
Search Space Pruning Constraints Visualization

Blake Haugen
Innovative Computing Laboratory

University of Tennessee Knoxville

bhaugen@utk.edu

Jakub Kurzak
Innovative Computing Laboratory

University of Tennessee Knoxville

kurzak@icl.utk.edu

Abstract—The field of software optimization, among others, is
interested in finding an optimal solution in a large search space.
These search spaces are often large, complex, non-linear and even
non-continuous at times. The size of the search space makes a
brute force solution intractable. As a result, one or more search
space pruning constraints are often used to reduce the number
of candidate configurations that must be evaluated in order to
solve the optimization problem.

If more than one pruning constraint is employed, it can be
challenging to understand how the pruning constraints interact
and overlap. This work presents a visualization technique based
on a radial, space-filling technique that allows the user to
gain a better understanding of how the pruning constraints
remove candidates from the search space. The technique is then
demonstrated using a search space pruning data set derived from
the optimization of a matrix multiplication code for NVIDIA
CUDA accelerators.

I. INTRODUCTION

Many optimization problems require the evaluation of a

search space in order to determine optimal solution(s). This

search space is often complex, multivariate, nonlinear, and

often non-continuous. In software development, and many

other fields, there may be a finite number of elements in

the search space that can be evaluated. Even in cases where

the search space is not finite it may be bounded by practical

constraints. In these cases, the most obvious way to find the

optimal solution to the problem is to perform a brute force

optimization that evaluates each point in the search space and

returns the optimal solution.

In the case of simple problems, the search space may be

relatively small and evaluating every possible solution is not

an unreasonable method for finding the optimal solution. For

example, the simplest algorithm for multiplying two matrices

is shown in Figure 1. Careful examination of the algorithm

reveals that the three nested for loops could be reordered while

maintaining the correct results. By reordering the loops it is

possible to alter the memory access patterns and increase the

performance of the matrix multiplication.

The i, j, and k loops can be reordered in six different ways

to create a small search space where a brute force exhaustive

evaluation of the search space is a reasonable solution. Per-

forming six different matrix multiplications with six different

loop orderings should provide enough information to suggest

that one particular loop ordering provides the most efficient

and best performing variant of the matrix multiplication kernel.

There are many other techniques that can be used to

optimize the simple matrix multiplication algorithm shown in

f o r (i = 0 ; i < n ; i ++)

f o r (j = 0 ; j < n ; j ++)

f o r (k = 0 ; k < n ; k ++)

C[i] [j] += A[i] [k] ∗ B[k] [j] ;

Fig. 1: C = C + A ∗ B matrix multiplication. A, B and C
are n× n matrices.

f o r (k = 0 ; k < n ; m += b l k)

f o r (j = 0 ; j < n ; n += b l k)

f o r (i = 0 ; i < n ; k += b l k)

f o r (k = k ; k < k + b l k ; k ++)

f o r (j = j ; j < j + b l k ; j ++)

f o r (i = i ; i < i + b l k ; i ++)

C[i] [j] += A[i] [k] ∗ B[k] [j] ;

Fig. 2: C = C +A ∗B matrix multiplication with loop tiling.

A, B and C are n× n matrices. Tile size: blk

Figure 1. Another technique for optimizing the performance

of a matrix multiplication code is loop tiling. The most basic

implementation of loop tiling is shown in Figure 2. The tiling

of the loops in the algorithm allows for the reuse of elements

that are in the processor cache and ultimately accelerates the

computation. This formulation of the algorithm only adds three

for loops to the computation but dramatically increases the

size of the optimization search space. The two variables in

this optimization problem are the order of the loops and the

size of the tiles used in the computation. While not all of the

720 possible orderings of the loop will produce the correct

results, there are still several ways to reorder the loops and

alter the performance. It is also possible to change the size of

the blocks used in the loop.

While the matrix multiplication with loop tiling shown in

Figure 2 only works with block sizes that evenly divide the

size of the matrix, it is possible to modify the algorithm to

work with any arbitrary tile size. This means that the search

space for the optimization problem is n×o where n is all of the

tile sizes that are possible for matrices of size n (it is assumed

that tile sizes that are larger than the size of the matrix are

impractical) and o is the number of possible orderings for the

loops. This search space may be tractable for small matrices

but grows beyond the realm of brute force optimization rather

2014 Second IEEE Working Conference on Software Visualization

978-0-7695-5305-4/14 $31.00 © 2014 IEEE

DOI 10.1109/VISSOFT.2014.15

30

quickly.
It becomes apparent that the search space for the problem

must be pruned in order to make the brute force optimization

technique a practical solution. For the purposes of this paper,

we will examine two different types of pruning constraints.

