.

Since the panel factorization PDGETF2 has less parallelism
than the rest of the routines, we choose to use the CPU to run
it. This is similar to the hybridization methodology normally
found in MAGMA routines [26]. To meet this design, the panel
data is transferred from the GPU to the CPU during the trailing
update step. Processes that own the blocks that are the next
panel factorization split the trailing matrix blocks into two
parts. The blocks making the next panel are directly transferred
to the CPU where they are updated by the CPU version of
DGEMM, and the rest of the trailing matrix blocks are updated
on the GPU using cublasDgemm.

Fig. 3 shows that there are two pivoting procedures that
swap rows in the LU factorization. The “left” pivoting accesses
and modifies data on the left of the panel, i.e., the submatrix
that has been already factorized, while the “right” pivoting
touches matrix data in the PDTRSM’s right hand side area
and the trailing matrix of that factorization step. Because
PDGETF2 is carried out on the CPU and the result is left
on the CPU as well, the left pivoting does not require any
change. The right pivoting, on the other hand, operates on
the trailing matrix that still resides on the GPU, and therefore
the trailing matrix data involved in the pivoting needs to be
brought back to the CPU. In the hybrid version of LU in



MAGMA, this situation also exists but since all the data resides
on the GPU memory and no inter-node communication is
involved, pivoting can be performed directly on the GPU. In
this work, no such guarantee exists, and it is not unusual that
rows are frequently swapped between processes on different
nodes, making it difficult to avoid the data transfer between
the CPU and GPU memory.

To describe the GPU algorithm, suppose that the matrix to
be factored is of size M×N and that the block size is NB.
The matrix after factoring the first K columns using the right-
looking LU can be represented as follows: L11\U11 U12

L21 A
B
C


Here L11 and U11 are K×K blocks. U12, L21 are K× (N−K)
and (M−K)×K blocks, respectively. These four submatrices
represent the blocks that have been finished by previous steps
of the factorization. A is the next panel factorization area which
is of size (M−K)×NB. B is the right hand side area of the
next PDTRSM (of size NB×(N−K−NB)), and C is the next
trailing matrix update area (of size (M−K−NB)× (N−K−
NB)).

Algorithm 1 is the GPU version of the ScaLAPACK LU
proposed.

Algorithm 1 GPU resident ScaLAPACK LU

Transfer the input matrix to the GPU global memory;
First step (K=0) only transfers C;
for All the panels: do

Copy A and B, GPU → CPU, except the first step;
CPU: PDGETF2 and PDLASWP (to Left);
CPU: PDTRSM to B;
Copy C̃, GPU → CPU;
PDLASWP in B and C;
Copy C̃, CPU → GPU;
if (My process owns blocks in the next panel) then

Copy the next panel blocks that I own, GPU → CPU
CPU: PDGEMM to the next panel blocks
GPU: trailing update with cublasDgemm on the rest of
the blocks other than the next panels blocks

else
GPU: trailing update with cublasDgemm

end if
end for

In this algorithm, C̃ has the options of being the whole
trailing matrix of the next step or only those rows that will
be involved in the pivoting. Because the sole purpose of
transferring C back and forth is for the pivoting to be valid,
the second option could largely reduce the amount of data
transferred and therefore leading to much less overhead. Fig. 5
shows an example of the second option. Once the panel
factorization (green) is finished, the blue blocks are transfered
back to the CPU which are the next panel blocks and the

PDGETRF	
  

PDGEMM	
  

CUBLAS	
   MKL	
  

PB_CpgemmAB	
  

Fig. 6: Code Change to LU

PDTRSM right hand side blocks. The red rows are those that
will be involved in the pivoting according to IPIV so only these
three (red) rows are transferred back. When the PDLASWP
is done, these three rows are transferred back to the GPU. In
ScaLAPACK, the pivoting information is stored in a global
vector called IPIV, and IPIV(i) stores which global row the
local row i needs to be swapped with. For example, on a
process, if IPIV(2)=18, then the local row 2 starting from
a base row is to be swapped with global row 18. The base
is determined according to the current block-iteration step.
Specificly, after the s-th panel factorization, the base local
position in IPIV is calculated by

infog2l_(&s, &s, descA, &nprow, &npcol,
&myrow, &mycol, &iic, &jjc, &icrow, &iccol);

On each process, the base location is iic−1. IPIV[iic−1]
to IPIV[iic− 1+NB] have the pivoting information for this
step.

