
Unified Development for Mixed Multi-GPU and Multi-Coprocessor
Environments using a Lightweight Runtime Environment

Azzam Haidar1, Chongxiao Cao1, Asim YarKhan1, Piotr Luszczek1, Stanimire Tomov1, Khairul Kabir1, and
Jack Dongarra1,2,3

1University of Tennessee, Knoxville, USA
2Oak Ridge National Laboratory, Oak Ridge, USA

3University of Manchester, Manchester, UK

Abstract
Many of the heterogeneous resources available to modern com-
puters are designed for different workloads. In order to effi-
ciently use GPU resources, the workload must have a greater
degree of parallelism than a workload designed for multicore-
CPUs. And conceptually, the Intel Xeon Phi coprocessors
are capable of handling workloads somewhere in between the
two. This multitude of applicable workloads will likely lead
to mixing multicore-CPUs, GPUs, and Intel coprocessors in
multi-user environments that must offer adequate computing
facilities for a wide range of workloads. In this work, we are
using a lightweight runtime environment to manage the resource-
specific workload, and to control the dataflow and parallel ex-
ecution in two-way hybrid systems. The lightweight runtime
environment uses task superscalar concepts to enable the de-
veloper to write serial code while providing parallel execution.
In addition, our task abstractions enable unified algorithmic
development across all the heterogeneous resources. We pro-
vide performance results for dense linear algebra applications,
demonstrating the effectiveness of our approach and full utiliza-
tion of a wide variety of accelerator hardware.

1 Introduction
With the release of CUDA, the scientific, HPC, and technical
computing communities started to enjoy the performance bene-
fits of GPUs. The ever expanding capabilities of the hardware
accelerators allowed GPUs to deal with more demanding kinds
of workloads and there was very little need to mix different
GPUs in the same machine. Intel offering in the realm of hard-
ware acceleration came in the form of a coprocessor called MIC
(Many Integrated Cores) now known as Xeon Phi and available
under Knights Corner moniker. In terms of capabilities, on the
one hand, they are similar to those of GPUs but, on the other
hand, there are some slight differences in workloads that could
be handled by Phi. We do not aim this paper as comparison
between GPUs and the recently introduced MIC coprocessor.
Instead, we take a different stand. We believe that users will
combine CPUs, GPUs, and coprocessors to leverage strengths
of each of them depending on the workload. In a similar fashion,
we are showing here how to combine their strengths to arrive

at another level of heterogeneity by utilizing all three: CPUs,
GPUs, and coprocessors. We call this a multi-way heterogeneity.
We present a unified programming model that alleviates the com-
plexity of dealing with multiple software stacks for computing,
communication, and software libraries.

2 Background and Related Work
This paper presents research in designing the algorithms and the
programing model for high-performance dense linear algebra
(DLA) in heterogeneous environments, consisting of a mix of
multicore CPUs, GPUs, and Intel Xeon Phi coprocessors (MICs).
The mix can contain resources with varying capabilities, e.g.,
CUDA GPUs from different device generations. While the
main goal is to obtain as high fraction of the peak performance
as possible for an entire heterogeneous system, a competing
secondary goal is to propose a programming model that would
simplify the development. To this end, we propose and develop
a new lightweight runtime environment, and a number of dense
linear algebra routines based on it. We demonstrate the new
algorithms, their performance, and the programming model
design using the Cholesky and QR factorizations.

2.1 High Performance on Heterogeneous Systems

Efficient use of current computer architectures, namely, running
close to their peak performance, can only be achieved for algo-
rithms of high computational intensity, e.g., in DLA, n2 data
requires O(n3) floating point operations (flops). In contrast,
less compute intensive algorithms like the ones using sparse
linear algebra can reach only a fraction of the peak performance,
e.g., a few Gflop/s for highly optimized SpMV [5] vs. over
1, 000 Gflop/s for DGEMM on a Kepler K20c GPU [9]. This
highlights the interest in DLA and the importance of designing
computational applications that can make efficient use of their
hardware resources.

Early results for dense linear algebra were tied to development
of high performance BLAS. Volkov el al. [23] developed fast
SGEMM for the NVIDIA Tesla GPUs and highly efficient LU,
QR, and Cholesky based on that. The fastest DGEMM and
factorizations based on it for the NVIDIA Fermi GPUs was
developed by Nath et al. [16]. These early BLAS developments
were eventually incorporated into the CUBLAS library [9]. The

1



main DLA algorithms from LAPACK were developed for a
single GPU and released through the MAGMA library [15].

More recent work has concentrated on porting additional al-
gorithms to GPUs, and on various optimizations and algorithmic
improvements. The central challenge has been to split the com-
putation among the hardware components to efficiently use them,
to maintain balanced load, and to reduce idle times. Although
there have been developments for a particular accelerator and its
multicore host [2, 4, 7, 10, 19, 20], to the best of our knowledge
there has been no efforts to create a DLA library on top of a
unified framework for multi-way heterogeneous systems.

2.2 Heterogeneous parallel programming models

Both NVIDIA and Intel provide various programming mod-
els for their GPUs and coprocessors. In particular, to program
and assign work to NVIDIA GPUs and Intel Xeon Phi copro-
cessors, we use CUDA APIs and heterogeneous offload prag-
mas/directives, respectively. To unify the parallel scheduling of
work between these different architectures we designed a new
API, based on a lightweight task superscalar runtime environ-
ment, that automates the task scheduling across the devices. In
this way, the API can be easily extended to handle other devices
that use their own programming models, e.g., OpenCL [7].

Task superscalar runtime environments have become a com-
mon approach for effective and efficient execution in multi-
core environments. This execution mechanism has its roots
in dataflow execution, which has a long history dating to the
nineteen sixties. It has seen a reemergence in popularity with
the advent of multicore processors in order to use the available
resources dynamically and efficiently. Many other programming
methodologies need to be carefully managed in order to avoid
fork-join style parallelism, also called Bulk Synchronous Pro-
cessing [22], which is increasingly wasteful in a face of ever
larger numbers of cores.

In our current research, we build on the QUARK [24, 25] run-
time environment to demonstrate the effectiveness of dynamic
task superscalar execution in the presence of heterogeneous ar-
chitectures. QUARK is a superscalar execution environment
that has been used with great success for linear algebra software
on multicore platforms. The PLASMA linear algebra library
has been implemented using QUARK and has demonstrated
excellent scalability and high performance [1, 14].