Hard Constraints
A pruning constraint to eliminate cases where the result-

ing code variant will produce incorrect results or cause

an error

Soft Constraints
A pruning constraint that eliminates code variants that

will be legal and give correct results but are unlikely to

result in high performance

In the case of the matrix multiplication kernel with loop

tiling, both hard and soft pruning constraints are applied

to reduce the search space of the optimization problem. In

the case of hard constraints, the six loops can be ordered

720 different ways. However, several of these orderings will

produce incorrect results and can be pruned from the search

space. The developer may also implement one or more soft

pruning constraints based on the tile sizes used in the loop. For

example, based on experience with the processor architecture,

it is unlikely that odd tile sizes will not perform as well as even

tile sizes or the tile size should be a multiple of the cache line

size. These constraints can be violated while still producing

correct results but are unlikely to yield optimal performance.

Multiple pruning constraints can be implemented to reduce the

optimization search space to a practical size.
It is simple to understand the effects of a single pruning

constraint. The search space contains several code variants

that either pass the pruning constraint or are eliminated. This

becomes far more challenging when multiple constraints are

used and the problem becomes a multi-dimensional problem

with several interactions.
It can be challenging to fully analyze the pruning criteria

because each of the code variants can be eliminated by one

or more pruning constraints. If a single code passes all of

the pruning constraints it will be evaluated for performance.

A code variant, however, is eliminated if one or more of the

pruning constraints is not met. It is simple to evaluate the

effectiveness of a single pruning constraint at a time, but this

becomes more challenging if the developer wants to evaluate

multiple pruning constraints at a time. This work will present

a methodology and a tool for evaluating this type of problem

using a tree-based, radial, space-filling diagram.

II. RELATED WORK

A. Optimization and Search Visualization
Androulakis and Vrahatis developed a package called OP-

TAC (Optimization Analysis and Comparisons) to visualize

various optimization methods. [1] They aimed to visualize

these methods in order to compare their properties. This work,

however, does not appear to address the issue of search space

pruning.
One of the areas of interest in pruning visualization is the

problem of frequent itemset analysis. This type of analysis is

used to understand what items tend to be grouped together. For

example, it might be used to determine what types of items

are purchased together at a grocery store. In this problem a

very large search space is created from all of the possible

itemsets and is frequently pruned and visualized. Examples of

this work can be found in [2], [3], and [4].

Kuwata and Cohen develop a method for visualizing real-

time search algorithms. [5] These search algorithms often per-

form heuristic pruning of the search space in order to optimize

for performance. The visualization is used to better understand

the search space and the performance of the heuristics used for

pruning. This project seems to be closely related but seems to

focus on the performance of the search rather than the specific

pruning constraints.

B. Trees

The problem of analyzing the pruning constraints can also

be viewed as a tree-based problem. The root of the tree

represents the entirety of the search space. Each level down the

tree represents another pruning constraint. One side of the tree

will represent the code variants that pass while the other side

represents the code variants that do not pass. The tree will be

full if all possible combinations of passing and failure of the

pruning constraints are present in the data set, but experiments

thus far have shown this to be unlikely.

The visualization of trees has been heavily studied and the

methods for visualizing these structures generally fall into

two categories: the node-link diagram and the space-filling

diagram.

1) Node-Link Diagram: The node-link diagram is often

the quintessential visualization method for tree structures and

data sets. In this tree representation, each node in the tree is

generally represented by some sort visual element such as a

circle, rectangle, or even just a text element. The nodes of

the tree are then connected with a visual element (in most

cases this is a simple line) to signify their relationship in the

structure.

The node-link diagram is extremely effective at showing the

hierarchy of the objects and their relationship to one another.

This class of visualizations begins to break down when the

goal is to understand the “weight” of each element of the tree.

Typically each node in the tree is given an equal amount of

screen space in the visualization. This gives the node-link tree

diagrams a very uniform appearance but is less than ideal for

visualizing the quantities or weights associated with specific

nodes in a tree.

2) Space-Filling Diagram: One of the most common space-

filling tree diagrams is the treemap. The treemap was originally

designed as a method for visualizing the usage of a hard disk

by various users. [6] The general idea is that each of the nodes

in the tree will be represented by a rectangle. Each of the

rectangles is scaled to show the user the relative size (or some

other parameter) of that particular node. In the case of a file

system, the size of the rectangle is often used to represent

the size of a given file. The nodes are then grouped based on

some common data characteristic and placed inside of a larger

31

rectangle and all given the same color to signify that all of the

nodes are part of the same class of elements.

