
On the design, autotuning, and 
optimization of GPU kernels for kinetic 
network simulations using fast explicit 

integration and GPU batched computation 

1.  University of Tennessee 
2.   Oak Ridge National Laboratory 

Mike Guidry1 and Azzam Haidar1 

In collaboration with 

Ben Brock1, Daniel Shyles1, Stan Tomov1,  
Jay Billings2, and Andrew Belt1 

(1)  University of Tennessee 
(2)  Oak Ridge National Laboratory guidry@utk.edu  

haidar@icl.utk.edu 







Coupling Realistic Thermonuclear 
Networks to Hydrodynamics 

To incorporate realistic networks in astrophysical simulations we 
must improve (substantially) the speed and efficiency for 
computing kinetic networks coupled to fluid dynamics.   

There are two general approaches that we might take: 

  Improve the algorithms used to solve the kinetic networks. 

  Improve the hardware on which the algorithms are executed. 

This presentation is about using both to affect a dramatic 
improvement in the speed and efficiency for solving this 
problem. 



Integrating Stiff Equations Numerically 

Explicit numerical integration: 

To advance the solution from time 
tn to tn+1, only information already 
available at tn is required.  

Implicit numerical integration: 

To advance the solution from 
time tn to tn+1, information at the 
new point tn+1 is required, 
implying an iterative solution.   

Thus, for numerical integration 

  Explicit methods are inherently simple, but 
potentially unstable. 

  Implicit methods are inherently complicated, but 
stable. 



Methods to Integrate Stiff Equations 

"    There are two general approaches that we might use 
to deal with stiffness. 

"    If we could stabilize explicit integration we could do 
each timestep more quickly in large networks. 

"    The traditional way:  Integrate equations 
implicitly, which is stable but requires an iterative 
solution with matrix inversions at each step 
(expensive for large networks). 

"    A new way: Replace equations with some that 
are more stable and integrate them explicitly. 



Fundamental Sources of Stiffness 

The key to stabilizing explicit integration is to understand the 
three basic sources of stiffness for a typical reaction network:  

Negative populations 

Macroscopic equilibration 

Microscopic equilibration 

  Negative populations,  
  Macroscopic equilibration 
  Microscopic equilibration. 



Example:  Explicit Integration for a Nova 
Simulation 

QSS method 

Method Steps  Speed 

Implicit 1332 1 

Asy 935 10 

QSS 777 12 

134 isotopes 
1531 couplings 
REACLIB 



Summary of Results:  Explicit vs Implicit 
Speedup for a Single Network 

Single  
network 

Thus our new algorithms can give a speed increase of about an order of 
magnitude for networks with several hundred species.  Now let us consider the 
role of modern hardware in this problem.  



Computing Power for Scientific 
Applications 

Titan 

Total of 299,008 CPU cores and 18,868 GPUs.  Capable of 27 x 1015  
floating point operations per second (27 petaflops). 



GPU Acceleration for the Network 

Implemented with CUDA C/
C++ 



Scaling for a Single Network 

This is impressive speedup but a single network utilizes only a small 
fraction of available GPU threads.  Greater efficiency requires that 
we give the GPU more work. 



Stacking Multiple Networks on a GPU 

Thus, not only might it be possible to run one network of 
realistic size faster than is now feasible, it may be possible to 
run many such networks faster than it is now possible to run 
one such network. 



Timing: Concurrent Network Launches 

Brock et al 
(2015) 

Haidar et al 
(2015) 



Timing: Concurrent Network Launches 



References 

Algebraic Stabilization of Explicit Numerical Integration for Extremely Stiff 
Reaction Networks,  Mike Guidry, J. Comp. Phys. 231, 5266-5288 (2012). 
[ArXiv:1112.4778]  

Explicit Integration of Extremely-Stiff Reaction Networks: Quasi-Steady-
State Methods, M. W. Guidry and J. A. Harris, Comput. Sci. Disc. 6, 015002 
(2013) [ArXiv:1112.4750]  

