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ABSTRACT

Graphics processing units (GPUs) brought huge performance
improvements in the scientific and numerical fields. We
present an efficient hybrid CPU/GPU computing approach
that is portable, dynamically and efficiently balances the
workload between the CPUs and the GPUs, and avoids data
transfer bottlenecks that are frequently present in numeri-
cal algorithms. Our approach determines the amount of
initial work to assign to the CPUs before the execution, and
then dynamically balances workloads during the execution.
Then, we present a theoretical model to guide the choice
of the initial amount of work for the CPUs. The valida-
tion of our model allows our approach to self-adapt on any
architecture using the manufacturer’s characteristics of the
underlying machine. We illustrate our method for the LU
factorization. For this case, we show that the use of our ap-
proach combined with a communication avoiding LU algo-
rithm is efficient. For example, our experiments on high-end
hybrid CPU/GPU systems show that our dynamically bal-
anced synchronization-avoiding LU is both multicore and
GPU scalable. Comparisons with state-of-the-art libraries
like MKL (for multicore) and MAGMA (for hybrid sys-
tems) are provided, demonstrating significant performance
improvements. The approach is applicable to other linear
algebra algorithms. The scheduling mechanisms and tun-
ing models can be incorporated into respectively dynamic
runtime systems/schedulers and autotuning frameworks for
hybrid CPU/MIC/GPU architectures.

Categories and Subject Descriptors

1. [Applications]: high performance numerical algorithms;
2. [Programming Systems|: solutions for parallel pro-
gramming challenges—scheduling, load balancing, hybrid pro-
gramming, modeling
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LU factorization, hybrid CPU/GPU programming, synchro-
nization avoiding
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1. INTRODUCTION

GPUs brought a huge performance acceleration to the sci-
entific and numerical fields. Since their appearance, many
applications were successfully readapted in order to take into
account the advantages that GPUs offer. However, even if
the GPUSs’ effectiveness is well established, their efficient
usage depends on the ability to fully exploit them in a het-
erogeneous CPU/GPU environment while doing a good bal-
ancing of workload.

The LU factorization is one of the most important algo-
rithms in the scientific and numerical fields, and one of
the most difficult to parallelize because of its irregular data
movements introduced by the pivoting. Its block version
partitions the matrix to factorize into blocks of columns,
and then factorizes each block of columns by steps. At each
step of the factorization a block of columns, referred to as a
panel, is factorized and the corresponding trailing submatrix
is updated. This decomposition allows to separate the panel
factorization (which is not efficiently parallelizable) and the
updates. These updates are based on matrix products, and
therefore can be performed by optimized Level 3 BLAS [1]
operations, which are easily parallelizable. The approach
used in MAGMA [3], a well known and optimized numerical
library in linear algebra for GPUs, is based on this principle.
It factorizes the panel on the CPUs and performs the update
of the trailing submatrices on the GPUs. This ensures effi-
cient updates and optimal use of the GPUs. However, per-
forming a prefixed amount of work on the CPUs (a panel at
each iteration), even when the power of the CPUs available
is comparable to that of the GPUs, is inefficient because the
performance of a panel factorization is data-bound. Thus,
the performance potential/scalability that is expected when
growing the number of CPUs, will be lost. This lack of load
balancing can therefore lead to strong underutilization of
the CPUs available.

We focus on the LU factorization because of the constraints
related to the synchronization of the processes that are in-
volved during the panel factorization. For this case, the load
balancing problem has been well studied by several authors
[20, 19, 15, 12, 18, 14]. For most implementations, the main
idea is to determine empirically the amount of work to as-
sign to the different computational units, or perform some
necessary adjustments depending on the problem size in or-
der to keep CPUs busy. Unfortunately, these approaches
require high efforts for tuning. Also, they are difficult to



evaluate, and therefore difficult to ensure their performance
portability on a variety of architectures. To our knowledge,
none of these approaches propose a realistic model to guide
the load balancing between CPUs and GPUs.

In this paper, we propose a new efficient and portable ap-
proach that balances the load between the CPUs and the
GPUs in numerical algorithms. In particular, we developed
a theoretical model for determining the amount of work to
assign to each computational unit to ensure the scalabil-
ity of our algorithm. First, our approach determines the
initial amount of work to assign to the CPUs before the
execution. Then during the execution, a part of work is
dynamically transferred from the GPUs to the CPUs in or-
der to maintain load balance. The data transfers associated
with this dynamic load balancing are asynchronous and over-
lapped with computations. Our model and implementation
self-adapts to any architecture by using underlying machine
characteristics, and it does not require further tuning.

We use the LU factorization to illustrate our load balancing
method, but we believe that our approach can be adapted to
several other algorithms in numerical linear algebra such as
the QR factorization, the SVD decomposition, and Cholesky
factorization. We propose to use CALU [7, 11, 9], one of
the algorithms recently introduced for the LU factorization,
which aims to minimize communications during the factor-
ization of the panel by doing some redundant computations.
There are two motivations of using CALU to factorize the
panel in our work: first, CALU allows an efficient paralleliza-
tion of the panel, which is suitable for the CPUs in this hy-
brid approach; Second, we remove the bottleneck from our
prior work [5] where we did not obtain expected improve-
ments by just replacing the panel factorization in MAGMA
by CALU while keeping the rest of the code unchanged. In
fact, in this prior implementation, we used CALU to fac-
torize the panel in MAGMA, and then we increased the
panel size in order the keep the CPUs busier while the GPUs
perform the updates of the trailing submatrices. First, we
noticed that this approach was very difficult to tune; sec-
ond, the panel size was severely majored by the bandwidth
transfer rate between CPUs and GPUs, still leading to un-
balanced work with the best implementation we obtained.
So, faster factorization of the panel alone was not enough to
maintain the scalability.