There is a rich area of work on execution environments that
begin with serial code and result in parallel execution, often us-
ing task superscalar techniques, for example Jade [18], Cilk [6],
Sequoia [11], SuperMatrix [8], OmpSS [17], Habanero [4],
StarPU [3], or the DepSpawn [12] project.

We chose QUARK as our lightweight runtime environment
for this research because it provides flexibility in low level con-
trol of task location and binding that would be harder to obtain
using other superscalar runtime environments. But, the concep-
tual work done in this research could be replicated within other
projects, so we view QUARK simply as a convenient exemplar
of a lightweight, task-superscalar runtime environment.

3 Algorithmic Advancements
In this section, we present the linear algebra aspects of our
generic solution for development of either Cholesky, Gauss,

and Householder factorizations based on block outer-product
updates of the trailing matrix.

Conceptually, one-sided factorization maps a matrix A into a
product of matrices X and Y:

F :
[

A11 A12
A21 A22

]
7→
[

X11 X12
X21 X22

]
×
[

Y11 Y12
Y21 Y22

]
Algorithmically, this corresponds to a sequence of in-place

transformations of A, whose storage is overwritten with the
entries of matrices X and Y (Pij indicates currently factorized
panels):A(0)

11 A(0)
12 A(0)

13
A(0)

21 A(0)
22 A(0)

23
A(0)

31 A(0)
32 A(0)

33

→
P11 A(0)

12 A(0)
13

P21 A(0)
22 A(0)

23
P31 A(0)

32 A(0)
33

→

→

XY11 Y12 Y13

X21 A(1)
22 A(1)

23
X31 A(1)

32 A(1)
33

→
XY11 Y12 Y13

X21 P22 A(1)
23

X31 P32 A(1)
33

→
→

XY11 Y12 Y13
X21 XY22 Y23

X31 X32 A(2)
33

→
XY11 Y12 Y13

X21 X22 Y23
X31 X32 P33

→
→

XY11 Y12 Y13
X21 XY22 Y23
X31 X32 XY33

→ [
XY
]

,

where XYij is a compact representation of both Xij and Yij in
the space originally occupied by Aij.

Cholesky Householder Gauss

PanelFactorize xPOTF2 xGEQF2 xGETF2
xTRSM

xSYRK2 xLARFB xLASWP
TrailingMatrixUpdate xGEMM xTRSM

xGEMM

Table 1: Routines for panel factorization and the trailing matrix
update.

Observe two distinct phases in each step of the transformation
from [A] to [XY]: panel factorization (P) and trailing matrix
update: A(i) → A(i+1). Implementation of these two phases
leads to a straightforward iterative scheme shown in Algorithm 1.
Table 1 shows BLAS and LAPACK routines that should be
substituted for the generic routines named in the algorithm.

Algorithm 1: Two-phase implementation of a one-sided
factorization.
for Pi ∈ {P1, P2, . . . , Pn} do

PanelFactorize(Pi)
TrailingMatrixUpdate(A(i))

The use of multiple accelerators for the computations com-
plicates the simple loop from Algorithm 1: we have to split
the update operation into multiple instances for each of the
accelerators. This was done in Algorithm 2. Notice that Pan-
elFactorize() is not split for execution on accelerators because it

2



Algorithm 2: Two-phase implementation with a split up-
date.
for Pi ∈ {P1, P2, . . .} do

PanelFactorize(Pi)
TrailingMatrixUpdateKepler(A(i))
TrailingMatrixUpdatePhi(A(i))

is considered a latency-bound workload which faces a number
of inefficiencies on throughput-oriented devices. Due to their
high performance rate exhibited on the update operation, and
the fact that the update requires the majority of floating-point
operations, it is the trailing matrix update that is be off-loaded.
The problem of keeping track of the computational activities
is exacerbated by the separation between the address spaces
of main memory of the CPU and the devices. This requires
synchronization between memory buffers and is included in the
implementation shown in Algorithm 3.

Algorithm 3: Two-phase implementation with a split update
and explicit communication.

for Pi ∈ {P1, P2, . . .} do
PanelFactorize(Pi)
PanelSendKepler(Pi)
TrailingMatrixUpdateKepler(A(i))
PanelSendPhi(Pi)
TrailingMatrixUpdatePhi(A(i))

The code has to be modified further to achieve closer to opti-
mal performance. In fact, the bandwidth between the CPU and
the devices is orders of magnitude too slow to sustain computa-
tional rates of accelerators1 The common technique to alleviate
this imbalance is to use lookahead [21].

Algorithm 4: Lookahead of depth 1 for the two-phase fac-
torization.
PanelFactorize(P1)
PanelSend(P1)
TrailingMatrixUpdate{Kepler,Phi}(P1)
PanelStartReceiving(P2)
TrailingMatrixUpdate{Kepler,Phi}(R(1))
for Pi ∈ {P2, P3, . . .} do

PanelReceive(Pi)
PanelFactorize(Pi)
PanelSend(Pi)
TrailingMatrixUpdate{Kepler,Phi}(Pi)
PanelStartReceiving(Pi)
TrailingMatrixUpdate{Kepler,Phi}(R(i))

PanelReceive(Pn)
PanelFactor(Pn)

Algorithm 4 shows a very simple case of lookahead of depth

1The bandwidth for current generation PCI Express is at most 16 GB/s and
the devices achieve over 1000 Gflop/s performance.

1. The update operation is split into an update of the next panel,
the start of the receiving of the next panel that just got updated,
and an update of the rest of the trailing matrix R. The splitting is
done to overlap the communication of the panel and the update
operation. The complication of this approach comes from the
fact that depending on the communication bandwidth and the
accelerator speed, a different lookahead depth might be required
for optimal overlap. In fact, the adjustment of the depth is often
required throughout the factorization’s runtime to yield good
performance: the updates consume progressively less time when
compared to the time spent in the panel factorization.

Since the management of adaptive lookahead is tedious, it
is desirable to use a dynamic DAG scheduler to keep track of
data dependences and communication events. The only issue
is the homogeneity inherent in most of the schedulers which is
violated here due to the use of three different computing devices
that we used. Also, common scheduling techniques, such as
task stealing, are not applicable here due to the disjoint address
spaces and the associated large overheads. These caveats are
dealt with comprehensively in the remainder of the paper.