Explicit Integration of Extremely-Stiff Reaction Networks: Partial Equilibrium 
Methods, M. W. Guidry, J. J. Billings, and W. R. Hix, Comput. Sci. Disc. 6, 
015003 (2013) [arXiv: 1112.4738]  

Explicit Integration of Extremely-Stiff Reaction Networks: Asymptotic 
Methods,  M. W. Guidry, R. Budiardja, E. Feger, J. J. Billings, W. R. Hix, O. 
E. B. Messer, K. J. Roche, E. McMahon, and M. He, Comput. Sci. Disc. 6, 
015001 (2013) [ArXiv: 1112.4716]  

Explicit Integration with GPU Acceleration for Large Kinetic Networks,   Ben 
Brock, Andrew Belt, Jay Billings, and Mike Guidry, submitted to J. Comp. 
Phys. [arXiv:1409.5826] 

arXiv = http://arxiv.org/ 



Collaborators 

"    Ben Brock, University of Tennessee 

"    Daniel Shyles, University of Tennessee 

"    Azzam Haidar, University of Tennessee 

"    Stan Tomov, University of Tennessee 

"    Jay Billings, Oak Ridge National Laboratory 

"    Andrew Belt, University of Tennessee 

"    Mike Guidry, University of Tennessee 



guidry@utk.edu  
haidar@icl.utk.edu 





•  Many dense and sparse direct solvers need HP, energy-efficient 
LA functionalities on many small independent dense matrices 
•  Tiled linear algebra algorithms 
•  Multifrontal methods 
•  Preconditioners (using DLA) in sparse iterative solvers, many applications, … 

  LU, QR, or Cholesky  
on small diagonal matrices 

Sparse / Dense Matrix 
System 

  TRSMs, QRs, or LUs   

  TRSMs, TRMMs 

  Updates (Schur complement)  
GEMMs, SYRKs, TRMMs 

DAG-based factorization Batched LA 

And many other BLAS/LAPACK, e.g., for application 
specific solvers,  preconditioners, and matrices 



Motivation: factorization of thousands of small matrices 

•  Astrophysics 
•  Structural mechanics 
•  High order FEM 
•  Sparse direct solver 
•  Tensor contraction 

•  Machine Learning  
•  Data Mining 
•  Hydrodynamics 
•  Image processing 
•  Ranking and recommender systems,  etc  



We present here a feasibility design study, the idea is to target the new high- 
end technologies. 

Observations and current situation: 

•  There is a lack of linear algebra software for small problems especially 
for GPU, Xeon Phi, etc 

•  CPU: this can be done easily using existing software infrastructure 

•  GPU: are efficient for large data parallel computations, and therefore 
have often been used in combination with CPUs, where the GPU handle 
the compute bound operations while the CPU handles the small and 
difficult tasks to be parallelized 

•  What programming model is best for small problems? 



We present here a feasibility design study, the idea is to target the new high-
end technologies. 

Our goals: 

•  to deliver a high- performance numerical library for batched 
computations tuned for the modern processor architecture and that 
outperform multicore CPUs in both performance and energy efficiency. 

•  is to consider both, the higher ratio of execution and the memory 
model of the new emerging accelerators and coprocessors.  

•  define modular interfaces that allow code replacement techniques. 
This will provide the developers of applications, compilers, and runtime 
systems with the option of expressing computation as a loop, or a 
single call to a routine from the new batch operation standard. 



We present here a feasibility design study, the idea is to target the new high-
end technologies. 

2 examples: 

•  Accelerating large kinetic networks simulation 

•  A linear algebra algorithm (LU decomposition) 



Thus, not only might it be possible to run one network of 
realistic size faster than is now feasible, it may be possible 
to run many such networks faster than it is now possible to 
run one such network. 

Stacking Multiple Networks on a GPU 
Accelerating explicit solver for thermonuclear reaction  
networks in astrophysical applications 



0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

4

5

6

7

8

# concurrent networks

Ti
m

e 
pe

r i
nt

eg
ra

tio
n 

st
ep

 (m
s)

 

 

initial version

Stacking Multiple Networks on a GPU 
•  Develop and optimize the one network kernel 
•  Use CUDA streams to parallelize on the GPU and run multiple  
   networks simulations 

13!



