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Fluid Dynamics Plus Kinetics

Approximation

Many physical systems can be modeled by a fluid dynamics
plus kinetics approximation.

Complex
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Realistic Networks for the Type la
Problem
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Coupling Realistic Thermonuclear

Networks to Hydrodynamics

To incorporate realistic networks in astrophysical simulations we
must improve (substantially) the speed and efficiency for
computing kinetic networks coupled to fluid dynamics.

There are two general approaches that we might take:

« Improve the algorithms used to solve the kinetic networks.

« Improve the hardware on which the algorithms are executed.

This presentation is about using both to affect a dramatic

improvement in the speed and efficiency for solving this
problem.



Integrating Stiff Equations Numerically

To advance the solution from time To advance the solution from
t tot .., only information already time £, to f ., information at the
available at t_is required. new point { ., is required,

Implying an iterative solution.

Thus, for numerical integration

« Explicit methods are inherently simple, but
potentially unstable.

« Implicit methods are inherently complicated, but
stable.



Methods to Integrate Stiff Equations

« T'here are two general approaches that we might use
to deal with stiffness.

» The traditional way: Integrate equations
implicitly, which is stable but requires an iterative
solution with matrix inversions at each step
(expensive for large networks).

» A new way: Replace equations with some that
are more stable and integrate them explicitly.

« If we could stabilize explicit integration we could do
each timestep more quickly in large networks.




Fundamental Sources of Stiffness

- Negative populations

ay; -
= - F
dt

= Macroscopic equilibration

Microscopic equilibration

The key to stabilizing explicit integration is to understand the
three basic sources of stiffness for a typical reaction network:

« Negative populations,
« Macroscopic equilibration
o Microscopic equilibration.



Example: Explicit Integration for a Nova

Simulation
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Summary of Results: Explicit vs Implicit

Speedup for a Single Network
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Thus our new algorithms can give a speed increase of about an order of
magnitude for networks with several hundred species. Now let us consider the
role of modern hardware in this problem.



Computing Power for Scientific
Applications

Titan

Flagship accelerated computing system | 200-cabinet Cray XK7 supercomputer |
18,688 nodes (AMD 16-core Opteron + NVIDIA Tesla K20 GPU) |

CPUs/GPUs working together — GPU accelerates | 20+ Petaflops

Total of 299,008 CPU cores and 18,868 GPUs. Capable of 27 x 10"°
floating point operations per second (27 petaflops).



GPU Acceleration for the Network

CPU host GPU kernel
One-time initial setup Integrate network over one hydro step
Read in rate libraries and network setup Compute the temperature-density
information; assign to appropriate arrays. dependent rates, once per hydro interval

* * Sync

Analyze network and create arrays

defining its logical structure. Network time integration loop
Y Copy
.. once ( Update all fluxes )4—
Copy rate parameters and arrays defining
network logic permanently to GPU. ‘ Sync
Sum F* and F- for each
isotope, and E release
Network update, one hydro step S
‘ Sync 1’,
Launch n
Copy abundance array, current hydro el Update abundances by
variables, time interval, and initial df to i g N
the GPU for the network integration over ymp 9
one hydro timestep. Launch GPU kernel. ‘ Syne
A
Ist<tong?
Copy abundance array, ( end >
energy release, and final RetuI;n =
timestep back to CPU. IS ‘ Yes
Data from Pass the abundance and [T < )
hydro energy information to the Done
hydro solver for next step
Data to
hydro

Implemented with CUDA C/
C++

Hydro Solver




Scaling for a Single Network
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This is impressive speedup but a single network utilizes only a small
fraction of available GPU threads. Greater efficiency requires that
we give the GPU more work.



Stacking Multiple Networks on a GPU

GPU

/ Network n ‘
CPU [
Network 3 S
@

I I I I Network 2

Network 1

1 2 3] «ee [N
Hydro zones <«— Threads (1024) ———

Thus, not only might it be possible to run one network of
realistic size faster than is now feasible, it may be possible to

run many such networks faster than it is now possible to run
one such network.



Timing: Concurrent Network Launches
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Timing: Concurrent Network Launches
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MAGMA Batched Computations




_ v A IRV

} Motivation
1?

- Many dense and sparse direct solvers need HP, energy-efficient

LA functionalities on many small independent dense matrices
« Tiled linear algebra algorithms

« Multifrontal methods

» Preconditioners (using DLA) in sparse iterative solvers, many applications, ...