Our new approach removes the bottleneck in the standard
MAGMA implementation by keeping CPUs busy without
changing the panel size, but by giving more updates to the
CPUs asynchronously. We tested our approach on an AMD
Opteron 6172 with Tesla S2050 GPUs, AMD Opteron 6180
with Tesla S2050 GPUs, and an Intel Xeon E5-2670 with
Tesla M2090 GPUs, as well as on the latest NVIDIA Kepler
(K20c) and Intel Xeon Phi architectures. Our implemen-
tation, tested on a single Tesla S2050 GPU with up to 48
CPU cores, is multicore scalable. In particular, it is up to
2x faster than MAGMA, and up to 1.9x faster than our
prior implementation. A use of a single Tesla S2050 GPU
accelerates the performance by 2.7x over the corresponding
CPU routines of MKL using the same number of cores.

The rest of this paper is organized as follows. In section 2, we
briefly introduce the LU factorization, its implementation in

MAGMA, related work, and communication avoiding algo-
rithms. In section 3, we present our new approach. Section
4 presets our model to guide the initial amount of work to
transfer to the CPUs before the factorization. In section 5,
we present experimental results, we show the modeled work-
load for underlying architecture, performance results, and
the scalability of our implementation. Finally, in section 6,
we give conclusions and future work directions.

2. BACKGROUND
2.1 LU factorization

The current standard for an LU factorization is the one im-
plemented in LAPACK [2, 4]. This is the function GETRF,
prefixed with an S, D, C, or Z, representing the arithmetic to
be used (correspondingly single real, double real, single com-
plex, or double complex floating point arithmetic). GETRF
computes the LU factorization of a general M-by-N matrix A
using partial pivoting with row interchanges, which is stable
in practice. Moreover, the algorithm is known as blocking,
in a sense that a block of columns, referred to as panel, is
factored at a time. The transformations used during the
panel factorization are not applied immediately on the trail-
ing matrix (i.e., the rest of the matrix after the current
panel), but delayed and applied at once after the panel is
factored. Thus, the algorithm groups together a block of
inefficient (memory-bound) Level 2 BLAS transformations
and applies them at once as Level 3 BLAS updates, which
can be done very efficiently on current architectures.

2.2 LU factorization in MAGMA 1.3

MAGMA[3] is a well optimized numerical library which im-
plements LAPACK routines for dense matrices on hybrid
CPU/GPU systems. The library takes advantage of the
hybrid CPU/GPU programming to achieve better perfor-
mance. The key principle lies in the optimal use of the GPUs
in these routines. To do so, the highly parallel part of each
routine is identified and scheduled on the GPUs, while the
part with less parallelism is scheduled on CPUs. For the LU
factorization, it has been shown that the panel factorization
is more suitable for the CPUs [6] than for the GPUs. What is
implemented in MAGMA for the LU factorization embraces
this principle, the panel is factorized on the CPUs using a
multithreaded routine such as dgetrf from the MKL vendor
library[13], while the update of the trailing submatrices is
performed on the GPUs using highly optimized kernels.

Figure 1 shows an example of execution of the dgetrf rou-
tine as implemented in MAGMA. This example is shown
for a matrix decomposed into 5 block columns using P pro-
cessors and 1 GPU. The bars at the top represent CPUs
computations, while the bars at the bottom represent GPU
computations. Red and green bars show the part of the ma-
trix where current operations are performed. As shown in
the figure, the routine proceeds as follows:

Step 0: The CPUs factorize the panel.

Step 1: The factorized panel is transferred from the CPUs
to the GPU.

Step 2: The first column of the trailing submatrix is up-
dated separately on the GPU in order to enable the
look-ahead.



Step 3: The updated single column of the previous step is
transfered to the CPUs. This step makes available the
next panel factorization for the CPUs.

Step 4: The GPUs update the rest of the trailing subma-
trix associated with the current panel, while the CPUs
factorize the next panel. We note that, at this step,
the CPUs are likely to finish their computations very
early because of the relatively small size of the panel
compared to the size of the trailing submatrix. This
early end of the CPUs work prevents inactivity on the
GPU, because the panel is likely to be ready when the
GPU finishes its computations, but it may result in
important inactivity for the CPUs.

The same process is repeated from Step 1 to 4 until the
matrix is entirely factorized.
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Figure 1: Example of an execution trace of

magma dgetrf on a square matrix. The matrix is
partitioned into 5 x 5 blocs of columns.

The dgetrf routine in MAGMA as described in figure 1 is pre-
sented in Algorithm 1. In the algorithm, cpu_dgetrf repre-
sents the multithreaded routine called to factorize the panel.
Device_setMatrix and device_getMatrix represent the rou-
tines which transfer the panel from the CPUs to the GPUs,
and from the GPUs to the CPUs, respectively. These rou-
tines block the execution of the CPU until the transfer is
completed. Magma_dtrsm and magma_dgemm represent the
non blocking routines in MAGMA which compute, respec-
tively, the upper part of the matrix and the update of the
trailing submatrix at each step of the factorization.

Algorithm 1 magma dgetrf

1: Input: m x n matrix dA, block size b, number of pro-
cessors P, number of blocs for the CPU parts d

2: M =m/b,N =n/b

3: workspace: m x b matrix size dAP = dA(1: M, 1)

4: for K =1to N =n/bdo

5. cpu_dgetrf(dAP, P)

6:  device_setMatrix( dAP, dA(K : M, K)) /*Copy the
factored panel from CPU to the GPU*/

7:  magma dtrsm( A(K, K + 1))

8:  magma dgemm( A(K +1: M, K + 1))

9:  device_getMatrix(dA(K + 1 M,K + 1), dAP)
/*Copy next panel from the GPU to the CPU*/

10:  cpu_synchronize( dAP) /*CPUs synchronization on
the next panel*/

11:  magma dtrsm( A(K,K +d: N))

12:  magma dgemm( A(K +1: M,K +d: N))

13: end for

2.3 Related work

The load balancing problem for hybrid CPU/GPU appli-
cations is well recognized in the literature and presents a
challenge because of the heterogeneity of the CPU/GPU sys-
tems. The approach used in MAGMA leads to optimal use
of the GPUs at the price of possible CPUs underutilization.
Based on this approach, the work performed by the CPUs
is relatively small to prevent GPUs idle time. The fact that
this can create load imbalance was identified by several au-
thors in the literature, and several approaches have been
suggested in order to solve the problem and improve perfor-
mance. In this section, we detail some of them. In particu-
lar, we focus on the LU and QR factorizations.