 Accelerating explicit solver for thermonuclear reaction networks in 
astrophysical applications 

Introducing batched design: 

•  Simulates evolution of the nuclear kinetics where for any single time step on a 
single zone there is need to solve a small computation 

•  Number of zones can grow with domain size and dimension to tens of 
thousands 

•  Zones can be solved independently (batched fashion) 

•  Redesigning some block of the code, minimizing shared memory requirements 
and reordering some computation in order to fit our batched design. 



0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

4

5

6

7

8

# concurrent networks

Ti
m

e 
pe

r i
nt

eg
ra

tio
n 

st
ep

 (m
s)

 

 

initial version
batched version

39!
3X!



• Observations 
•  Batched is faster and able to run about 39 kernels at once instead of 13 kernels 

for stream 
•  3X speedup observed 
•  The calculation of a single zone can be viewed as a loop of 32100 computation 

• Bottlenecks 
•  The amount of shared memory is considered large for the “batched design” 
•  The algorithmic throughput/data structure is not good for the “batched design” 

number of threads/block, the data layout 

• Proposition 
•  Analyze all the steps of the algorithm and try to improve it  



• Observations 
while convergence

do


1.  populate the F+ and F— 

2.  compute the contribution of each F {+,-} 

3.  update the flux and other 

4.  check for convergence


done 

flux (spices)


F-(reactions)


current computation!
initial data!
computed at different step!

F+(reactions)




• Observations 
while convergence

do


1.  populate the F+ and F— 

2.  compute the contribution of each F {+,-} 

3.  update the flux and other 

4.  check for convergence


done 

F+ contributions (spices)


F- contributions (spices)


SUM 



• Observations 
while convergence

do


1.  populate the F+ and F— 

2.  compute the contribution of each F {+,-} 

3.  update the flux and other  

4.  check for convergence


done 

Explicit method calculation and some magic that read data 
from the contribution of F+ and F- and update the flux vector 


F+ contributions (spices)


F- contributions (spices)




• Observations 
while convergence

do


1.  populate the F+ and F— 

2.  compute the contribution of each F {+,-} 

3.  update the flux and other 

4.  check for convergence


done 

10 % 
80 % 

10 % 



• Observations 
•  The main expensive component is the SUM of variable size 
•  Data is coalescent (that’s true) but is not stored in cacheline 
•  Small sum cannot be computed in parallel so sequential so threads do not 

read coalescent data anymore 
•  For the current example there is: 

•  6 large sum of size <512 
•  293 sum of size <32 

•  Large sum consume about 70% of the time small sum is about 20% 



• Proposition 1 
•  Improve the large sum by making another kernel that works using 512 

threads 

• Observation 1 
•  Improvements of about 20% on the large sum has been observed 



• Proposition 2 
•  Try to parallelize the small sum with specific kernels  

• Observation 2 
•  Do not improve at all, it slow down because of extra cost of reordering and 

shared memory requirements 



• Proposition 3 
•  Split the data over two arrays for small and large and use parallel sum 

since the F+ and the F- can proceed in parallel 

• Observation 3 
•  Very complicated, the sum becomes 3X faster but the populate and 

becomes the slowest because of non coalescent data (now) and tracking 
which data is on the small array or large array 

•   need to change the data structure 



• Proposition 4 
•  Reorder and remap such a way to be nice 

•  From GPU coding methodology 
•  From batched design point of view 

• Observation 4 
•  Very nice results 
•  But can be improved more? 



• Proposition 4 
•  Reorder and remap such a way to be nice 

•  From GPU coding methodology 
•  From batched design point of view 

• Observation 4 
•  Very nice results 
•  But can be improved more? 







We present here a feasibility design study, the idea is to target the new high-
end technologies. 