4 Lightweight Runtime for Heterogeneous Hy-
brid Architectures

In this section, we discuss the techniques that we developed
in order to achieve an effective and efficient use of heteroge-
neous hybrid architectures. Our proposed techniques consider
both, the higher ratio of execution and the hierarchical mem-
ory model of the new and emerging accelerators and coproces-
sor hardware in order to create a heterogeneous programming
model. We also redesign an existing superscalar task execution
environment to handle to schedule and execute tasks on multi-
way heterogeneous devices. For our experiments, we consider
shared-memory multicore machines with some collection of
GPUs and MIC devices. Below, we present QUARK and the
specific changes incorporated in it to facilitate execution on
heterogeneous devices.

4.1 Task Superscalar Scheduling

Task-superscalar execution takes a serial sequence of tasks as
input and schedules them for execution in parallel, inferring
the data dependences between the tasks at runtime. The depen-
dences between the tasks are inferred through the resolution of
data hazards: Read after Write (RaW), Write after Read (WaR)
and Write after Write (WaW). The dependences are extracted
from the serial code by having the user annotate the data when
defining the tasks, noting whether the data is to be read and/or
written.

The RaW hazard, often referred to as the true dependency,
is the most common one. It defines the relation between a task
writing the data and another task reading that data. The reading
task has to wait until the writing task completes. In contrast,
if multiple tasks all wish to read the same data, they need not
wait on each other but can execute in parallel. Task-superscalar
execution results in an asynchronous, data-driven execution that
may be represented by a Direct Acyclic Graph (DAG), where
the tasks are the nodes in the graph and the edges correspond to
data movement between the tasks. Task-superscalar execution
is a powerful tool for productivity. Since serial code is the input

3



for the runtime system, and the parallel execution avoids all
the data hazards, the correctness of the serial code guarantees
parallel correctness.

Using task superscalar execution, the runtime can achieve
parallelism by executing tasks with non-conflicting data de-
pendences (e.g., simultaneous reads of data by multiple tasks).
Superscalar execution also enables lookahead in the serial code,
since tasks from further ahead in the serial presentation of tasks
can be executed as soon as their dependences are satisfied.

Lightweight Runtime Environment QUARK (QUeuing
and Runtime for Kernels) is the lightweight runtime environment
chosen for this research, since it provides an API that allows
low level task placement. QUARK is a data-driven dynamic
superscalar runtime environment with a simple API for serial
task insertion. It is the dynamic runtime engine used within the
PLASMA linear algebra library and has been shown to provide
high productivity and performance benefits [14, 24, 25].

5 Efficient and Scalable Programming Model
Across Multiple Devices

In this section, we discuss the programming model that raises
the level of abstraction above the hardware and its accompany-
ing software stack to offer a uniform approach for algorithmic
development. We describe the techniques that we developed in
order to achieve an effective use of multi-way heterogeneous
devices. Our proposed techniques consider both, the higher
ratio of execution and the hierarchical memory model of the
new emerging accelerators and coprocessors.

5.1 Supporting Heterogeneous Platforms

GPU accelerators and coprocessors have a very high compu-
tational peak compared to CPUs. For simplicity, we refer to
both GPUs and coprocessors as accelerators. Also, different
types of accelerators have different capabilities, which makes it
challenging to develop an algorithm that can achieve high per-
formance and reach good scalability. From the hardware point
of view, an accelerator communicates with the CPU using I/O
commands and DMA memory transfers, whereas from the soft-
ware standpoint, the accelerator is a platform presented through
a programming interface. The key features of our model are the
processing unit capability (CPUs, GPUs, Xeon Phi), the memory
access, and the communication cost. As with CPUs, the access
time to the device memory for accelerators is slow compared to
peak performance. CPUs try to improve the effect of the long
memory latency and bandwidth by using hierarchical caches.
This does not solve the slow memory problem completely but is
often effective. On the other hand, accelerators use multithread-
ing operations that access large data sets that would overflow
the size of most caches. The idea is that when the accelerator’s
thread unit issues an access to the device memory, that thread
unit stalls until the memory returns a value. In the meantime,
the accelerator’s scheduler switches to another hardware thread,
and continues executing that thread. In this way, the accelerator
exploits program parallelism to keep functional units busy while
the memory fulfills past requests. By comparison with CPUs,
the device memory delivers higher absolute bandwidth (around
180 GB/s for Xeon Phi and 160 GB/s for Kepler K20c). To
side-step memory issues, we develop a strategy that prioritizes

the data-intensive operations to be executed by the accelerator
and keep the memory-bound ones for the CPUs since the hierar-
chical caches with out-of-order superscalar scheduling are more
appropriate to handle it. Moreover, in order to keep the accel-
erator busy, we redesign the kernels and propose dynamically
guided data distribution to exploit enough parallelism to keep
the accelerators and processors busy.

Algorithm 5: Cholesky implementation for multiple de-
vices.
Task Flags panel flags = Task Flags Initializer
Task Flag Set(&panel flags, PRIORITY, 10000)

memory-bound→ locked to CPU
Task Flag Set(&panel flags, BLAS2, 0)
for k ∈ {0, nb, 2× nb, . . . , n} do

Factorization of the panel dA(k:n,k)
Cholesky on the tile dA(k,k)
TRSM on the remaining of the panel dA(k+nb:n,k)

DO THE UPDATE: SYRK task has been split into a
set of parallel compute intensive GEMM to increase
parallelism and enhance the performance. Note that
the first GEMM consists of the update of the next
panel, thus the scheduler check the dependency and
once finished it can start the panel factorisation of the
next loop on the CPU.

if panel m > panel n then
SYRK with trailing matrix

for j ∈ {k + nb, k + 2nb, . . . , n} do
GEMM dA(j:n,k) × dA(j,k)T = dA(j:n,j)