The input matrix and the factorization result in Algorithm 1
reside on the CPU memory. From the application developer’s
point of view, no explicit GPU access is seen and the interface
to PDGETRF looks exactly the same as the original version,
except now it runs with the support of GPU for better
performance. The code change made to PDGETRF is shown
in Fig.6.

B. QR factorization

The major difference between LU and QR factorizations is
the pivoting. Pivoting swaps rows that can only be determined
at runtime, forcing a less efficient data transfer pattern between
CPU and GPU. QR factorization has a much cleaner structure
and this allows an implementation that has less CPU-GPU data
transfers.

In (2), the trailing update perform the following computa-
tion:
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Ã2 = QT A2 = (I−V T TV T )×A2

= A2−V × ((AT
2 ×V )×T )T

= A2−VW̃ T (3)

In PDGEQRF, PDLARFB implements QT A2 = (I −
V T TV T )A2 in three steps (W is a temporary buffer):

1) W ←V T A2
2) W̃ ← T T ×W (depicted in Fig.7(a))
3) Ã2← A2−VW̃ (Fig.7(b))
In Fig.7(a) and Fig.7(b), the blue blocks represent the

temporary buffer W , and the green trapezoid is V . A different
W is created in each iteration, and V is broadcasted row-wise
from the processes that own the current PDGETF2 panel.
T is a NB×NB block that is updated in each iteration. W
are created on the GPU. T stays on the CPU while V are
transferred to the GPU during each trailing update.

When it comes to A2, a naive way is to keep the data
on the CPU memory and transfer only the involved blocks
to and from GPU during the trailing update. This method is
referred to as the “Non-GPU-resident QR”. This method is
straightforward in coding but has no way to avoid the data
transfer latency. Comparing to the case of LU factorization,
we can also opt to keep the main matrix on the GPU global
memory, and only transfer back the final result. This leads to
Algorithm 2 for QR.

Algorithm 2 GPU resident ScaLAPACK QR

Transfer the input matrix to the GPU global memory;
for All the panels: do

CPU: PDGEQR2 and PDLARFT;
Copy V and T into the GPU global memory;
if (My process is in the same process column as the next
panel) then

Copy the next panel blocks that I own, GPU → CPU;

CPU: PDLARFB to the next panel blocks;
GPU: PDLARFB on the rest of the blocks other than
the next panels blocks;

else
GPU: PDLARFB for the trailing matrix blocks;

end if
end for
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Fig. 8: The hybrid version of PDLARFB

Fig. 8 is an example of the GPU resident QR. The gray area
is the part that is already finished and stays on the CPU. The
green trapezoid is the current panel, and Processes (0,2) and
(1,2) have the next panel blocks. Before executing PDLARFB,
these two processes copy the shaded blocks from GPU to
CPU to perform trailing update on CPU, while the yellow
blocks are updated on the GPU. Since processes (0,2) and
(1,2) have both CPU and GPU blocks to update, the GPU
update is performed using the cublasDgemm call, which is
non-blocking and therefore the GPU and CPU update can be
overlapped with each other.

The code involved in the QR factorization is shown in Fig.9.
In PDLARFB, the three steps in (3) are implemented with
direct calls to the BLAS routines. Calls to cublasSetMatrix,
cublasGetMatrix, and cublasDgemm are added to handle the
GPU part of the trailing update.

V. PERFORMANCE EVALUATION

In this section experimental results are shown to verify
and analyze the performance of the converted ScaLAPACK
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Fig. 9: Code Change to QR

LU and QR routines. Experiments were performed on two
platforms. For small size experiments, we used a small cluster
at the University of Tennessee, Knoxville named “Dancer”,
which is a 12-node cluster with an Infiniband 20G inter-
connect. Each node has two quad-core Intel 2.27GHz Xeon
CPUs, and an NVIDIA C2050 or C2070 GPU. For large
scale experiments, we use the Keeneland system. Keeneland
consists of computing nodes that have two hex-core CPUs
and 3 NVIDIA GPUs, connected by a Qlogic QDR InfiniBand
interconnect. The current system has a total of 120 nodes, 240
CPUs, and 360 GPUs. In all the experiments, one MPI process
is run on each node. Multiple cores in each node are utilized
by MKL threads. One GPU per node is used even if multiple
ones might exist.