The treemap is an excellent tool for visualizing many indi-

vidual nodes that fit nicely into a simple two-level hierarchy,

but they begin to break down when the goal is to visualize

a deeper hierarchy. It is possible to create an interactive

visualization that would allow the user to “zoom” in on a

portion of the treemap and redraw a section of the visualization

using a different characteristic for classification. This method,

however, still only allows for the visualization of two levels

of the hierarchy at a time.

Another method for visualizing the tree structure is the

icicle plot which is similar to the idea of castles presented

by Kleiner and Hartigan. [7] The icicle plot is an adjacency

diagram where each level of the hierarchy is represented by

one or more rectangles. As you move down the hierarchy the

children of each node in the tree are represented by rectangles

that are drawn proportionally to their weight.

The final visualization of the tree diagram, first presented by

Yang, was called InterRing. [8] In this method, each successive

ring represents another level of the hierarchy. Similar to the

icicle diagram, the children are always shown one level below

the parent nodes and “divide” their parent’s portion of the

circle based on their weight. This methodology visualizes

the weight of each node in the tree, like the treemap, while

maintaining the clear hierarchy of the node-link diagram.

This technique was expanded by Stasko [9] and compared

extensively with the treemap diagram. [10] This technique

was chosen as the basis for our visualization because of how

efficiently the screen space is used to show the content. It

gives the most screen space to the lower levels of the hierarchy

where the nodes tend to be relatively small and fragmented.

III. BACKGROUND

A. Automated Empirical Optimization of Software

The ATLAS (Automatically Tuned Linear Algebra Soft-

ware) library [11] was one of the first to fully implement

the automated software optimization approach. In numerical

linear algebra, many of the applications are built on top of

smaller building blocks often called the BLAS (Basic Linear

Algebra Subroutines). If this set of routines is optimized for a

given architecture, the applications built on top of them should

also achieve high performance. The process of optimizing each

of these routines by hand is a tedious and complex task that

must be repeated for each particular hardware architecture. The

ATLAS library aimed to automate this tuning process making

the BLAS routines relatively portable across several computer

architectures.

The methodology used in the ATLAS project was given the

term AEOS (Automated Empirical Optimization of Software).

[12] As the underlying architectures grew in complexity, so

did the task of optimizing the software. The AEOS approach

automated this process by generating a tremendous number

of code variants using techniques like loop reordering, cache

blocking, and many more. Each of the code variants was

tested to determine the code variant that provides the highest

performance.

B. Accelerators

High performance computing (HPC) has recently seen

a tremendous growth in interest and adoption of Graphic

Processing Units (GPUs) for general purpose processing

(GPGPU). NVIDIA and AMD provide GPU products and

Intel has released the Xeon Phi coprocessor. These hardware

accelerators are an attractive option for many in the HPC

community because they generally provide roughly an order

of magnitude greater compute power and memory bandwidth

than a standard processor. However, these architectures are

quite different than the standard CPU. The standard CPU has

grown incredibly complex with the addition of pipelines, out-

of-order execution, branch prediction, as well as many other

technologies. While these standard CPUs have started to place

multiple cores on a single chip, they have not grown much past

12 to 16 cores for the most popular architectures at the time

of this publication.

Hardware accelerators, however, reverse this trend of a

small number of complex cores and replace them with a

large number of relatively simple cores. In order to obtain

high performance on an accelerator, the developer will need

to employ the Single Instruction Multiple Threads (SIMT)

paradigm or the Single Instruction Multiple Data (SIMD)

paradigm. The OpenCL library provides the developers with

a way of expressing code that complies with these computing

paradigms for all accelerators. NVIDIA has developed CUDA

for their own GPUs but they also support OpenCL.

Generally, codes developed for an accelerator employ a

large number of threads in order to perform the computations.

In contrast to a standard CPU thread, these threads are ex-

tremely lightweight and do not cost many resources to launch.

In the CUDA programming model, these threads are organized

into warps that contain 32 threads. These warps are then

organized by thread blocks that can vary in size. Generally,

the problem is mapped onto these threads and thread blocks

in a fashion that divides the data among several threads that

can operate all at the same time.

One of the simplest examples of how this paradigm works is

a common example that adds two vectors shown in the CUDA

kernel in Figure 3. The first line shows a vecAdd function that

receives three pointers (a, b, and c) as well as the length of

the vectors (n). (The global at the beginning of the line

is the syntax to tell the compiler that this is a CUDA kernel.)