From a programming model point of view, we probably can-
not hide the distinction between the two levels of parallelism.
For that, we convert each algorithm into a host part and an
accelerator part. Each routine to run on the accelerator must
be extracted into a separate hardware specific kernel function.
The kernel itself may have to be carefully optimized for the
accelerator, including unrolling loops, replacing some memory-
bound operations by compute-intensive ones even if it has a
marginal extra cost, and also arranging its tasks to use the de-
vice memory efficiently. The host code must manage the device
memory allocation, the CPU-device data movement, and the
kernel invocation. We redesigned our QUARK runtime engine
in order to present a much easier programming environment and
to simplify scheduling. This often allows us to maintain a single
source version that handles different types of accelerators either
independently or when mixed together. Our intention is that
our model simplifies most of the hardware details, but gives us
finer levels of control. Algorithm 5 shows the pseudocode for
the Cholesky factorization as an algorithm designer views it. It
consists of a sequential code that is simple to comprehend and
independent of the architecture. Each of these calls represents
a task that is inserted into the scheduler, which stores it to be
executed when all of its dependencies are satisfied. Each task

4



by itself consists of a call to a kernel function that could either
be a CPU or an accelerator function. We tried to hide the differ-
ences between hardware and letting the QUARK engine handle
the transfer of data automatically. In addition, we developed
low-level optimizations for the accelerators, in order to accom-
modate hardware- and library-specific tuning and requirements.
Moreover, we implemented a set of directives that are evaluated
at runtime in order to fully map the algorithm to the hardware
and run close to the peak performance of the system. Using
these strategies, we can more easily develop simple and portable
code, that can run on different heterogeneous architecture let-
ting the scheduling and execution engine do much of the tedious
bookkeeping.

In the discussion below, we will describe in detail the op-
timization techniques we propose, and explore some of the
features of our model and also describe some directives that
help with tuning performance in an easy fashion. The study
here is described in the context of the Cholesky factorization
but it can be easily applied to other algorithms such as the QR
decomposition and LU factorization.

5.2 Resource Capability Weighing (CW)

Since there is no simple way to express the difference in
the workload-capabilities between the CPUs and accelerators.
Clearly, we cannot balance the load, if we treat them as peers
and assign them equivalent amount of work this naı̈ve strat-
egy would cause the accelerator to be substantially idle. As
described above, in our model we propose to assign the latency-
bound operations to the CPUs and the compute-intensive ones to
accelerators. In order to support multi-way heterogeneous hard-
ware, QUARK was extended with a mechanism for distributing
tasks based on the individual capabilities of each device. For
each device i and each kernel type k, QUARK maintains an αik
parameter which corresponds to the effective performance rate
that can be achieved on that device. In the context of linear
algebra algorithms, this means that we need an estimation of
performance for Level 1, 2, and 3 BLAS operations. This can be
done either by the developer during the implementation where
the user gives a directive to QUARK that this kernel is either
bandwidth-bound or compute-bound function (as shown in Al-
gorithm 5 with a call to Task Flag Set with BLAS2 argument) or
estimated according to the volume of data and the elapsed time
of a kernel by the QUARK engine at runtime.





          

        





          

        

Figure 1: A trace of the Cholesky factorization on a multicore
CPU with a single GPU K20c, assigning the panel factorization
task to the CPU (brown task) and the update to the GPU (green
task) for a matrix of size 20,000.

Figure 1 shows the execution trace of the Cholesky factoriza-
tion on a single multicore CPU and a K20c GPU of system A.
We see that the memory-bound kernel (e.g., the panel factoriza-
tion for the Cholesky algorithm) has been allocated to the CPU
while the compute-bound kernel (e.g., the update performed by
DSYRK) has been allocated to the accelerator. The initial data
is assumed to be on the device, and when the CPU is executing
a task, they need to be copied from the device and sent back
to be used for updating the trailing matrix. The data transfer
is represented by the purple color in the trace. The CPU panel
computation is represented by the gold color. The trailing ma-
trix update are depicted in green. For clarity, we varied the
intensity of the green color representing the update from light
to dark for the first 5 steps of the algorithm. From this trace,
we can see that the GPU is kept busy all the way until the end
of execution. The use of the lookahead technique described in
Algorithm 4, does not require any extra effort since it is handled
by the QUARK engine through the dependencies analysis. The
engine will ensure that the next panel (panel of step k + 1) is
updated as soon as possible by the GPU in order to be sent to the
CPU to be factorized while the GPU is continuing the update
of the trailing matrix of step k. Also, the QUARK engine man-
ages the data transfer to and from the CPU automatically. The
advantage of such strategy is not only to hide the data transfer
cost between the CPU and GPU (since it is overlapped with the
GPU computation), but also to keep the GPU’s CUDA streams
busy by providing enough tasks to execute. This is highlighted
in Figure 1, where we can see that the panel of step 1 is quickly
updated by the GPU and sent to the CPU to be factorized and
sent back to the GPU, which is a perquisite to perform the trail-
ing matrix update of step 1, before the GPU has already finished
the update of trailing matrix of step 0, and so on.

However, it is clear that we can improve this further by fully
utilizing all the available resources, particularly exploiting the
idle time of the CPUs (white space in the trace). Based on the
parameters defined above, we can compute a resource capability-
weights for each task that reflects the cost of executing it on a
specific device. This cost is based on the communication cost
(if the data has to be moved) and on the type of computation
(memory-bound or compute-bound) performed by the task. For
a task that requires an n× n data, we define its computation
type to be from one of the Levels of BLAS (either 1, 2, or 3).
Thus the two factors are fairly simply defined as:

communication =
n× n

bandwidth
computation = nk × αik where k is Level k BLAS

The capability-weights for a task is then the ratio of the total
cost of the task on one resource versus another resource. For
example, the capability-weights for the update operation (a
Level 3 BLAS) from the execution shown in Figure 1 is around
1 : 10 which means that the GPU can execute 10 times as many
update tasks as CPU.

Greedy Scheduling using Capability-Weights: As each
task is inserted into the runtime, it is assigned to the resource
with the largest remaining capability-weights. This greedy
heuristic takes into account the capability-weights of the re-

5



source as well as the current number of waiting tasks preferred
to be executed by this resource. For example, for the CPU, the
panel tasks are memory-bound and thus are preferred to be exe-
cuted always on the CPU side. The heuristic tries to maintain
the ratios of the capability-weights across all the resources.





          

        





          

        

Figure 2: A trace of the Cholesky factorization on 16-core,
2-socket Sandy Bridge CPU and a K20c GPU, using capability-
weights to distribute tasks.