To solve the possibility of load imbalance in the QR fac-
torization Volkov et al. [20], and more recently Yaohung
et al. [19], proposed an approach based on variable panel
block size. It consists of choosing an adapted block size for
the panel at each step of the factorization in order to keep
CPUs busy. The approach would have been optimal if the
CPUs and the GPUs ended their work simultaneously, but
this is not possible in general, as mentioned by Yaohung et
al. [19]. Instead, they merely search the largest panel size for
the CPUs for which the GPUs’ execution is not impacted.
The validation of the results is based on empirical tests.
Unfortunately, this approach ignores possible interruptions
such as system noise, data locality issues, and many more,
which may vary from one execution to another and which
may affect the estimated panel size values. Furthermore, if
a large panel size is used in order to achieve a good load
balancing, an additional time due to bandwidth limitations
may be paid for transferring it to the GPUs. This restriction
represents an upper bound for the panel size.

In our previous work [5], we have evaluated the possibility
of replacing the standard panel factorization in MAGMA
by CALU, which is a more efficient approach. The reason
for this evaluation was that MAGMA calls a multithreaded
routine to factorize the panel. In the case of MKL for ex-
ample, the corresponding multithreaded routine is known to
be not well optimized for tall and skinny matrices [9]. The
idea behind this implementation was to efficiently factorize
the panel and then slightly increase the panel block size to
keep the CPUs busy. Once the panel size is increased, it
is split into relatively small tasks in order to enable enough
parallelism for the whole set of cores participating in the
operation. We observed that this approach gave better re-
sults for tall and skinny matrices involving the CPU/GPU,
but unfortunately the performance improvements for square
matrices were not significant.

Horton et al. [12] noted the ineffectiveness of using too many
threads for the panel factorization in the QR factorization in
MAGMA. To improve the efficiency of the CPUs, they deter-
mine the optimal number of threads required for the panel
factorization, then they dedicate a fixed rightmost part of
the matrix to the remaining threads for the updates. This
approach introduces several new parameters which appear
difficult to tune. The authors suggest an approach based
on extensive experiments to compute the possible values of
these parameters for a range of matrices in order to reuse
them later, which may require up to two hours of computa-
tions as also mentioned by the authors.



Song et al. [18] proposed an approach based on the decom-
position of the input matrix into tiles of size B. These tiles
are cyclically distributed to the GPUs in ScaLAPACK fash-
ion. A portion, By, of each tile is assigned to the CPUs.
First, a formula is used to determine Bj, and then a sim-
ulation executing the routine (QR or Cholesky) on a small
number of tiles (e.g., 3) in order to readjust the value of By,
for the global matrix. Empirical search is required to deter-
mine the tile size B which achieves best performance for the
GPU kernel. Such empirical experiments are required be-
fore the execution of every routine. Furthermore, to handle
the large number of tiles created by the decomposition, one
distinct thread is dedicated to manage each GPU. So, for a
system with P cores and k GPUs, only P — k threads will
focus on the CPUs part.

Yulu et al. [14] proposed an approach based on cyclic dis-
tribution of data between CPUs and the GPUs. In their ap-
proach, column blocks are cyclically distributed to the GPUs
k times (so called round robin) and then one column block is
distributed to the CPUs, then the next k block columns are
distributed to GPUs and so on. Indeed, the CPUs factorize
the current panel but also participate in the update of some
part of the trailing submatrix. First, this approach requires
a full transformation of the input matrix to a more complex
structure. Second, nothing other than the empirical results
allows the user to determine the value of k.

Jakub et al.[15] proposed an approach based on dynamic
load balancing of workload during LU factorization. First, a
number of block columns is initially transferred to the CPU
before the execution, and then a block column is transferred
to the CPUs at each step of the factorization. Again, here
the authors do not provide any idea about the choice of the
initial amount of data to transfer to the CPUs; instead, they
propose a strategy based on experimental tuning by follow-
ing the performance improvements, making their approach
difficult to port on different architectures.

2.4 Communication avoiding LU factorization
It is well known that hardware improvements in terms of
communications are very low compared to the ones in terms
of arithmetic operations. Based on these observations, a
new class of algorithm referred to as communication avoid-
ing algorithms [7, 11], whose main idea is to reduce commu-
nications by doing some redundant computations, have been
introduced. For LU factorization, a communication avoiding
algorithm LU (CALU) performs the panel factorization as
a block operation. This is because, as in classic algorithms
implemented in ScalLAPACK for example, although the im-
plementation is based on a block algorithm, the panel is still
factorized column by column. Hence, pivoting requires com-
munication among processors participating in the operations
for each column. So at least blog P messages are exchanged
during this step, where b is the number of columns in the
panel being factorized and P is the number of processors.

CALU introduces a new pivoting strategy referred to as
TSLU, which performs the panel factorization in two steps.
First, it identifies the good pivot at a reduced communica-
tion cost and then applies the corresponding permutation
matrix to the panel. Second, it applies LU factorization
without partial pivoting on the panel. The algorithm can

be described as follow for a panel B of size m x b, where m
is the number of rows and b is the block size:

Step 0: Partition the panel vertically into P parts, where P
is the number of processors participating in the panel
factorization, i.e., B = [B1; B2;...; Bp]. Then, proces-
sor ¢ owns block B;.

Step 1: Each processor applies LU factorization with par-
tial pivoting on its original block, i.e., m; B; = L;U;.

Step 2: Each processor applies the permutation vector m;
on its original rows and keeps the first b rows as a pivot
candidate. That is, C; = m; B;(1 : b, b).

Step 3: The pivot candidates C; are merged one on top
of another using a reduction tree. At each node of
the tree, LU factorization with partial pivoting is ap-
plied, the resulting permutation matrix is applied on
the original merged block and then the first b rows are
selected as a new pivot candidates. This is repeated
until obtaining the pivots at the root of the reduction
tree. Then these final pivot are selected as the good
pivots for the whole panel.