2 examples: 

•  Accelerating large kinetic networks simulation 

•  A linear algebra algorithm (LU decomposition) 



Algorithmic basics: 

•  Linear solver Ax=b follow the Lapack style algorithmic design blocking algorithm 

•  Two distinctive phases 

•  panel factorization: latency-bound workload 

•  trailing matrix update:  compute-bound operation  

Hardware characteristics and limit: 

•  GPU memory is limited (48KB of shared per SMX, limited number of register) 

•  Prefer implementation that extensively uses large number of thread/block (a warp 
is 32 threads) 

•  Prefer coalescent memory access (32 threads can read in parallel 32 elements) 

P!
a!
n!
e!
l!

Pi!

Trailing !
matrix!
update!

Factored part of A!



Classical strategies design  

•  For standard problems the strategy is to prioritize the data-intensive 
operations to be executed by the accelerator and keep the memory-bound 
ones for the CPUs since the hierarchical caches are more appropriate to 
handle it 

Difficulties 

•  Cannot be used here since matrices are very small and communication 
becomes expensive 

Proposition 

•  Go on and have a native GPU implementation 





          

        





          

        



Classical strategies design  

•  For large problems performance is driven by the update operations,  

Difficulties 

•  For batched small matrices it is more complicated and requires both 
phases to be efficient 

Proposition 

•  Redesign both phases in a tuned efficient way 



Classical strategies design  

•  A recommended way of writing efficient GPU kernels is to use the GPU’s 
shared memory – load it with data and reuse that data in computations 
as much as possible. 

Difficulties 

•  Our study and experience shows that this procedure provides very good 
performance for classical GPU kernels but is not that appealing for 
batched algorithm for different reasons: 



Difficulties 

•  Completely saturating the shared memory per SMX can decrease the 
performance of memory bound operations, since only one thread-
block will be mapped to that SMX at a time (low occupancy)  

•  due to a limited parallelism in the panel computation, the number of 
threads used in the thread block will be limited, resulting in low 
occupancy, and subsequently poor core utilization 

•  Shared memory is small (48KB/SMX) to fit the whole panel 

•  The panel computation involves different type of operations: 
•  Vectors column (find the max, scale, norm, reduction) 
•  Row interchanges (swap) 
•  Small number of vectors (apply)  

Proposition: custom design per operations type  

Factored part of Ak 

Trailing  
matrix 

Ak
i 

Factored part of A4 

Trailing  
matrix 

Ai 

Factored part of A3 

Trailing  
matrix 

Ai 

Factored part of A2 

Trailing  
matrix 

Ai 

P 
a 
n 
e 
l 

P1
i 

   Factored part of A1  

Trailing  
matrix 

A1
i 

Batched factorization 
of a set of k matrices 
A1, A2, …, Ak  



0 100 200 300 400 500 600
0

20

40

60

80

100

120

140

160

180

200

220

240

matrix size

G
flo

ps
/s

Batched dgetrf count = 2000

 

 

Magma v1: classic blocked algorithm
CuBLAS

•   2x8-core Intel Xeon E5-2670  Sandy Bridge socket 
•   NVIDIA Kepler K40 GPU 



swap kernel 60%!

gemm kernel 15%!

Classic swap: 



swap kernel 60%!

gemm kernel 15%!

Classic swap: 

How does the swap work? 



swap kernel 60%!

gemm kernel 15%!

How does the swap work? 

Classic swap: 



swap kernel 60%!

gemm kernel 15%!

How does the swap work? 

Classic swap: 



swap kernel 60%!

gemm kernel 15%!

classical swap: 

How does the swap work? 



swap kernel 60%!

gemm kernel 15%!

Bottlenecks:!
•  The swapping consists of nb successive interchanges of two rows of the matrices (serial).!

•  Data reading is not coalescent: a GPU warp cannot read 32 value at the same time unless 
matrix is stored in transpose form. However if matrix is stored in transpose form the swap is 
fast BUT the other components become very slow. !

Proposition:!
•  We propose to modify the kernel to apply all nb row swaps in parallel!
•  This modification will also allow the coalescent write back of the top nb rows of the matrix!
•  Note that the top nb rows are those used by the dtrsm kernel that is applied right after the 

dlaswp, so one optimization is to use shared memory to load a chunk of the nb rows!

Classic swap: 



swap kernel 60%!

gemm kernel 15%!

gemm kernel 30%!

swap kernel 10%!