The first line inside the function computes the location of the

current thread based on the block it is part of (blockIdx), the

size of the block (blockDim), and the particular thread inside

of the block (threadIdx). Once the global thread id has been

computed, it computes the corresponding element of c after

checking that this element is within the array. This kernel is

then launched with a specified number of threads and thread

blocks. The kernel is then executed by the threads (in parallel)

on the device.

32

g l o b a l vo id vecAdd (d oub l e ∗a ,

d o u b l e ∗b ,

d o u b l e ∗c ,

i n t n)

{
\\Get g l o b a l t h r e a d ID

i n t i d = b l o c k I d x . x ∗
blockDim . x +

t h r e a d I d x . x ;

\\Do n o t go beyond a r r a y

i f (i d < n)

c [i d] = a [i d] + b [i d] ;

}

Fig. 3: A CUDA kernel that adds vectors a and b to fill vector

c. All vectors are length n.

Fig. 4: GEMM at the device level.

C. Matrix Multiplication

In this paper, the case study will examine a data set derived

from the optimization of a matrix multiplication (using double

precision floating point numbers) written in CUDA for an

NVIDIA GPU. The canonical version of the matrix multiplica-

tion was shown earlier in Figure 1. In this code, two matrices

A and B are multiplied and added to a matrix C. [Note:

matrix multiplication and GEMM are used interchangeably

throughout this paper.]

In the case of a GPU, the C matrix is overlaid with a 2D grid

of thread blocks and each one is responsible for computing a

single tile of C. Since the code of a GPU kernel spells out

the operation of a single thread block, the two outer loops

disappear, and only one loop remains - the loop advancing

along the k dimension, tile by tile.

Figure 4 shows the GPU implementation of matrix multi-

Fig. 5: GEMM at a block level.

plication at the device level. Each thread block computes a tile

of C (dark gray) by passing through a stripe of A and a stripe

of B (light gray). The code iterates over A and B in chunks

of Kblk (dark gray). The thread block follows the cycle of:

• making texture reads of the small, dark gray stripes of A
and B and storing them in shared memory,

• synchronizing threads with the __syncthreads()
call,

• loading A and B from shared memory to registers and

computing the product,

• synchronizing threads with the __syncthreads()
call.

After the light gray stripes of A and B are completely

swept, the tile of C is read, updated, and stored back to device

memory. Figure 5 shows more closely what happens in the

inner loop. The light gray area shows the shape of the thread

block. The dark gray regions show how a single thread iterates

over the tile. The exact details of the code to implement this

algorithm are not discussed here for the sake of brevity.

D. BEAST

The methodology presented in this paper was developed

as part of the BEAST (Bench-testing Environment for Au-

tomated Software Tuning) project that aims to employ the

basic principles of AEOS in a developer-driven, iterative

code tuning process for GPU applications. In this process,

the developer first defines a specific kernel template and a

set of constraints that must be maintained. The autotuning

framework will then generate several code variants that are

either eliminated or proceed to the benchmarking phase of the

tuning process. Being an iterative process, however, the user

can adjust the various pruning constraints after each iteration

in order to better tune the code using the user’s knowledge

of the computation kernel as well as the feedback from the

bench-testing framework. For example, the user may set one

of the pruning constraints as too harsh and the tuning process

may miss a well-performing code variant. This visualization

33

can assist them in finding this error and adjust the pruning

constraints accordingly. The visualization described here is one

of the key feedback tools that allows the user to understand

the effects of the pruning constraints so that he or she may

adjust the parameters for each successive iteration of the tuning

process.

E. The Tuning Process

Given a GPU matrix multiplication algorithm as described

earlier, there are five dimensions that can be altered to generate

variants of the matrix multiplication code. The first two are

the dim m and dim n dimensions that describe the two

dimensions of the thread block. The other three parameters

are the blk m, blk n, and blk k dimensions that describe the

shape of the tiling sizes.

A sweep through all of the possible values for these five

parameters can easily generate millions of GPU matrix multi-

plication code variants. In order to reduce the search space for

this optimization problem, nine pruning constraints are used

to eliminate illegal code variants as well as variants that are

unlikely to perform highly. The nine pruning constraints are

as follows:

Hard Constraints:
cant reshape block

The thread block can’t be reshaped to cover the tile.

over max regs per block
This configuration will require more registers per block

than is allowed by the architecture. Kernel will fail.

over max regs per thread
This configuration will require more registers per

thread than is allowed by the architecture. Kernel will

fail.

over max shmem per block
This configuration requires more shared memory per

block than is allowed by the architecture. Kernel will

fail.

over max threads
This configuration requires more threads than is al-

lowed by the architecture. Kernel will fail.