Step 4: The final permutation is applied on the original
panel to move the selected pivot at the top.

Step 5: Each processor applies LU factorization without
partial pivoting on its part B;.

By using a binary tree for the reduction operation through
this approach, only log P messages are exchanged, which is
less than ScaLAPACK’s number of messages by a factor of
b. Once a panel is factorized using TSLU, the update of the
trailing submatrix is updated as in classic LU factorization.

CALU is shown to be stable in practice [11] and has been
adapted to distributed memories [11, 7] and multicore envi-
ronments [9, 8].

3. ASYNCHRONOUS LU FACTORIZATION
WITH GPU ACCELERATORS
3.1 Method

Algorithm 2 gives our dynamically balanced synchronization-
avoiding LU factorization. A general matrix A of size m xn
is partitioned into blocks of columns, and factored itera-
tively, similar to the block LAPACK algorithm. To estab-
lish an initial load balance between the CPUs and the GPU,
A is split into two parts. Part one is formed by the first
d block columns of A and is transfered to the CPUs, while
part two, formed by the remaining N — d blocks, remains on
the GPU. The input parameter d is determined using our
model described in section 4. The first part is further par-
titioned in a 2-dimensional (2D) way; each block column is
1D partitioned into P, blocks of rows, where P, is the num-
ber of CPU cores participating in a panel factorization. The
structure of the second part of the matrix is kept unchanged.

This decomposition creates fine and coarse grain computa-
tional tasks, correspondingly in the first and second part of
A. There are two advantages for this decomposition. First,
the GPUs are massively parallel and can be used efficiently



on regular computations like the matrix-matrix product up-
dates in the second part of the matrix [16, 17]; while the
CPUs can better handle (than the GPUs) less parallel and
irregular computations, and therefore are more suitable for
operations such as the panel factorizations (in the first part).
Second, the use of fine grain computational tasks is asso-
ciated with increased parallelism, while the use of coarse
grain tasks is associated with high efficiency. By combining
and properly scheduling both fine and coarse grain tasks, we
achieve balance and hardware efficiency; the panel factoriza-
tion (which is the critical path of the algorithm) is fine grain
partitioned in order to be accelerated through parallelism,
while the update of trailing submatrix (which is the bulk
of the computation) is coarse grain partitioned in order to
exploit the resources.

Before the factorization, d block columns of the matrix are
transfered (line 3 of the algorithm) from the GPU to a
workspace allocated on the CPUs. Then, for each step K of
the factorization, the algorithm proceeds as follows:

Lines 5 to 7 A panel is decomposed into P, tasks and each
task is inserted in the CPUs’ queue of tasks. The asso-
ciated routine is calu_dgetrf which factorizes a portion
of the panel and then performs some reduction steps
conducted by a binary tree as described in [11, 9];

Line 8 The new factored panel is asynchronously transfered
to the GPU;

Lines 9 and 10 A dtrsm and a dgemm task on the coarse
part of the matrix are inserted in the GPU’s tasks
queue. The associated routines are gpu_dtrsm and
gpu_dgemm, respectively.

Line 11 A new block column is asynchronously transfered
to the CPU to balance work.

Lines 12 to 15 dtrsm and dgemm tasks are inserted in the
CPUs’ tasks queue. This is done for each block column
in the CPUs part. The associated routines are respec-
tively cpu_dtrsm and cpu_dgemm. In order to enable
the look-ahead technique during the execution, tasks
are inserted in this order: tasks which update column
K + 1, then the tasks which factorize panel K + 1 (in
line 5 — 7 of the algorithm), and finally the tasks which
update columns K + 2 to K + d.

At the end of the algorithm, the factorized matrix is stored
entirely on the GPU memory.

3.2 Scheduling

Our algorithm, as described above, creates and inserts both
CPU and GPU tasks in a queue of tasks. The tasks must be
executed as soon as their data dependencies allow it. We use
dynamic scheduling to map the tasks in the CPUs’ queue to
threads, while tasks in the GPU queue are executed by the
GPU. Although we have implemented a scheduler for the
CPUs’ queue of tasks, any existing task-based scheduler,
e.g., QUARK]21], can be used instead. The main goal of
the scheduler is to check the dependencies of the tasks in the
queue of tasks and schedule them to the available threads.

Algorithm 2 Asynchronous CALU

1: Input: m X n matrix dA, block size b, number of pro-
cessors P = P, x P, column blocks for the CPUs d
2: M =m/b,N =n/b
3: workspace: A = dA(1 : m,1:dxb)
matrix for the CPUs*/
for K =1to N =n/bdo
for ] =1to P do
cpw insert_task(calu_dgetrf, A(K + .M+ K +
(1 +1).225 )
7:  end for "
8:  gpu_insert_task(device_setMatrix, A(K M, K),
dA(K : M,K)) /*Copy the factored panel from
CPU to the GPU*/
9:  gpuinsert_task(gpu dtrsm, A(K, K +d: N))
10:  gpu_insert_task(gpu_dgemm, A(K+1: M, K+d: N))
11:  gpu_insert_task(device_getMatrix, dA(K +1: M, K +
d), AAK+1: M,K+d)) /*Copy one column from
the GPU to the CPU*/
12: for J = K to K +d do

/*part of the

13: cpu_insert_task(cpu_dtrsm, A(K, J))