In Figure 2, we can see the effect of using capability-weights
to assign a subset of the update tasks to the CPU. The GPU
remains as busy as before, but now the CPU can contribute to
the computation and does not have as much idle time as before.
Careful management of the capability-weights ensures that the
CPU does not take any work that would cause a delay to the
GPU, since that would negatively affect the performance. We
also plot in Figure 3 the performance gain obtained when using
this technique. The graph shows that on a 16-core Sandy Bridge
CPU, we can achieve a gain of around 100 Gflop/s (red curve)
and 80 Gflop/s (blue curve) when enabling this technique when
using a single Fermi M2090 and Kepler K20c GPU on system
A and B, respectively (the hardware is described in §6.1).

2k 4k 6k 8k 10k 12k 14k 16k 18k 20k 22k 24k 26k
0

200

400

600

800

1000

1200

Matrix size

G
flo

p/
s

 

 
DPOTRF using CW
DPOTRF no CW
DPOTRF using CW
DPOTRF no CW

Figure 3: Performance comparison of the Cholesky factoriza-
tion when using the capability-weights (CW) to distribute tasks
among the heterogeneous hardware, on a node of 16 Sandy-
Bridge CPU and either a Kepler (K20c) of system A “red curve”
or a Fermi(M2090) of system B “ blue curve”.

Improved Task Priorities: In order to highlight the impor-
tance of task priority, we recall, that the panel factorization task
of most of the one-sided factorization (e.g., the Cholesky, QR
and LU algorithms) is on the critical path of execution. In other

words, only if a panel computation is done in its entirety, its cor-
responding update computation (compute-bound operation) can
proceed. In the traces in Figures 1 and 2, it can be observed that
the panel factorization on the CPU occurs at regular intervals
(e.g., the lookahead depth is one). By changing the priority of
the panel factorization tasks (using QUARK’s task priority flags
as mentioned in Algorithm 5), the panel factorization can be
executed earlier. This will increase the lookahead depth that the
algorithm exposes, increasing parallelism so that there are more
update tasks available to be executed by the device resources.
Using priorities to improve lookahead results in approximately
5% improvement in the overall performance of the factorization.
Figure 4 shows the update tasks being executed earlier in the
trace.





       

        





       

        

Figure 4: Trace of the Cholesky factorization on multicore 16
Sandy Bridge CPU and a K20c GPU, using priorities to improve
lookahead.

Data layout: When we proceed to the multiple accelerator
setup, the data is initially distributed over all the accelerators
in a 1-D block-column cyclic fashion, with an approximately
equal number of columns assigned to each. Note that the
data is allocated on each device as one contiguous memory
block with the data being distributed as columns within the
contiguous memory segment. This contiguous data layout
allows large update operations to take place over a number
of columns via a single Level 3 BLAS operation, which is
far more efficient than having multiple calls with block columns.

Hardware-Guide Data Distribution (HGDD): The exper-
iments showed that the standard 1-D block cyclic data layout
was hindering performance in heterogeneous multi-accelerator
environments. Figure 5 shows the trace of the Cholesky factor-
ization for a matrix of size 30, 000 on System D (consisting of a
Kepler K20c, a Xeon Phi (MIC) and Kepler K20-beta that has
half the K20c performance). The trace shows that the execution
flow is bound by the performance of the slowest machine (the
beta K20, second row) and thus we expect lower performance
on this machine.

We propose to re-adjust the data layout distribution to be
hardware-guided by the use of the capability-weights. Using the
QUARK runtime, the data is either distributed or redistributed
in an automatic fashion so that each device gets the appropriate
volume of data to match its capabilities. So, for example, for
System D, using capability weights of K20c:MIC:K20-beta of
10:8:5 would result in a cyclic distribution of 10 columns of data
being assigned to the K20c, for each 8 columns assigned to the
MIC, and each 5 columns assigned to the K20beta. The super-
scalar execution environment can do this capability-weighted

6











               

         









               

         

Figure 5: Cholesky factorization trace on multicore CPU and
multiple accelerators (a Kepler K20c, a Xeon Phi, and an old
K20-beta-release), using 1D block cyclic data distribution with-
out enabling heterogeneous hardware-guided data distribution.

data assignment at runtime.









            

         









            

         

Figure 6: Cholesky factorization trace on multicore CPU and
multiple accelerators (a Kepler K20c, a Xeon Phi, and an old
K20-beta-release), using the heterogeneous hardware-guided
data distribution techniques (HGDD) to achieve higher hardware
usage.

Figure 6 shows the trace of the Cholesky factorization for
the same example as above (a matrix of size 30K a node of the
system D) when using the hardware-guided data distribution
(HGDD) strategy. It is clear that the execution trace is more
compact meaning that all the heterogeneous hardware are fully
loaded by work and thus one can expect an increase in the total
performance. For that we represent in Figure 7 and Figure 8 the
performance comparison of the Cholesky factorization and the
QR decomposition when using the HGDD strategy. The curves
in blue shows the performance obtained for a one K20c and
one XeonPhi experiments. The dashed line correspond to the
standard 1-D block-column cyclic distribution while the contin-
uous line illustrate the HGDD strategy. We observe that we can
reach an improvement of about 200-300 Gflop/s when using the
HGDD technique. Moreover, when we add one more heteroge-
neous device (the K20beta), here it comes to the complicated
hardware situation, we can notice that the standard distribution
do not exhibit any speedup. The dashed red curve that repre-
sents the performance of the Cholesky factorization using the
standard data distribution on the three devices of system D be-
haves closely and less efficient that the one obtained with the
same standard distribution on two devices (dashed blue curve).
This was expected, since adding one more device with lower
capability may decrease the performance as it may slowdown
the fast device. The blue and red curves in Figure 7 illustrate

that the HGDD technique exhibits a very good scalability for
both algorithms. The graph shows that the performance of the
algorithm is not affected by the heterogeneity of the machine,
our proposed implementation is appropriate to maintain a high
usage of all the available hardware.

2k 4k 6k 8k 10k12k 16k 20k 24k 28k 32k
0

200
400
600
800

1000
1200
1400
1600
1800
2000
2200

Matrix size

G
flo

p/
s

 

 
Chol 3 dev HGDD
Chol 3 dev 1Dcol
Chol 2 dev HGDD
Chol 2 dev 1Dcol
Chol 1 dev

Figure 7: Performance comparison of the Cholesky factorization
when using the hardware-guided data distribution techniques
versus a 1-D block-column cyclic, on heterogeneous accelera-
tors consisting of a Kepler K20c (1dev), a Xeon Phi (2dev), and
an old K20-beta-release (3dev).