Sparse / Dense Matrix DAG-based factorization Batched LA

System E=) e LU, QR, or Cholesky
on small diagonal matrices

|=> ®* TRSMs, QRs, or LUs

A, @ @ @ => + TRsMs, TRMMs

A, o fa I ==)> ¢ Updates (Schur complement)
i i GEMMs, SYRKs, TRMMs

And many other BLAS/LAPACK, e.g., for application
specific solvers, preconditioners, and matrices

Al 1 A1 2 Al 3 A1 4
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' MAGMA Batched Computations
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Motivation: factorization of thousands of small matrices 4

y

* Astrophysics * Machine Learning g

* Structural mechanics * Data Mining \

* High order FEM * Hydrodynamics |

* Sparse direct solver * Image processing |
* Tensor contraction * Ranking and recommender systems, etc
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} MAGMA Batched Computations

We present here a feasibility design study, the idea is to target the new high-
end technologies.

Observations and current situation:

* There is a lack of linear algebra software for small problems especially
for GPU, Xeon Phi, etc

* CPU: this can be done easily using existing software infrastructure

* GPU: are efficient for large data parallel computations, and therefore E
have often been used in combination with CPUs, where the GPU handle ¢
the compute bound operations while the CPU handles the small and
difficult tasks to be parallelized /

r

* What programming model is best for small problems?




MAGMA Batched Computations

We present here a feasibility design study, the idea is to target the new high-
end technologies.

Our goals:

* to deliver a high- performance numerical library for batched
computations tuned for the modern processor architecture and that
outperform multicore CPUs in both performance and energy efficiency.

* is to consider both, the higher ratio of execution and the memory
model of the new emerging accelerators and coprocessors.

* define modular interfaces that allow code replacement techniques.
This will provide the developers of applications, compilers, and runtime
systems with the option of expressing computation as a loop, or a
single call to a routine from the new batch operation standard.

!
¢
¢
|
|

g ch . THB UNIVERSITY Ol’ 3
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MAGMA Batched Computations

We present here a feasibility design study, the idea is to target the new high-
end technologies.

2 examples:
* Accelerating large kinetic networks simulation

* Alinear algebra algorithm (LU decomposition)

£10L
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Kinetic Networks simulation

Stacking Multiple Networks on a GPU

Accelerating explicit solver for thermonuclear reaction GPU
networks in astrophysical applications

Network n I
CPU .
Network 3 §
@
I I I I Network 2
Network 1
1112113 -+ |N
Hydro zones <«——— Threads (1024) ———»

Thus, not only might it be possible to run one network of
realistic size faster than is now feasible, it may be possible

to run many such networks faster than it is now possible to
run one such network.

KNOXVILLE
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} Kinetic Networks simulation

Stacking Multiple Networks on a GPU
* Develop and optimize the one network kernel
» Use CUDA streams to parallelize on the GPU and run multiple

networks simulations
8

’ e ini;ial versic;n‘
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Kinetic Networks simulation

|
\
Accelerating explicit solver for thermonuclear reaction networks in
astrophysical applications |
\
\

Introducing batched design:

« Simulates evolution of the nuclear kinetics where for any single time step on a
single zone there is need to solve a small computation

\
|
\
|
|
* Number of zones can grow with domain size and dimension to tens of !
thousands ¢

« /ones can be solved independently (batched fashion)

» Redesigning some block of the code, minimizing shared memory requirements
and reordering some computation in order to fit our batched design.
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Kinetic Networks simulation

o

T T T T T T T T T
— initial version |
— batched version |
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} Kinetic Networks simulation
:

| - Observations

« Batched is faster and able to run about 39 kernels at once instead of 13 kernels
for stream

« 3X speedup observed
« The calculation of a single zone can be viewed as a loop of 32100 computation

* Bottlenecks

« The amount of shared memory is considered large for the “batched design”

» The algorithmic throughput/data structure is not good for the “batched design”
number of threads/block, the data layout

* Proposition

« Analyze all the steps of the algorithm and try to improve it

TW®M XWX




r y o | | d

Kinetic Networks simulation

e Observations
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Kinetic Networks simulation

e Observations

iiiiiiiiiiiid - BT contributions (spices)
beiiiiinnmnm. oo Fecontributions (spices)

£ICL
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Kinetic Networks simulation

e Observations

F* contributions (spices)

F- contributions (spices)

Explicit method calculation and some magic that read data
from the contribution of F* and F- and update the flux vector

&

£ICL
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Kinetic Networks simulation

e Observations
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Kinetic Networks simulation

 Observations

« The main expensive component is the SUM of variable size
Data is coalescent (that’s true) but is not stored in cacheline

Small sum cannot be computed in parallel so sequential so threads do not
read coalescent data anymore

For the current example there is:
+ O large sum of size <512
» 293 sum of size <32

Large sum consume about 70% of the time small sum is about 20% E
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Klnetlc Networks simulation

* Proposition 1

» Improve the large sum by making another kernel that works using 512
threads

* Observation 1

* Improvements of about 20% on the large sum has been observed

£10L
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Kinetic Networks simulation

* Proposition 2

» Try to parallelize the small sum with specific kernels

* Observation 2

» Do not improve at all, it slow down because of extra cost of reordering and
shared memory requirements
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Kinetic Networks simulation

* Proposition 3

« Split the data over two arrays for small and large and use parallel sum
since the F" and the F can proceed in parallel

* Observation 3

» Very complicated, the sum becomes 3X faster but the populate and
becomes the slowest because of non coalescent data (now) and tracking
which data is on the small array or large array

| « =>» need to change the data structure

KNOXVILLE

OIOL PR S
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> Kinetic Networks simulation

* Proposition 4

« Reorder and remap such a way to be nice
« From GPU coding methodology
* From batched design point of view

* Observation 4

« Very nice results
« But can be improved@ore?