Soft Constraints:
low occupancy regs

This configuration uses too many registers and is likely

to limit the occupancy and decrease performance.

low occupancy shmem
This configuration uses too much shared memory and

is likely to limit the occupancy and decrease perfor-

mance.

partial warps
Warps that are not full are not likely to provide optimal

code performance.

short on fmas
This configuration defines a kernel where the load/fma

ratio is too high and is not likely to produce high

performance results.

F. Search Space Pruning Data

Each of the code variants generated by the tuning frame-

work can be described by a number of primary and derived

characteristics. The search space of millions of code variants

can be pruned to reduce the number of candidate variants for

final testing.

In the case of the matrix multiplication kernel for the

NVIDIA GPUs, the framework generates 86,731,224 code

variants. Table I describes the number of code variants that

are eliminated by each of the pruning constraints. Each code

variant is evaluated for each pruning constraint in order to

determine whether or not the code variant should be removed

from the search space. The number of variants eliminated

in the table can be summed to a number that is far greater

than the total number of code variants in the search space

because a single code variant can fail more than one constraint.

After the pruning is completed there are a total of 1,223 code

variants that pass all nine of the pruning constraints. This is

approximately 0.001% of the original search space.

The data presented in Table I is a “rolled-up” version of

the data set that is used to generate the visualization. The

original data set contains information about every possible

combination of passing and failing of the pruning constraints.

In other words, the number of elements in the data set is

equal to 2n where n is the number of pruning constraints

that are implemented in the automatic tuning framework.

These categories are generally represented by a bitmask of

length n. For example, a search space that is pruned with

four pruning constraints would have a total of 16 data points

that correspond to all possible 4-bit bitmasks. Each bitmask

uniquely represents a set of code variants in which each

pass and fail identical pruning constraints. For example, the

set represented by the bitmask 0110 would include all code

variants that passed the first and last constraint but failed the

second and third constraint.

The data must be stored in this more complete form in order

to ensure that all of the necessary information is available

for the visualization. The “rolled-up” form of the data set is

excellent for providing the data for a visualization like the bar

chart in Figure 6. However, it does not contain any information

about the fashion in which the pruning constraints overlap that

is necessary to generate the hierarchical structure that is used

in the visualization.

IV. VISUALIZATION DESIGN

The most obvious way to visualize search space pruning

constraints is with a simple bar chart. Figure 6 shows a bar

chart of all nine pruning constraints in the case study data

set. The user can easily get information about the pruning

constraints. For example, the partial warps constraint elim-

inates a very large number of the code variants while the

over max threads constraint eliminates relatively few code

variants.

Figure 6 can be useful but it leaves many questions unan-

swered. There is no way to determine how any of the pruning

constraints overlap or interact.

34

Pruning Constraint Variants Eliminated Elimination Percentage
low occupancy shmem 73,871,811 85.17%
over max shmem per block 51,226,914 59.06%
low occupancy regs 66,154,080 76.27%
over max regs per block 33,889,968 39.07%
over max regs per thread 44,335,656 51.12%
short on fmas 27,677,304 31.91%
cant reshape block 75,204,971 86.71%
over max threads 19,432,248 22.41%
partial warps 81,665,352 94.16%

TABLE I: This is a table summarizing the effectiveness of each of the pruning constraints. There were a total of 86,731,224

code variants in this particular data set. The table lists the number of code variants that were eliminated by each of the pruning

constraints and the percentage of the search space that represents. There were a total of 1,223 code variants that passed all

nine of the pruning constraints.

Fig. 7: A screenshot of the visualization showing the hard pruning constraints.

There are three parts of the visualization tool. First, the key

defines the colors used in the visualization. The second part

is the constraint selection lists, and the final part of the tool

is the radial, space-filling visualization.

The key at the top of Figure 7 describes what each color

in the visualization represents. There are a total of four colors

used in the visualization. The first color is a light green that

represents all of the kernels before any pruning has occurred.

This color is only used in the center visualization. The

darker green represents the portion of variants that pass each

particular pruning constraint. There are two shades of blue that

represent the portion of the code variants that fail the pruning

constraint. The darker blue represents the code variants that

failed a hard constraint and the light blue represents the code

variants that fail a soft constraint. These two different shades

of blue allow the user to visually differentiate the hard and

soft pruning constraints.