2k 4k 6k 8k 10k 12k 14k 16k 18k 20k 22k 24k 26k
0

200

400

600

800

1000

1200

1400

1600

1800

Matrix size

G
flo

p/
s

 

 
QR 3dev (HGDD)
QR 3dev (1D−cyclic)
QR 2dev (HGDD)
QR 2dev (1D−cyclic)
QR 1dev

Figure 8: QR performance comparison for hardware-guided
data distribution techniques vs. 1-D block-column cyclic, on
heterogeneous accelerators consisting of a Kepler K20c (1dev),
a Xeon Phi (2dev), and an old K20-beta-release (3dev).

5.3 Hardware-Specific Optimizations

One of the main enablers of good performance is optimizing the
data communication between the host and accelerator. Another
one is to redesign the kernels to exploit the inherent parallelism
of the accelerator even by adding extra computational cost.

In this section, we describe the development of our heteroge-
neous multi-device kernels, which includes the constraints to
consider, the methods to deal with communication, and ways of
achieving good scalability on both CPUs and accelerators. Our
target algorithms, in this study are the one sided-factorization

7



(Cholesky, QR and LU).
Redesigning BLAS kernels to exploit parallelism and

minimize memory movement: The Hermitian rank-k update
(SYRK) required by the Cholesky factorization implements the
operation A(k) = A(k) − PP∗, where A is an n by n Hermitian
trailing matrix of step k, and P is the result of the panel factor-
ization done by the CPU. After distribution, the portion of A on
each accelerator no longer appears as a symmetric matrix, but
instead has a ragged structure shown in Figure 9.

GPU 0 GPU 1

Figure 9: Block-cyclic data distribution. Shaded areas contain
valid data. Dashed lines indicate diagonal blocks.

Because of this uneven storage, the multi-device SYRK can-
not be assembled purely from regular SYRK calls on each device.
Instead, each block column must be processed individually. The
diagonal blocks require special attention. In the BLAS stan-
dard, elements above the diagonal are not accessed; the user is
free to store unrelated data there and the BLAS library will not
alter it. To achieve this, one can use a SYRK to update each
diagonal block, and a GEMM to update the remainder of each
block column below the diagonal block. However, these small
SYRK operations have little parallelism and so are inefficient on
an accelerator. This can be improved to some degree by using
either multiple streams (GPU) or a pragma (MIC) to execute
several SYRK updates simultaneously. However, because we
have copied the data to the device, we can consider the space
above the diagonal to be a scratch workspace. Thus, we update
the entire block column, including the diagonal block, writing
extra data into the upper triangle of the diagonal block, which is
subsequently ignored. We do extra computation for the diagonal
block, but gain efficiency overall by launching fewer BLAS
kernels on the device and using the more efficient GEMM ker-
nels, instead of small SYRK kernels, resulting in overall 5-10%
improvement in performance.

Improving Coalesced Data Access. The LU factorization
uses the LASWP routine to swap two rows of the matrix. How-
ever, this simple data copy operation might drop the perfor-
mance of such routines on accelerator architecture since it is
recommended that a set of threads read coalescent data from
the memory which is not the case for a row of the matrix. Such
routine needs to be redesigned in order to overcome this issue.
The device data on the GPU is transposed using a specialized
GPU kernel, and is always stored in a transposed form, to allow
coalesced read/write when the LASWP function is involved. We
note that the transpose does not affect any of the other kernel
(GEMM, TRSM) required by the LU factorization. The coalesced
read/write improves the performance of the LASWP function
1.6 times.

Enabling Specific Architecture Kernels The size of the
main Level 3 BLAS kernel that has to be executed on the devices

is yet another critical parameter to tune. Every architecture has
its own set of input problem sizes that achieve higher than aver-
age performance. In the context of one-sided algorithms, all the
Level 3 BLAS operations depend on the size of the block panel.
On the one hand, a small panel size lets the CPUs finish early
but leads to lower Level 3 BLAS performance on the accelera-
tor. On the other hand, a large panel size burdens the CPU and
the CPU computation is too slow to be fully overlapped with
the accelerator work. The panel size corresponds to a trade-off
between the degree of parallelism and the amount of data reuse.
In our model, we can easily tune this parameter or allow the
runtime to autotune it by varying the panel size throughout the
factorization.

Trading Extra Computation for Higher Performance
Rate: The implementation that is discussed here is more re-
lated to the hardware architecture based on hierarchical memory.
The LARFB routine used by the QR decomposition consists
of two GEMM and one TRMM operation. Since accelerators
are better at handling compute-bound tasks, for computational
efficiency, we replace the TRMM by GEMM, thus achieving 5-
10% higher performance when executing these kernels on the
accelerator.

6 Experimental Setup and Results
6.1 Hardware Description and Setup

Our experiments were performed on a number of shared-
memory systems available to us at the time of writing of this
paper. They are representative of a vast class of servers and work-
stations commonly used for computationally intensive work-
loads. We conducted our experiments on four different systems
all of each equipped with an Intel multicore system with dual-
socket, 8-core Intel Xeon E5-2670 (Sandy Bridge) processors,
each running at 2.6 GHz. Each socket had 24 MiB of shared L3
cache, and each core had a private 256 KiB L2 and 64 KB L1
cache. The system is equipped with 52 GB of memory and the
theoretical peak in double precision is 20.8 Gflop/s per core.

• System A is also equipped with six NVIDIA K20c cards
with 5.1 GB per card running at 705 MHz, connected to
the host via two PCIe I/O hubs at 6 GB/s bandwidth.

• System B is equipped with three NVIDIA M2090 cards
with 5.3 GB per card running at 1.3 GHz, connected via
two PCIe I/O hubs at 6 GB/s bandwidth.

• System C is also equipped with three Intel Xeon Phi cards
with 15.8 GB per card running at 1.23 GHz, and achiev-
ing a double precision theoretical peak of 1180 Gflop/s,
connected via four PCIe I/O hubs at 6 GB/s bandwidth.