14: cpu_insert_task(cpu_dgemm, A(K +1: M, J))
15:  end for

16: end for

Figure 2 shows an example of the direct acyclic graph (DAG)
resulting from the insertion of tasks on a matrix partitioned
into 5 column blocks, where 2 of the blocks are initially as-
signed to the CPUs. The DAG holds the different tasks
and the dependencies among them. Each circle represents a
task and each arrow represents the dependency between two
tasks. For simplicity, we group all P, tasks created by the
panel decomposition in one task, that is, the task P colored
in red in the figure. The decomposition of the panel into
tasks using a binary tree is well explained in [9]. It could be
simplified into one task because, although the panel is par-
allelized, its outside dependencies are global for the entire
panel. However, in the CALU implementation, the threads
that execute the panel may do some tasks outside the panel,
e.g., updates from previous steps of the factorization while
the panel is still being factored. The U and S DAG ver-
tices represent respectively, the dtrsm and dgemm tasks of
the algorithm. The GPU part of the computation is repre-
sented by rectangular areas in the same figure. We represent
tasks inside these rectangular areas to show the parts of the
matrix which are detached from the GPU and sent to the
CPU dynamically to balance work at each step of the factor-
ization. Dashed arrows in the figure represent the transfer
of data, orange arrows show CPU to GPU panel transfers
while blue ones represent GPU to CPU block column trans-
fers. The asynchronous behavior of our algorithm allows
these transfers to be initiated at any time and without any
synchronization with a thread in the CPUs part.

3.3 Runtime

Figure 3 shows an execution of our algorithm for a matrix
partitioned into 7 block columns, where 3 block columns are
assigned to the CPUs before the factorization. The initial
decomposition is shown in step 0 of the figure.

At step 0: The CPUs factorize the panel (represented by
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Figure 2: Example of a DAG of asynchronous

CALU on a square matrix partitioned into 5 blocs
of columns. The CPUs part is formed by 2 blocs of
columns, i.e., 40% of the initial matrix.

a red bar) using P, threads. This first step represents
the only part of the factorization that is not overlapped
with other computations;

At step 1: One thread initiates a transfer of the panel to
the GPU, while the other P — 1 threads start the up-
date of the CPUs part of the trailing submatrix. This
illustrates how our approach overlaps computations
and communications.

At step 2: The GPU starts the update of its correspond-
ing part of the trailing submatrix, while the next P.
available threads may start a new panel factorization,
and the other P — Pr threads continue to perform the
update of the CPU’s trailing submatrix. With this ap-
proach, each panel is always factorized in advance, so
to avoid GPU stall.

At step 3: The algorithm performs as in step 1, with the
difference that a new block of columns is transfered
from the GPU to the CPUs. This transfer is asyn-
chronous and helps to equilibrate work with CPUs in
order to replace the panel which is being sent from the
CPUs to the GPUs. This step shows one of the best
features for our algorithm — overlapping communica-
tions in both directions with computations.

This process is repeated from step 2 to 3 on the remain-
ing part of the trailing submatrix until the factorization is
completed. We note that at each step the size of the trail-
ing submatrix decreases by one block column. When the
remaining matrix has less than d block columns, the GPU
is completely removed from the execution and does not par-
ticipate anymore in the computation. There are two reasons
for doing that: first, when the matrix becomes very small,
the GPU does not achieve better performance; and second,
when there are not enough computations to overlap commu-
nications, the time to transfer data between the CPUs and

the GPU would dominate the time to simply perform the
computation associated with these data on the CPUs.
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Figure 3: Example of an execution of the asyn-
chronous CALU on a square matrix partitioned into
7 block columns. The CPUs part is formed by 3
blocs of columns, i.e., 42% of the initial matrix.

4. PERFORMANCE MODEL

As we will show in our experiments, the initial number of
block columns for the CPUs is crucial for performance. If it
is relatively small then at least some CPUs will become idle,
and if it is too large the GPU will become idle. The main
question is how to determine the optimal number of block
columns for this part. We propose a simple, yet accurate
model for determining the percentage of the matrix to assign
to the CPUs so that the work between the CPUs and the
GPU is balanced. Our approach incorporates a trade-off
between simplicity and accuracy. The goal is to implement
an algorithm that self-adapts on the underlying architecture.

4.1 Theoretical model

Let A be the matrix of size m x n to be factored, b be the
block size, and P be the number of CPU processors. The
block LU algorithm partitions A into M x N block columns,
where M = m/b and N = n/b. Also, let d be the initial
number of block columns for the CPUs’ part of the matrix.
We denote by g1 and gz the peak performances of one CPU
and one GPU, respectively. These parameters correspond to
the maximum number of operations per second which can
be executed by one CPU or one GPU, respectively, and are
indicated by the architecture’s manufacturers.

At each step K of the factorization, we consider W1 to be
the total amount of work required to complete the CPUs
part, and T1 to be the theoretical minimum time to do so.
Similarly, let W2 be the total amount of work required to
complete the GPU part, and T2 be the theoretical minimum
time to do so. Mk and Nk are taken to be, correspondingly,
the number of block rows and block columns in the entire
trailing submatrix at the corresponding step.

As shown in figure 4, at each step K of the factorization
the CPUs factor one panel and perform d — 1 updates of the
trailing submatrix in the first part of the matrix. Therefore,

Wl = Wlpanel + (d - 1)W1updat57

where Wipaner and Wiypdate are the amount of work required
to factor and update one block column, respectively.



At the same step, the GPU performs the update of its cor-
responding part of the trailing submatrix and therefore

W2 - (NK - d)Wlupdate-

GPU

d blocks columns

(N—d) blocks columns

Figure 4: Initial decomposition of the matrix in two
parts — first for the CPUs and second for the GPUs.

By definition, we can easily deduce that

T = Wi nd TQ:%.
P><g1 g2

For a synchronous algorithm where the threads in the CPU
parts and the GPU synchronize at each step of the factor-
ization, if T1 # T», then at least some CPUs or the GPU
will become idle. Therefore, the goal is to have T; = T5.

For an asynchronous algorithm, where the threads in the
CPU parts may switch immediately to the next step (K +1),
both CPUs and GPU may continue working even if the GPU
is still updating the trailing submatrix corresponding to step
K. In that situation, new tasks would be inserted in the
GPU’ queue without impacting its execution. Contrary, if T}
is lower than T5, the threads will continue in step K + 1 and
therefore will continue to insert tasks in the GPU’ queue. In
that situation, the CPUs may stall only if they compute the
entire factorization of the d columns while the GPU is still
updating the trailing submatrices of previous steps. On the
other hand, if T} is very large, then the GPU will complete
its computations early and become inactive while waiting for
some panels to be factorized. So, to avoid GPU idle time,
we must split the work so that T'1 < T2.