On the right side of the screen there are two lists labeled

“Visible Constraints” and “Hidden Constraints.” This is the

primary way the user can interact with the visualization. Early

versions of the visualization tool included all nine pruning

constraints, but the large amount of information included in

with all pruning constraints in a single diagram quickly over-

whelmed the user. The two lists allow the user to select any

35

 0

 20

 40

 60

 80

 100

low_occupancy_shmem

over_max_shmem_per_block

low_occupancy_regs

over_max_regs_per_block

over_max_regs_per_thread

short_on_fmas

cant_reshape_block

over_max_threads

partial_warps

%
 E

lim
in

at
ed

Pruning Constraint

Percentage of Code Variants Eliminated

Fig. 6: A bar chart that shows the percentage of code variants

that are eliminated by each individual pruning constraint

pruning constraint and simply drag-and-drop it to either hide

the constraint or reorder it within the diagram. The elements

in the visible constraint list also act as labels for the various

“rings” in the diagram on the left. The elements in the list

correspond to the “rings” starting from the outside and moving

toward the center of the circle. For example, in Figure 7

the outermost section of the circle represents the portion of

the code variants that pass or fail the “cant reshape block”

constraint while the inner most “ring” (not including the light

green center circle) represents the portion of code variants that

pass or fail the “over max threads” constraint.

The final element of the tool is the radial, space-filling,

or sunburst, diagram that depicts the hierarchy of pruning

constraints. The visualization can be viewed as a hierarchical

tree with each ring representing the next level of the tree.

The root of the tree is placed at the center of the sunburst

shown as the light green center of Figure 7. The first ring is

divided into two sections where the green portion represents

the percentage of the kernels that passed the over max threads

pruning constraint, while the blue represents the percentage of

the kernels that are eliminated by this pruning constraint. Each

successive ring (moving out from the center) divides each of

the categories based on the next pruning constraint in the list.

This means that the first ring will have two sections, the second

will have four sections, the third will have eight sections, etc.

It should be noted that the data set may have several sections

that do not have any corresponding code variants and will

therefore show fewer segments in that particular ring.

Sections of the diagram are ordered to show the passing

code variants before the eliminated code variants. The diagram

starts as “12 o’clock” and proceeds in a clockwise fashion.

Fig. 8: Each constraint is ordered to show the passing con-

straints first in a clockwise fashion.

Fig. 9: A mouseover utility adds labels and information about

that particular pruning constraint.

This makes it easy to find the portion of the code variants that

pass all of the pruning constraints because they will always

start at “12 o’clock.” The blocks representing the code variants

that pass all pruning constraints are highlighted in Figure 8.

The visualization tool also includes a mouseover feature

demonstrated in Figure 9. The tooltip includes the name of

the pruning constraint corresponding to that particular ring

of the diagram, as well as the total elimination percentage

and the relative elimination percentage of that constraint. The

total elimination percentage is the percentage of all code

36

variants that are eliminated by that pruning constraint. One

of the goals of this project is to understand how the various

pruning constraints overlap in pruning the search space. With

that in mind, the relative elimination percentage describes the

percentage of code variants that would be eliminated but have

not been eliminated by the previous constraints. It is important

to note that the total elimination percentage will not vary

based on the configuration of the visualization, but the relative

elimination percentage will change based on the order of the

constraints chosen in the visible constraint list. The tooltip in

Figure 9 tells the user that the second ring from the center

represents the over max shmem per block constraint and it

eliminates 59.06% of the code variants and 57.28% of the code

variants that remain after pruning for the first constraint.

A simple example of the visualization can be found in

Figure 10 using the partial warps and over max threads prun-

ing constraints. The center of the diagram is the light green

section that is labeled as section 1 in the diagram and it

represents all of the code variants generated before pruning

the search space. The first ring from the center represents the

over max threads pruning constraint (labeled as constraint A)

and it is divided based on the the percentage of code variants

that pass (green section labeled as section 2) and fail (bright

blue section labeled as section 3) the constraint. Moving out-

ward, the outermost ring is divided into four sections labeled as

sections 4, 5, 6, and 7 and represent the partial warps pruning

constraint (labeled as constraint B). Sections 4 and 5 represent

the portion of code variants that have passed and failed pruning

constraint B, respectively, and have already passed pruning

constraint A. Similarly, sections 6 and 7 represent variants

that have passed and failed pruning constraint B, respectively,

but have not passed pruning constraint A. Also note sections

5 and 7 are light blue in color because the partial warps (B)

pruning constraint is a soft constraint. Section 3 is a bright

blue because the over max threads (A) pruning constraint is

a hard constraint.