• System D is a heterogeneous system equipped with a K20c,
and a Intel Xeon Phi card as the ones described above,
and also an old K20c beta release 3.8 GB running at 600
MHz. All are connected via four PCIe I/O hubs at 6 GB/s
bandwidth.

A number of software packages were used for the experiments.
On the CPU side, we used the MKL (Math Kernel Library) [13].
On the Xeon Phi side, we used the MPSS 2.1.5889-16 as the

8

















           

        















           

        

Figure 10: Trace of Cholesky factorization on multicore CPU
and multiple accelerators (up to 6 Kepler K20c).

2k4k 8k 12k16k20k24k28k32k36k40k 50k 60k
0

400
800

1200
1600
2000
2400
2800
3200
3600
4000
4400
4800
5200

Matrix size

G
flo

p/
s

 

 
DPOTRF 6 K20c
DPOTRF 4 K20c
DPOTRF 3 K20c
DPOTRF 2 K20c
DPOTRF 1 K20c

Figure 11: Performance scalability of Cholesky factorization on
multicore CPU and multiple accelerators (up to 6 Kepler K20c).

software stack, icc 13.1.1 20130313 which comes with the Com-
poser XE 2013.4.183 suite as the compiler, and finally on the
GPU accelerator we used CUDA version 5.0.35.

6.2 Mixed MIC and GPU Results

Getting good performance across multiple accelerators remains
a challenging problem that we address with the algorithmic
and programming techniques described in this paper. The effi-
cient strategies used to schedule and exploit parallelism across
multi-way heterogeneous platforms will be highlighted in this
subsection through the extensive set of experiments that we
performed on the four systems that we had access to.

Figure 10 show a snapshot of the execution trace of the
Cholesky factorization on System A for a matrix of size 40K
using six GPUs K20c. As expected the pattern of the trace looks
compressed which means that our implementation is able to
schedule and balance the tasks on the whole six GPUs devices.

Figures 11 and 12 show the performance scalability of the

2k4k6k8k 12k 16k 20k 24k 28k 32k 36k 40k
0

400

800

1200

1600

2000

2400

Matrix size

G
flo

p/
s

 

 
DPOTRF_3 XeonPhi
DPOTRF_2 XeonPhi
DPOTRF_1 XeonPhi

Figure 12: Performance scalability of Cholesky factorization on
multicore CPU and multiple accelerators (up to 3 XeonPhi).

2k4k 8k 12k16k20k24k28k32k36k40k 48k 56k
0

400
800

1200
1600
2000
2400
2800
3200
3600
4000
4400
4800

Matrix size

G
flo

p/
s

 

 
DGEQRF 6 K20c
DGEQRF 4 K20c
DGEQRF 3 K20c
DGEQRF 2 K20c
DGEQRF 1 K20c

Figure 13: Performance scalability of the QR decomposition on
multicore CPU and multiple accelerators (up to 6 Kepler K20c).

2k4k6k8k 12k 16k 20k 24k 28k 32k 36k 40k
0

400

800

1200

1600

2000

2400

Matrix size
G

flo
p/

s
 

 
QR 3 XeonPhi
QR 2 XeonPhi
QR 1 XeonPhi

Figure 14: Performance scalability of the QR decomposition on
multicore CPU and multiple accelerators (up to 3 Xeon Phi).

Cholesky factorization in double precision on either the 6 GPUs
of System A or the 3 Xeon Phi of System C. The curves show
performance in terms of Gflop/s. We note that this also reflects
the elapsed time, e.g., a performance that is two times higher,
corresponds to an elapsed time that is two times shorter. Our
heterogeneous multi-device implementation shows very good
scalability. On System A, for a 60,000 matrix, the Cholesky
factorization achieves 5.1 Tflop/s when using the 6 Kepler K20c
GPUs. We observe similar performance trends when using Sys-
tem C. For a matrix of size 40,000, the Cholesky factorization
reaches up to 2.3 Tflop/s when using the 3 Intel Xeon Phi co-
processors. Figure 13 depicts the performance scalability of the
QR factorization on System A and Figure 14 shows also the
obtained results on System C. For a matrix of size 56,000, the
QR factorization reaches around 4.7 Tflop/s on the System A
using the 6 Kepler K20c GPUs and 2.2 Tflop/s on the System C
using the 3 Intel Xeon Phi coprocessors.

7 Conclusions and Future Work
We designed algorithms and a programing model for developing
high-performance dense linear algebra in multi-way heteroge-
neous environments. In particular, we presented best practices
and methodologies from the development of high-performance
DLA for accelerators. We also showed how judicious modifi-
cations to task superscalar scheduling were used to ensure that
we meet two competing goals: (1) to obtain high fraction of
the peak performance for the entire heterogeneous system, (2)
employ a programming model that would simplify the develop-

9



ment. We presented initial implementations of two algorithms.
Future work will include merging MAGMA’s CUDA, OpenCL,
and Intel Xeon Phi development branches into a single library
using the new programming model.

Acknowledgements
This research was supported in part by the National Science
Foundation under Grant OCI-1032815 and Subcontract RA241-
G1 on NSF Prime Grant OCI- 0910735, DOE under Grants
DE-SC0004983 and DE-SC0010042, NVIDIA and Intel.

References
[1] E. Agullo, J. Dongarra, B. Hadri, J. Kurzak, J. Langou, J. Langou,

H. Ltaief, P. Luszczek, and A. YarKhan. PLASMA Users Guide.
Technical report, ICL, University of Tennessee, 2010.

[2] J. Auerbach, D. F. Bacon, I. Burcea, P. Cheng, S. J. Fink, R. Rab-
bah, and S. Shukla. A compiler and runtime for heterogeneous
computing. In Proceedings of the 49th Annual Design Automa-
tion Conference, DAC ’12, pages 271–276, New York, NY, USA,
2012. ACM.

[3] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier.
StarPU: A unified platform for task scheduling on heterogeneous
multicore architectures. Concurrency and Computation: Practice
and Experience, 23(2):187–198, 2011.

[4] R. Barik, Z. Budimlic, V. Cavè, S. Chatterjee, Y. Guo, D. Peixotto,
R. Raman, J. Shirako, S. Taşırlar, Y. Yan, Y. Zhao, and V. Sarkar.
The Habanero Multicore Software Research Project. In Pro-
ceedings of the 24th ACM SIGPLAN Conference Companion on
Object Oriented Programming Systems Languages and Applica-
tions, OOPSLA ’09, pages 735–736, New York, NY, USA, 2009.
ACM.