Regardless of the algorithm being synchronous or asynchronous,

by solving 11 = 15, we determine the optimal number of
block columns to assign to the CPUs. In particular, the
following relations hold:
Wi _ W
P x g1 g2

= g2 (Wlpanel + (d - 1)W1update) = Pgl (NK - d)Wlupdate~
By solving for d, we obtain the relation:

_ PNk +g2
Pgi + g2

Wlpanel g2
Wlupdate Pgl + g2 '

A well known approximation for the number of operations
required to perform LU factorization on one block column
of size m X b is Wipaner = (mx — 2)b°. The number of
operations to update one block column of size m X b is a

rank-b update, so Wiupdate = mxb>. Hence,
Wlpanel

(mx — §)b°

Wiupdate mxb? Mk

b
_ MK 73

Since the block size b is much smaller compared to the matrix
size my, this quantity will tend asymptoticly to one, for
which case we can obtain an expression for d:

d= M, and finally
Pg1 + g2
d Pgl

= =0 1
Nk Pg1+g2 )
Here ﬁ represents the largest percentage of the matrix for

the CPUs part at iteration K. The expression + ;D 91— does

not depend on the matrix size, and can be used to égtggrmine
the percentage of the matrix for the entire computation. To
conform strictly with the model, the percentage of the ma-
trix for the CPUs part should vary at each step of the factor-
ization, but we have estimated that keeping it constant may
introduce less imbalance, while keeping the implementation
simple. The implementation of [19] shows that such a re-
adjustment may increase just very slightly the performance
of the entire algorithm.

4.2 Model analysis

Equation 1 guides the choice of the number of block columns
to assign to the CPUs in order to balance work with the
GPUs. The model suggests that the CPUs part (d) varies
as follows:

e By increasing the number of processors P, it increases
to keep the algorithm multicore scalable;

e By increasing the matrix size, it increases to balance
work and keep equation 1 satisfied;

e By increasing the power of the GPUs when the power
of the CPUs is kept constant, it decreases in order to
balance the CPU-GPU work.

This is better illustrated in our experiments with some hard-
ware parameters.

4.3 First panel factorization

It is necessary to take into account the fact that the first
panel is not factorized in parallel with the update of the
trailing submatrix associated with it, because of the depen-
dencies. To take this case into account and make our model
consistent, we need to handle the first panel separately. To
do so, we consider that at step 0, only panel 0 is factorized.
At step 1, the updates associated with panel 0 are performed
and then panel 1 is factorized. We note that it is possible
to factorize panel 1, just after the update associated with
panel 0 is applied to column 1, even if the whole other up-
dates are not completed. Following the same principle, at
step 2, the update associated with panel 1 are performed
and then panel 2 is factorized, and so on. So we deduce
that, at step K of the factorization, the amount of work for
the CPUs (W1) can be expressed as the sum of the work for
performing the update of the trailing submatrix associated



with panel K and factorizing panel K +1. But for simplicity,
we keep Wi unchanged in the model, i.e., we disregard its
variation due to the change in amount of work introduced
by replacing panel K by panel K + 1.

4.4 Model accuracy in practice

Our model estimates the amount of work required for the
first part of the matrix by T = #191, where W1 = Wipanel
+ (d — 1)Wiupdate- Wiupdate Tepresents matrix products,
so it can be easily decomposed into P, pieces and updated
separately. This is not the case for the panel, because of
the synchronization introduced during its factorization. In
other words, Wipane: should be expressed as the sequential
amount of work to factorize a panel plus a communication
overhead ¢(P:), where P, is the number of threads working
on the panel. Then T becomes 54— + ¢(P,). By using

Pxgi1
T = %, we assume that the communication overhead is
negligible. In practice, the overhead may increase slightly
the time to perform Wi, so the percentage of the CPUs
should be slightly decreased depending on this overhead.

4.5 Adaptation with CALU

Our model assumes a use of an optimal classic algorithm for

. W,
the panel factorization. In that case the expression g2
Tupdate

tends asymptoticly to one. If CALU is used, the number of
flops, compared to the standard implementation, is higher
as CALU performs more flops. In particular, Wipane is
increased by O(b*log P,.), where P, is the number of pro-
cessors participating in the panel factorization. This results

; : ; : w O log Py
in an increasing of the fraction Wl“’“;‘il V(Vl 05 t'> =
update update
b2 log P, blog P, .
O logPr) _ OGloelr) Ay O(blog P,) can also be consid-
mib m

ered negligible compared to m g, the model of equation 1 can
be used as well to determine the percentage of the matrix for
the CPUs in order to keep the model simple. Having a fast
parallel panel factorization algorithm then helps to remove
the panel on the critical path and then minimize its impact
on the estimation of 77.

S. EXPERIMENTS

In this section, we evaluate the performance of our algorithm
on three different machines running on linux. The two first
machines use a four-socket, twelve core configuration based
on an AMD Opteron processors with a Tesla S2050 GPU,
and the third machine uses a two-socket, eight core config-
uration based on an Intel Xeon E5-2670 processor with a
Tesla M2090 GPU. The processors’ frequency and the peak
performance of each machine is shown in Table 1.

We refer to magma_dgetrf as the routine implemented in
MAGMA 1.3, which performs LU factorization using the in-
dicated number of cores and one GPU. Magma_calu_sync
refers to our previous implementation[5], that is, the ap-
proach which consists of replacing the standard panel fac-
torization in magma_dgetrf with CALU, and for which the
tuned panel block size is chosen to achieve best performance.
Calu_sync refers to our new implementation, additional pa-
rameters are indicated in brackets. MKL_dgetrf refers to LU
factorization with partial pivoting routine, implemented in
MKL using the indicated number of cores. We use MKL
11.1.069 to compute MKL_dgetrf results. MAGMA and
CALU are linked with the BLAS version in MKL.