This visualization greatly improves on the bar chart shown

in Figure 6. The bar chart makes it easy for the user to quickly

determine the portion of code variants that are eliminated by

any particular pruning constraint. This task is also possible

in the new diagram based on the percentage of the ring

that passes or fails constraints. It is true that this estimation

becomes more challenging for some constraints because of the

fragmented nature of the outer rings, but this problem can be

solved by a simple reordering of the pruning constraints in

the visualization. However, the real improvement presented in

this visualization is the ability to determine how the pruning

constraints overlap and interact. For example, a user would

be unable to determine the overlap of the two constraints

in Figure 10 if they were presented in a bar chart. The

visualization clearly shows that roughly half of the code

variants that pass constraint B would have been eliminated

by pruning constraint A.

A. Implementation Details

The visualization is implemented in javascript, making use

of the d3.js [13] and jquery libraries. This platform was

selected because the code is portable to several platforms

and does not rely on many dependencies outside of the two

javascript libraries.

The tool is also designed to be easily modified for use with

different data sets. The only input to the visualization is a CSV

file. There is one column for each of the pruning constraints

as well as a column that indicates the number of code variants

in each category. The header of each column is prepended by

“hard:” or “soft:” in order to classify each pruning constraint.

When the visualization is first opened, the “hard” constraints

are part of the visible list and the “soft” constraints are part

of the hidden list.

The table of data provided in the CSV is stored in a flat array

of json objects that represent each row of the dataset. This

format, however, is not very convenient for the hierarchical

nature of the visualization. In order to make the data easier to

use in the visualization generation, it is nested in a hierarchical

json structure. It is not possible to compute this form of

the data in advance because the user is able to reorder the

hierarchy of pruning constraints at any time. It is necessary

to recompute this data structure and the associated statistics

in real time. Luckily, the d3.js library provides a powerful

utility that generates the nested data structure based on a list of

keys. The nested function is also used to calculate the statistics

shown in the mouseover.

V. CASE STUDY INSIGHTS

The goal of this visualization is to gain a greater understand-

ing of the nature of pruning constraints in a search space.

If a developer can quickly and intuitively gain insight into

the process of search space pruning, it is possible to more

efficiently create, modify, and deploy search space pruning

constraints and ultimately find an optimal solution faster.

In the following examples we will examine some of the in-

sights that were obtained through this visualization technique.

The data was created in the process of optimizing a matrix

multiplication algorithm for an NVIDIA GPU. The algorithm

and details of the data set were described earlier in this paper.

One of the goals of this technique was to give software

developers a way to understand how the pruning constraints

in the optimization problem overlap. It is possible that they

frequently occur together or never occur together. Figure 11

examines the pruning performed by the short on fmas and

over max threads constraints. You can see that there are very

few code variants that pass the short on fmas constraint (the

inner ring) and do not pass over max thread constraints.

In fact, after applying the first constraint, the second only

eliminates another 9%.

When pruning the search space, it is also useful to

find redundant pruning constraints that may be elim-

inated in the future. Figure 12 shows pruning con-

straints for low occupancy regs, over max regs per thread,

37

Fig. 10: The outer most ring represents the partial warps constraint (A) and the inner ring represents the over max threads

constraint (B).

Fig. 11: Inner Ring: short on fmas, Outer Ring:

over max threads

and over max regs per block (labeled from inside to out-

side). We can see that after the search space has been pruned

using the low occupancy regs constraint there are no code

variants eliminated by the other two constraints that have

not already been eliminated by the first constraint. A simi-

lar redundancy occurs with the low occupancy shmem and

over max shmem per block constraints.

Figure 13 shows the low occupancy shmem and

low occupancy regs pruning constraints. It appears that

there is a rather large number of code variants that pass

low occupancy regs but fail the low occupancy shmem,

which suggests that the code might be limited by the shared

memory available in the system. This may be of interest to

hardware architects in determining what factors are important

for code performance when designing the next generation of

hardware.

The search space pruning constraint visualization tool pre-

sented in this paper made this type of pruning constraint

analysis much easier understand. It is possible to get all of

the insights above based on calculations of the data set but

this process has been greatly simplified by this interactive

visualization.

38

Fig. 12: Inner Ring: low occupancy regs, Middle

Ring: over max regs per thread, Outer Ring:

over max regs per block

Fig. 13: Inner Ring: low occupancy shmem, Outer Ring:

low occupancy regs

VI. CONCLUSIONS

Optimization problems occur in a number of domains,

including software development. The space that must be

searched is often very large and pruning constraints are an

attractive option to accelerate the optimization process. The

analysis of these pruning constraints can be a challenging

multivariate data analysis problem. The ability to reformulate

the raw data set as a tree and interact with a radial, space-filling

visualization has given users new insights into the process of

search space pruning.