Parallel swap: 

Classic swap: 



0 100 200 300 400 500 600
0

20

40

60

80

100

120

140

160

180

200

220

240

matrix size

G
flo

ps
/s

Batched dgetrf count = 2000

 

 

Magma v2: parallel swap
Magma v1: classic blocked algorithm
CuBLAS

•   2x8-core Intel Xeon E5-2670  Sandy Bridge socket 
•   NVIDIA Kepler K40 GPU 



panel: classical getf2 38%!
Panel factorization  
classic dgetf2: 

P!
a!
n!
e!
L!

Trailing !
matrix!
update!

Factored part of A!

32!



panel: classical getf2 38%!

Bottlenecks:!
•  nb large: !panel get slower !

--> very bad performance.!
•  nb small: !panel get faster but the update is not anymore 

! ! !efficient since dealing with gemm’s of small sizes 
! ! !--> very bad performance.!

•  trade-off ? No effect, since we are talking about small size.!

Proposition:!
•  We propose to develop two layers blocking: a recursive and 

nested blocking technique that block also the panel.!

P!
a!
n!
e!
L!

Trailing !
matrix!
update!

Factored part of A!

32!

Panel factorization  
classic dgetf2: 



(e.g., size less than 32⇥ 8) Thus, one can expect that this is the most time consuming
part of the panel factorization.

Our analysis using the NVIDIA Visual Profiler [32] shows that a large fraction of
even a highly optimized batched factorization is spent in the panels, e.g., 40% of the
time for the QR decomposition. The profiler reveals that the larf kernel requires more
than 75% of the panel time by itself. The inefficient behavior of these routines is also
due to the memory access. To resolve this challenge, we propose to improve the ef-
ficiency of the panel and to reduce the memory access by using a two-level nested
blocking technique as depicted in Figure 3. First, we recursively split the panel to an
acceptable block size nb as described in Figure 3a. In principle, the panel can be blocked
recursively until a single element. Yet, in practice, 2-3 blocked levels (an nb = 32 for
double precision was the best) are sufficient to achieve high performance. Then, the rou-
tine that performs the panel factorization (geqr2) must be optimized, which complicates
the implementation. This optimization can bring between 30% to 40% improvement de-
pending on the panel and the matrix size. In order to reach our optimization goal, we
also blocked the panel routine using the classical blocking fashion to small blocks of
size ib (ib = 8 was the optimized choice for double precision) as described in Figure 3b.
More than 25% boost in performance is obtained by this optimization.

P!
a!
n!
e!
L!

Trailing !
matrix!
update!

sub panel 1a!

Factored part of A!

128!

sub trailing m
atrix 1b!

sub trailing m
atrix 2b!

sub panel 2a!

64!

32! 32!

sub trailing m
atrix 1b!

64!

(a) Recursive nested blocking fashion.

P!
a!
n!
e!
L!

32!

done!

4!

done!

sub trailing m
atrix !

done!

sub panel !

8!

sub trailing m
atrix !

sub panel !

8!

done!

sub panel !

4!

done!

done!

sub trailing m
atrix !

sub panel !

8!

8!

(b) Classical blocking fashion.

Fig. 3. The recursive two-level nested blocking fashion used in our implementation to achieve
high-performance batched kernels.

Block Recursive dlarft Algorithm. The larft is used to compute the upper triangular
matrix T that is needed by the QR factorization in order to update either the trailing
matrix or the right hand side of the recursive portion of the QR panel. The classical
LAPACK computes T column by column in a loop over the nb columns as described in
Algorithm 1. Such implementation takes up to 50% of the total QR factorization time.
This is due to the fact that the kernels needed – gemv and trmv – require implementa-
tions where threads go through the matrix in different directions (horizontal vs. vertical,
respectively). An analysis of the mathematical formula of computing T allowed us to
redesign the algorithm to use Level 3 BLAS and to increase the data reuse by putting

Two-layers blocking: 



panel: classical getf2 38%!
panel factorization  
classical dgetf2: 

panel: classical blocked 
getf2 8%!