5.1 Performance of asynchronous CALU with

fixed parameters

Figure 5 shows the performance of our algorithm (calu_async)
when the number of block columns d in the CPUs part varies
as 1, 2, 4, 8, 16, and 32. The factorization is performed on a
matrix of size M = N = 10112 using 12 cores and one GPU.
We compare each variation of calu_async to magma_dgetrf
and magma_calu_sync. We note that the performance of
magma._dgetrf and magma_calu_sync does not change when
d varies; we repeat them in the diagram only for purposes of
comparison. For this problem set, magma_calu_sync is 15%
faster than magma_dgetrf. For d = 1, calu_async behaves
as MAGMA with the difference that the panel is factorized
using CALU and it does not use the look-ahead technique.
Our algorithm does not use the look-ahead when the CPU
holds only 1 panel, because the GPU needs to update the
whole trailing submatrix before a new block column is trans-
ferred to the CPU. In this case, our approach is less efficient
than magma._dgetrf and magma._calu_sync. For d = 2, i.e.,
for only one additional block column in the CPUs part, our
approach becomes 20% faster than magma_dgetrf and 4%
faster than magma_calu_sync. The best performance is ob-
tained for d = 8, where it is 35% faster than magma_dgetrf
and 17% faster than magma_calu_sync. We observe that for
d > 8, the performance of calu_async decreases considerably.
For example, for d = 32, it is 64% slower than magma_dgetrf.
This case illustrates the impact of the load balancing on per-
formance and the difficulty to manually tune applications
based on a similar approach.

Performance of CALU on AMD opteron 6172 using 12 cores and 1 GPU for
M=N=10112

250

200

150 - M magma_dgetrf

Gflops/s

W magma_calu_sync
100 — gma_calu_sy
calu_async

50 —

1 2 4 8 16 32
Number of block colums in the CPUs part

Figure 5: Performance of the variants of CALU for
which the number of columns (panels) for the CPU
part varies, on an AMD Opteron 6172 using 12 cores
and one GPU with the matrix size kept constant.

5.2 Estimation of the percentage of the matrix
for the CPUs part using the model

The adapted value of d depends not only on the matrix size
but also on the number and the power of each computation
unit. In this section, we study the estimated value of d for
each matrix size and architecture using our model, that is:

d Pg1
=_-dJ° 2
Nk Pgi1+g2 @)

Figure 6 shows the estimated percentage of the matrix for
the CPUs part when the number of processors varies. The
two AMD machines in our test are equipped with the same



CPUs

GPU CPUs + GPU

Processor Model

frequency (double precision)

Single core | Total peak performance | Model

Peak performance | Peak performance
(double precision) | (double precision)

AMD Opteron 6172 | 2.1 Ghz 403.2 GFlops/s

Tesla S2050

504 GFlops/s 907.2 GFlops/s

AMD Opteron 6180 | 2.5 Ghz 480.0 GFlops/s

Tesla 52050

504 GFlops/s 984.0 GFlops/s

Intel Xeon E5-2670 | 2.6 Ghz 332.8 GFlops/s

Tesla M2090 | 665 GFlops/s

997.8 GFlops/s

Table 1: Peak performance of each machine in our test set.

Tesla S2050 GPUs with 504 GFlop/s peak performance.
The AMD Opteron 6172 has a peak performance of 403.2
Gflops/s, while the AMD Opteron 6180 has 480 GFlops/s.
Our model suggests to increase the percentage of the matrix
on the AMD Opteron 6180 machine relative to the AMD
Opteron 6172. On the Intel E5-2670, the CPUs’ peak perfor-
mance for 16 cores is 332.8 GFlops/s and the model suggests
to use 30% of the matrix. We note that the Intel machine is
equipped with 16 cores, but we plot the estimation through
48 cores in order to predict the recommended value of d as
if the machine were equipped with 48, like the two AMD
machines in our test. In that case, the CPUs’ peak perfor-
mance would be 998.4 GFlops/s and d would represent 57%
of the matrix. We also note that in practice it is almost im-
possible for a parallel program to achieve the manufacturer’s
peak performance due to algorithm dependencies, possible
system noises, etc. So, the estimated value of d in our ex-
periments is computed using a realistic percentage value of
peak performance. In our case, using 80% of the CPUs’ peak
and 90% of the GPUs’ peak leads to reliable values.

Estimation of the percentage of the matrix for the CPUs part using

N
3

Intel Xeon E5-2670, Tesla M2090

—®— AMD opteron 6180, Tesla 52050

—4— AMD opteron 6172, Tesla 52050

Estimated percentage of the matrix for CPUs
w
&

o 10 20 30 a0 50
Number of processors

Figure 6: Modeled percentage of the matrix for the
CPU part for the different architectures tested.

5.3 Performance comparison of CALU using

modeled and fixed parameters

Figure 7 shows the scalability of the different variants of
calu_async depending on the choice of d. The parameters
for each variant are shown in brackets. "d =z panels” in-
dicates that the CPUs part is formed by x block columns and
’d = y% matriz” indicates that the CPUs part is formed
by y% of the number of block columns in the input matrix.
7d = estimated’ indicates the variant for which the value of
d is computed using our model before the execution.

We observe that the variants calu_async (d = 8 panels)
and calu_async (d = 16 panels) scale well for a small num-
ber of processors, but stagnate as the number increases.
The reason is that, by increasing the processors while the
CPUs part remains constant, the CPUs complete their por-
tion of the factorization, while the GPU is still updating

Scalability of CALU on AMD opteron 6172 using 1 GPU for M=N=10112
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Figure 7: Scalability comparison of CALU with
modeled parameters and some variants with fixed
parameters on an AMD Opteron 6172 using one
NVIDIA Tesla S2050 GPU.

its part of the matrix. The same behavior is observed with
calu_async(d = 26% matriz). Calu_async (d = estimated)
outperforms all the other variants and shows a good scala-
bility with the increasing number of processors.