[5] N. Bell and M. Garland. Efficient sparse matrix-vector multipli-
cation on CUDA. NVIDIA Technical Report NVR-2008-004,
NVIDIA Corporation, Dec. 2008.

[6] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson,
K. H. Randall, and Y. Zhou. Cilk: An efficient multithreaded
runtime system. SIGPLAN Not., 30:207–216, August 1995.

[7] C. Cao, J. Dongarra, P. Du, M. Gates, P. Luszczek, and S. To-
mov. clMAGMA: High Performance Dense Linear Algebra with
OpenCL. In International Workshop on OpenCL, IWOCL 2013,
Atlanta, Georgia, USA, May 13-14 2013.

[8] E. Chan, E. S. Quintana-Orti, G. Quintana-Orti, and R. van de
Geijn. Supermatrix out-of-order scheduling of matrix operations
for SMP and multi-core architectures. In Proceedings of the
nineteenth annual ACM symposium on parallel algorithms and
architectures, SPAA ’07, pages 116–125, New York, NY, USA,
2007. ACM.

[9] NVIDIA CUBLAS library. https://developer.nvidia.com/cublas.
[10] J. Dongarra, M. Gates, A. Haidar, Y. Jia, K. Kabir, P. Luszczek,

and S. Tomov. Portable HPC Programming on Intel Many-
Integrated-Core Hardware with MAGMA Port to Xeon Phi. In
10th International Conference on Parallel Processing and Ap-
plied Mathematics, PPAM 2013, Warsaw, Poland, September
8-11 2013.

[11] K. Fatahalian, D. R. Horn, T. J. Knight, L. Leem, M. Houston, J. Y.
Park, M. Erez, M. Ren, A. Aiken, W. J. Dally, and P. Hanrahan.
Sequoia: Programming the Memory Hierarchy. In Proceedings
of the 2006 ACM/IEEE Conference on Supercomputing, SC ’06,
New York, NY, USA, 2006. ACM.

[12] C. H. González and B. B. Fraguela. A framework for argument-
based task synchronization with automatic detection of dependen-

cies. Parallel Computing, 39(9):475 – 489, 2013. Novel On-Chip
Parallel Architectures and Software Support.

[13] Intel. Math Kernel Library. http://software.intel.com/intel-mkl/.
[14] J. Kurzak, P. Luszczek, A. YarKhan, M. Faverge, J. Langou,

H. Bouwmeester, and J. Dongarra. Multithreading in the
PLASMA Library. In Handbook of Multi and Many-Core Pro-
cessing: Architecture, Algorithms, Programming, and Applica-
tions, Computer and Information Science Series. Chapman and
Hall/CRC, April 26 2013.

[15] MAGMA library. http://icl.cs.utk.edu/magma/.
[16] R. Nath, S. Tomov, and J. Dongarra. An improved

MAGMA GEMM for Fermi graphics processing units.
Int. J. High Perf. Comput. Applic., 24(4):511–515, 2010.
DOI: 10.1177/1094342010385729.

[17] J. M. Pérez, R. M. Badia, and J. Labarta. A dependency-aware
task-based programming environment for multi-core architectures.
In Proceedings of the 2008 IEEE International Conference on
Cluster Computing, 29 September - 1 October 2008, Tsukuba,
Japan, pages 142–151. IEEE, 2008.

[18] M. C. Rinard, D. J. Scales, and M. S. Lam. Jade: a high-level,
machine-independent language for parallel programming. Com-
puter, 26(6):28–38, 1993. DOI: 10.1109/2.214440.

[19] C. J. Rossbach, Y. Yu, J. Currey, J.-P. Martin, and D. Fetterly.
Dandelion: A compiler and runtime for heterogeneous systems. In
Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles, SOSP ’13, pages 49–68, New York, NY, USA,
2013. ACM.

[20] F. Song, S. Tomov, and J. Dongarra. Enabling and Scaling Matrix
Computations on Heterogeneous Multi-core and multi-GPU Sys-
tems. In Proceedings of the 26th ACM International Conference
on Supercomputing, ICS ’12, pages 365–376, New York, NY,
USA, 2012. ACM.

[21] P. E. Strazdins. Lookahead and algorithmic blocking techniques
compared for parallel matrix factorization. In 10th International
Conference on Parallel and Distributed Computing and Systems,
IASTED, Las Vegas, USA, 1998.

[22] L. G. Valiant. Bulk-synchronous parallel computers. In M. Reeve,
editor, Parallel Processing and Artificial Intelligence, pages 15–
22. John Wiley & Sons, 1989.

[23] V. Volkov and J. W. Demmel. Benchmarking GPUs to tune dense
linear algebra. In Proceedings of the 2008 ACM/IEEE conference
on Supercomputing, SC’08, Austin, TX, November 15-21 2008.
IEEE Press. DOI: 10.1145/1413370.1413402.

[24] A. YarKhan. Dynamic Task Execution on Shared and Distributed
Memory Architectures. PhD thesis, University of Tennessee,
December 2012.

[25] A. YarKhan, J. Kurzak, and J. Dongarra. QUARK Users’ Guide:
QUeueing And Runtime for Kernels. Technical report, Innovative
Computing Laboratory, University of Tennessee, 2011.

10

https://developer.nvidia.com/cublas
http://software.intel.com/intel-mkl/
http://icl.cs.utk.edu/magma/
http://dx.doi.org/10.1177/1094342010385729
http://dx.doi.org/10.1109/2.214440
http://dx.doi.org/10.1145/1413370.1413402

	Introduction
	Background and Related Work
	High Performance on Heterogeneous Systems
	Heterogeneous parallel programming models

	Algorithmic Advancements
	Lightweight Runtime for Heterogeneous Hybrid Architectures
	Task Superscalar Scheduling

	Efficient and Scalable Programming Model Across Multiple Devices
	Supporting Heterogeneous Platforms
	Resource Capability Weighing (CW)
	Hardware-Specific Optimizations

	Experimental Setup and Results
	Hardware Description and Setup
	Mixed MIC and GPU Results

	Conclusions and Future Work