Recursive blocking of  
dgetf2: 



0 100 200 300 400 500 600
0

20

40

60

80

100

120

140

160

180

200

220

240

matrix size

G
flo

ps
/s

Batched dgetrf count = 2000

 

 

Magma v3: recursive blocking
Magma v2: parallel swap
Magma v1: classic blocked algorithm
CuBLAS

•   2x8-core Intel Xeon E5-2670  Sandy Bridge socket 
•   NVIDIA Kepler K40 GPU 



batched dgemm!



batched dgemm!

0 32 64 128 160 192 256 384 448 512

100

200

300

400

500

600

700

800

900

matrix m=n

G
flo

ps
/s

 

 
Magma  batched    dgemm K=128
cuBLAS  batched    dgemm K=128
Magma   batched    dgemm K= 64
cuBLAS  batched    dgemm K= 64
Magma  batched    dgemm K= 32
cuBLAS batched    dgemm K= 32

• NVIDIA Kepler K40 GPU 



batched dgemm!

0 32 64 128 160 192 256 384 448 512

100

200

300

400

500

600

700

800

900

matrix m=n

G
flo

ps
/s

 

 
cuBLAS streamed dgemm K=128
Magma  batched    dgemm K=128
cuBLAS  batched    dgemm K=128
cuBLAS  streamed dgemm K= 64
Magma   batched    dgemm K= 64
cuBLAS  batched    dgemm K= 64  
cuBLAS streamed dgemm K= 32
Magma  batched    dgemm K= 32
cuBLAS batched    dgemm K= 32 

•  NVIDIA Kepler K40 GPU 



batched dgemm!

0 32 64 128 160 192 256 384 448 512

100

200

300

400

500

600

700

800

900

matrix m=n

G
flo

ps
/s

 

 
cuBLAS streamed dgemm K=128
Magma  batched    dgemm K=128
cuBLAS  batched    dgemm K=128
cuBLAS  streamed dgemm K= 64
Magma   batched    dgemm K= 64
cuBLAS  batched    dgemm K= 64  
cuBLAS streamed dgemm K= 32
Magma  batched    dgemm K= 32
cuBLAS batched    dgemm K= 32 

Bottlenecks:!
•  Batched gemm kernel from cuBLAS and Magma 

are well suited for small matrix sizes (128) but 
stagnate for larger sizes (>128)!

Proposition:!
•  Autotune Magma GEMM for small size and 

provide a low level API that can be used from 
inside the kernels as well as try to use streamed 
whenever appropriate !



batched dgemm!

stream
ed dgem

m
!



0 100 200 300 400 500 600
0

20

40

60

80

100

120

140

160

180

200

220

240

matrix size

G
flo

ps
/s

Batched dgetrf count = 2000

 

 

Magma v4: streamed/batched gemm
Magma v3: recursive blocking
Magma v2: parallel swap
Magma v1: classic blocked algorithm
CuBLAS

•   2x8-core Intel Xeon E5-2670  Sandy Bridge socket 
•   NVIDIA Kepler K40 GPU 



Comparison with CPU:!

•  Version 1: The simple CPU implementation is to go in a loop fashion to factorize matrix 
after matrix, where each factorization is using the multi-thread version of the MKL Library.!

!Expected to have low in performance because  each matrix is small – it does not exhibit 
parallelism and so the multithreaded code is not able to feed with work all 16 SB threads 
used.!

•  Version 2: for that we proposed another version of the CPU implementation. Since the 
matrices are small (< 512) and at least 16 of them fit in the L3 cache level.!

!One of the best technique is to use each thread to factorize independently a matrix. This way 
16 factorizations are conducted independently in parallel.!