5.4 Performance and scalability

5.4.1 Performance for square matrices

Figure 8 shows the performance of calu_async with the pa-
rameter d estimated using our model. Figure 8a. shows
the performance on an AMD Opteron 6180 with 48 cores
and one GPU. Here magma_dgetrf and magma_calu_sync
achieve almost the same performance. For very small ma-
trices, magma._dgetrf is better than magma._calu_sync, while
for larger matrices, magma_calu_sync becomes slightly bet-
ter but with no more than 5% improvement. Magma_dgetrf
is better than MKL_dgetrf but the performance of MKL
keeps scaling because it fully exploits the number of cores
available. For very small matrices (M = N < 4032), the
performance of calu_async is close to magma_dgetrf but not
better. The reason is that, our approach is based on an
estimation, so a small difference from the optimal number
of blocks may show some performance degradation for very
small matrices. For M = N > 5184, calu_async outper-
forms magma._dgetrf and magma_calu_async. The best im-
provement is otained for M = N = 11008, where calu_async
is 2x faster than magma_dgetrf and magma_calu_sync, and
also 2.7x faster than MKL_dgetrf. For the largest matrix,
that is, M = N = 18048, calu_async reaches 503 GFlops/s,
which represents 51% of the total peak performance (CPUs
+ GPU), while magma_dgetrf reaches 276 GFlops/s which
represents 28% of the total peak performance. Figure 8b
shows the performance on Intel Xeon E5-2670, where the
same behavior is observed and calu_async is up to 1.5x
faster than magma_dgetrf and 2x faster than mkl dgetrf,
for M = N = 13056. For M = N = 18048, it achieves



489 GFlops/s, while magma_dgetrf achieves 336 GFlops/s,
which corresponds, respectively, to 49% and 33% of the total
peak performance.

Matri size

a. 48 AMD Opteron 6180 b. 16 Intel Xeon E5-2670
cores and one S2050 GPU.  cores and one M2090 GPU.

Figure 8: Performance of CALU for square matrix.

Figure 9 shows the performance on high-end CPUs (Sandy
Bridge; 16 core @2.6GHz, DP Peak 332 GFlop/s), GPUs
(K20c; DP Peak 1,174 GFlop/s), and Intel Xeon Phi (DP
Peak 1,046 GFlop/s).

“-calu_async (GPU)
calu_async (MIC)
“m-MKL_dgetrf (16 cores)
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&
S
L 15

S 's@“ O@ &”@
Matrix size

Figure 9: Asynchronous CALU on high-end CPUs
(Sandy Bridge), GPUs (K20c), and Intel Xeon Phi.
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5.4.2  Scalability for square matrices

Figure 10 shows the scalability of calu_async vs. magma._dgetrf
and magma._calu_sync. We observe that when increasing the
number of processors, magma._dgetrf does not scale. On the
same problem size, magma_calu_sync increases the perfor-
mance by 5% compared to magma_dgetrf, but it does not
scale either, while calu_async scales very well on both AMD
and Intel systems.

Scalability of CALU on Intel Xeon E5-2670, Tesla M2090 using 1 GPU for
M=N-18048

A

~ a & 2
Number of processors Number of processors

a. AMD Opteron 6172 using b. Intel Xeon E5-2670 using
one Tesla S2050 GPU. one Tesla M2090 GPU.

Figure 10: Scalability of CALU with modeled pa-
rameters vs. magma dgetrf and magma calu sync.

5.4.3  Results on tall skinny matrices

Figure 11 shows the performance obtained for tall and skinny
matrices. CALU is well suited for factorizing tall and skinny
matrices, so combining it with a GPU may lead to im-
portant performance improvements as well. Figure 11 a.
shows the performance of magma_dgetrf, magma_calu_sync,

and calu_async for tall and skinny matrices when the num-
ber of columns is fixed to N = 1024 and the number of
rows increases. We observe that, contrary to calu_async,
magma_dgetrf and magma_calu_sync do not scale with the
matrix size when the number of columns becomes larger than
20000. For this set of problems, calu_async is up to 4 times
faster than magma_dgetrf and up to 2.5 times faster than
magma._calu sync. Figure 11 b. shows that calu_async also
scales better with the number of processors. For a matrix
of size M = 20000 and N = 1024, when P < 12, the model
estimates to use only one block column in the CPUs part
(d =1). With one column in the CPUs part, calu_async be-
haves almost like magma_calu_sync and then shows similar
performance. For P > 12, the model estimates a value of d
greater than 1 and calu_async leads to important speedup.

Scalability of

tal skinny matices with N=1020

Jumber of

a. Performance for N=1,024 b.  Strong scalability for
and M increasing. M = 20,000, N = 1,024.

Figure 11: Performance and scalability of asyn-
chronous CALU for tall skinny matrices on an AMD
Opteron 6172 using one Tesla S2050 GPU.

6. CONCLUSION

In this paper, we have introduced a new LU factorization ap-
proach for hybrid CPU/GPU systems which balances work
between CPUs and the GPU. The main contribution of this
work was to propose an approach that can self-adapt on any
architecture by using its manufacturer’s peak performances.
We suggested a simple and yet accurate model to compute
the initial amount of work for the CPUs. The advantage of
our model is that it can be easily extended to several other
algorithms in dense linear algebra. We have used CALU
for the panel factorization because of its possibility to par-
allelize the panel, but also because of the increasing popu-
larity of such a class of algorithms. On AMD Opteron and
Intel Xeon machines in our test set, our experiments show
that our algorithm is faster and better scalable compared
to the corresponding standard routine in MAGMA and our
previous implementation of CALU for GPUs [5].

This work has several directives. First, we plan to extend
our implementation to multi-GPUs. This can be done easily
by broadcasting each computed panel to the GPUs and by
transferring dynamically each block column from the appro-
priate GPU to the CPUs during the factorization. Second,
we will implement the same approach with the classic partial
pivoting; to do so, we plan to use a technique such as paral-
lel recursive LU factorization [10]. Third, our work is being
incorporated into MAGMA. Finally, we plan to extend this
concept to several other dense algebra routines such as QR,
CAQR, Cholesky, and eigensolvers.
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