Fig.10 is the performance of LU factorization on the Dancer
cluster. Both options of trailing matrix memory copy men-
tioned in Section IV-A have been implemented and labelled
as “Option #1” and “Option #2”. From the experiment result,
the first option are barely able to keep up with the CPU version
of the ScaLAPACK while the second option outperforms CPU
ScaLAPACK after matrix size 24,000×24,000. At the largest
size of 56,000× 56,000, a speedup of 70% was achieved
at 489.34 Gflop/s against the 289.18 Gflop/s from the CPU
version. To confirm the analysis on option 1, we profiled the
run time of each component in the GPU PDGETRF and the
result is shown in Fig. 11. From this figure, it is obvious that
data transfer between CPU and GPU has taken a serious toll on
the performance. When matrix is large enough, it takes more
time to ship the data back and forth than performing the major
parts of the computation such as PDGEMM and PDTRSM.
This shows that only communicating the rows involved in the
pivoting largely reduces this overhead and enables the eventual
speedup.

With the same MPI process configuration, Fig. 12 shows the
experiment of QR factorization on Dancer. Two flavors of GPU
QR are implemented. One is the “naive” version where data
stays on the CPU and is transferred to and from GPU only
when it is required in the trailing matrix update. The other
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Fig. 10: ScaLAPACK LU with GPU on Dancer
4×3 MPI process grid, 8 MKL threads per node

version keeps the data on the GPU for computation and only
transfers it back to the CPU memory one panel in each step.
The comparison is similar to the LU factorization experiment
because constantly exchanging large amount of data between
the CPU and the GPU also leads to large overhead, making
the GPU version even slower than the CPU version. At size of
8,000 the GPU-resident version takes the lead in performance
and increases to 1,03 Tflop/s at the largest size, achieving
a 92% speedup over ScaLAPACK. Note that the crossover
point where the GPU version passes the CPU version is much
smaller for QR factorization than for LU. This is because of
the data transfer overhead from pivoting in LU. Larger matrix,
hence more FLOPs, is required to amortize this overhead. It is
reasonable to foresee that for Cholesky, similar speedup can
be seen to that of the QR factorization due to the absence of
such frequent inter-process communication.
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Fig. 11: The run time breakdown of the GPU-PDGETRF
2×3 MPI process grid, 8 MKL threads/node
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Fig. 12: ScaLAPACK QR with GPU on Dancer
4×3 MPI process grid, 8 MKL threads per node

Fig. 13 and 14 are the performance result on the Keeneland
cluster system. Larger MPI process configuration is used for
both experiments. Due to a software issue of the cluster sys-
tem, the grid and matrix size are limited for LU factorization.
This will be resolved in the future. Both experiments use the
faster GPU version of LU and QR to compete against the CPU
version. Because Keeneland system has faster CPU and more
cores, the speedup for both factorizations is relatively smaller
than on the Dancer cluster. Speedup of %40.4 and %68.2 was
achieved for LU and QR respectively.

VI. CONCLUSION

In this work, by integrating the CUDA computing directly
into the ScaLAPACK framework, we demonstrated that good
speedup could be achieved by routines like LU and QR by
carefully managing the GPU-CPU data transfer. Generally
speaking, it is beneficial to keep data onto GPUs as much
as possible. For LU factorization where pivoting forces more
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Fig. 13: ScaLAPACK LU with GPU on Keeneland
4×4 MPI process grid, 12 MKL threads per node

frequent data transfer, minimizing the data amount helps
largely to reduce the performance impact. As future work,
multiple GPUs per node will be taken into consideration, and
more algorithms will be converted. Larger scale experiments
will be conducted to further confirm the design. Other key
components such as the triangular solver PDTRSM will be
ported to use GPUs.
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