0 100 200 300 400 500 600 700 800 900 1000
0

20

40

60
80

100

120
140

160

180
200

220

240
260

280

300
320

matrix size

G
Fl

op
s/

s

batched dgetrf 2000

 

 
GPU: Magma
GPU: CUBLAS
CPU v2: 16 parallel facto using sequential MKL
CPU v1: each matrix uses MKL multithread_16

•   2x8-core Intel Xeon E5-2670  Sandy Bridge socket 
•   NVIDIA Kepler K40 GPU 

Higher is better 



32 64 128 256 384 512 640 768 896 1024
0

50

100

150

200

250

300

350

matrix size

G
flo

ps
/s

Batched dgeqrf count = 2000

 

 

GPU: Magma
GPU: CUBLAS
CPU v2: 16 parallel facto using sequential MKL
CPU v1: each matrix uses MKL multithread_16

•   2x8-core Intel Xeon E5-2670  Sandy Bridge socket 
•   NVIDIA Kepler K40 GPU 

Higher is better 



0 200 400 600 800 1000 1200
0

50

100

150

200

250

300

350

400

450

500

matrix size

G
Fl

op
s/

s

Batched dpotrf count = 2000

 

 
GPU: Magma
CPU v2: 16 parallel facto using sequential MKL
CPU v1: each matrix uses MKL multithread_16

•   2x8-core Intel Xeon E5-2670  Sandy Bridge socket 
•   NVIDIA Kepler K40 GPU 

Higher is better 



Summary 

•  Batched computation can give a boost in performance for problem with very small sizes!

•  Traditional algorithmic design might not be the best direction!

•  we need a new way of thinking!

•  revisit and redesign algorithm to take advantage of the hardware specifics!

•  Performance model can help analyzing algorithm and their implementation, for example!

•  An optimized GPU function cannot be efficient for all kind of computation, it depend 
on the context used for!

•  Small computation are delicate and requires specific kernels (building block or fused).!

•  Low level API is required to avoid overhead and context switching!



Future Directions 

•  Extended functionality 
–  Variable sizes 

–  Dynamics scheduling 

–  Sparse direct multifrontal solvers & preconditioners 

–  Applications 

•  Further tuning 

–  autotuning   



Collaborators / Support 
•  MAGMA and Batched Magma [Matrix 

Algebra on GPU and Multicore 
Architectures] team  
http://icl.cs.utk.edu/magma/ 

•  PLASMA [Parallel Linear Algebra for 
Scalable Multicore Architectures] 
team http://icl.cs.utk.edu/plasma 

•  Collaborating partners 
–  University of Tennessee, Knoxville 

–  University of California, Berkeley 

–  University of Colorado, Denver 

–  INRIA, France 

–  KAUST, Saudi Arabia 



•  A. Haidar, S. Tomov, P. Luszczek, and J. Dongarra.!
MAGMA Embedded: Towards a Dense Linear Algebra Library for Energy Efficient Extreme Computing!
IEEE High Performance Extreme Computing Conference IEEE-HPEC 2015, Waltham, MA USA.!
Best paper finalist decision in September 2015!

•  A. Haidar, T. Dong, S. Tomov, P. Luszczek, and J. Dongarra.!
A Framework for Batched and GPU-resident Factorization Algorithms Applied to Block Householder Transformations!
International SuperComputing Conference IEEE-ISC 2015, Frankfurt, Germany.!
Springer, Lecture Notes in Computer Science Volume 9137, 2015, pp 31-47!

•  K. Kabir, A. Haidar, S. Tomov, and J. Dongarra!
On the Design, Development and Analysis of Optimized Matrix-Vector Multiplication Routines for coprocessors.!
International SuperComputing Conference IEEE-ISC 2015, Frankfurt, Germany!
Springer, Lecture Notes in Computer Science Volume 9137, 2015, pp 58-73!

•  A. Haidar, T. Dong, P. Luszczek, S. Tomov and J. Dongarra.!
  Batched Matrix Computations on Hardware Accelerators Based on GPUs.!
  International Journal of High Performance Computing Applications 2014.!

•  A. Haidar, T. Dong, S. Tomov, P. Luszczek, and J. Dongarra.!
  Optimization for Performance and Energy for Batched Matrix Computations on GPUs!
  20th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, Workshop on General Purpose Processing Using   !
  GPUs. GPGPU/PPoPP 2015.!

•  T. Dong, A. Haidar, S. Tomov, and J. Dongarra.!
  A Fast Batched Cholesky Factorization on a GPU!
  ICPP 2014, The 43rd International Conference on Parallel Processing 2014.!