ACKNOWLEDGMENT

This work was funded by NVIDIA as well as the National

Science Foundation under grant NSF-CCF-1320603.

REFERENCES

[1] G. Androulakis and M. Vrahatis, “Optac: a portable software
package for analyzing and comparing optimization methods by
visualization,” Journal of Computational and Applied Mathematics,
vol. 72, no. 1, pp. 41 – 62, 1996. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0377042795002448

[2] L. Yang, “Pruning and visualizing generalized association rules
in parallel coordinates,” IEEE Trans. on Knowl. and Data
Eng., vol. 17, no. 1, pp. 60–70, Jan. 2005. [Online]. Available:
http://dx.doi.org/10.1109/TKDE.2005.14

[3] G. Bothorel, M. Serrurier, and C. Hurter, “Visualization of frequent
itemsets with nested circular layout and bundling algorithm,” in
Advances in Visual Computing, ser. Lecture Notes in Computer
Science, G. Bebis, R. Boyle, B. Parvin, D. Koracin, B. Li, F. Porikli,
V. Zordan, J. Klosowski, S. Coquillart, X. Luo, M. Chen, and D. Gotz,
Eds. Springer Berlin Heidelberg, 2013, vol. 8034, pp. 396–405.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-41939-3 38

[4] M. Klemettinen, H. Mannila, P. Ronkainen, H. Toivonen, and A. I.
Verkamo, “Finding interesting rules from large sets of discovered
association rules,” in Proceedings of the Third International Conference
on Information and Knowledge Management, ser. CIKM ’94. New
York, NY, USA: ACM, 1994, pp. 401–407. [Online]. Available:
http://doi.acm.org/10.1145/191246.191314

[5] Y. Kuwata and P. R. Cohen, “Visualization tools for real-time search
algorithms,” Computer Science Technical Report, pp. 93–57, 1993.

[6] B. Shneiderman, “Tree visualization with tree-maps: 2-d space-filling
approach,” ACM Trans. Graph., vol. 11, no. 1, pp. 92–99, Jan. 1992.
[Online]. Available: http://doi.acm.org/10.1145/102377.115768

[7] B. Kleiner and J. A. Hartigan, “Representing points in many dimensions
by trees and castles,” Journal of the American Statistical Association,
vol. 76, no. 374, pp. pp. 260–269, 1981. [Online]. Available:
http://www.jstor.org/stable/2287820

[8] J. Yang, M. O. Ward, and E. A. Rundensteiner, “Interring: An
interactive tool for visually navigating and manipulating hierarchical
structures,” in Proceedings of the IEEE Symposium on Information
Visualization (InfoVis’02), ser. INFOVIS ’02. Washington, DC,
USA: IEEE Computer Society, 2002, pp. 77–. [Online]. Available:
http://dl.acm.org/citation.cfm?id=857191.857749

[9] J. Stasko and E. Zhang, “Focus+context display and navigation
techniques for enhancing radial, space-filling hierarchy visualizations,”
in Proceedings of the IEEE Symposium on Information
Vizualization 2000, ser. INFOVIS ’00. Washington, DC, USA:
IEEE Computer Society, 2000, pp. 57–. [Online]. Available:
http://dl.acm.org/citation.cfm?id=857190.857683

[10] J. Stasko, “An evaluation of space-filling information visualizations
for depicting hierarchical structures,” Int. J. Hum.-Comput. Stud.,
vol. 53, no. 5, pp. 663–694, Nov. 2000. [Online]. Available:
http://dx.doi.org/10.1006/ijhc.2000.0420

[11] R. C. Whaley and J. Dongarra, “Automatically Tuned Linear Algebra
Software,” in SuperComputing 1998: High Performance Networking
and Computing, 1998, cD-ROM Proceedings. Winner, best paper in
the systems category.

URL: http://www.cs.utsa.edu/˜whaley/papers/atlas_sc98.ps .
[12] R. C. Whaley, A. Petitet, and J. J. Dongarra, “Automated empirical op-

timization of software and the atlas project,” PARALLEL COMPUTING,
vol. 27, p. 2001, 2000.

[13] M. Bostock, V. Ogievetsky, and J. Heer, “D3: Data-driven documents,”
IEEE Trans. Visualization & Comp. Graphics (Proc. InfoVis), 2011.
[Online]. Available: http://vis.stanford.edu/papers/d3

39