TTTTTTTTTTTTTTT

LLLLLLLLL




| R
F Kinetic Networks simulation

* Proposition 4

« Reorder and remap such a way to be nice
« From GPU coding methodology
* From batched design point of view

* Observation 4

« Very nice results

« But can be improvedimore?

£10L
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Kinetic Networks simulation

8 [ [ | | I | 1

~  Batched 150-isotope
7 - Titan Kepler K20 GPU

Initial
version

Batched with
improved sum

Time per integration step (ms)
N

0 | | | | | | l
0 100 200 300 400 500 600 700 800

Concurrent networks




vy 1 1 d

” Kinetic Networks simulation
2.0
. Batched 150-isotope i
Tt Reper e 1.7 ms/step for 800 networks
E 15 |
5 i
D i
c -
‘% 1 ms/step for ~ 470 networks
O 4.0 prmmmmmmmmm g
g | t ]
E Implicit for |
L one network
g o5 . S A 0.5msistep for ~260 networks ]

0.13 ms/step for 104 networks

0.06 ms/step for 13 networks

————————— B ey g ey ey P

0.0

Concurrent networks J
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MAGMA Batched Computations

We present here a feasibility design study, the idea is to target the new high-
end technologies.

2 examples:
* Accelerating large kinetic networks simulation

* Alinear algebra algorithm (LU decomposition)

£10L
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MAGMA Batched Computations

|

Algorithmic basics:

* Linear solver Ax=b follow the Lapack style algorithmic design blocking algorithm

* Two distinctive phases Factored part of A

e panel factorization: latency-bound workload

Trailing
matrix
update

 trailing matrix update: compute-bound operation

Hardware characteristics and limit:

 GPU memory is limited (48KB of shared per SMX, limited number of register)

* Prefer implementation that extensively uses large number of thread/block (a warp
is 32 threads)

» Prefer coalescent memory access (32 threads can read in parallel 32 elements)

$ICL Py TENNESSEE |

KNOXVILLE
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MAGMA Batched Computations

| Classical strategies design

* For standard problems the strategy is to prioritize the data-intensive
operations to be executed by the accelerator and keep the memory-bound
ones for the CPUs since the hierarchical caches are more appropriate to

handle it

N[ A N R
Difficulties - LT N ]

_HE_ErEEE
* Cannot be used here since matrices are very small and communication E

becomes expensive

Proposition /

* Go on and have a native GPU implementation
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MAGMA Batched Computations

Classical strategies design

* For large problems performance is driven by the update operations,

Difficulties

| * For batched small matrices it is more complicated and requires both
phases to be efficient

Proposition

* Redesign both phases in a tuned efficient way
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MAGMA Batched Computations

Classical strategies design

* A recommended way of writing efficient GPU kernels is to use the GPU’s
shared memory - load it with data and reuse that data in computations
as much as possible.

Difficulties

* QOur study and experience shows that this procedure provides very good
performance for classical GPU kernels but is not that appealing for #
batched algorithm for different reasons: ‘




, MAGMA Batched Computations

Difficulties

* Completely saturating the shared memory per SMX can decrease the
performance of memory bound operations, since only one thread-
block will be mapped to that SMX at a time (low occupancy)

* due to a limited parallelism in the panel computation, the number of
threads used in the thread block will be limited, resulting in low
occupancy, and subsequently poor core utilization

¢
* Shared memory is small (48KB/SMX) to fit the whole panel s
¢

* Vectors column (find the max, scale, norm, reduction) < .

* The panel computation involves different type of operations: | Fatored pmw;

£

- Row interchanges (swap) i Bat
of :

Al,

Factored part of A’

* Small number of vectors (apply)

Proposition: custom design per operations type

Trailing
matrix
A
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MAGMA Batched Computations

Batched dgetrf count = 2000
240 T T I I I
—#— Magma v1: classic blocked algorithm
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| MAGMA Batched Computations

Classic swap:
P swap kernel 60% }\
5% :

gemm kernel 1

[}

£icL ?
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swap kernel 60%
gemm kernel 15%
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Classic swap
How does the swap work?
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swap kernel 60%

Classic swap

gemm kernel 15%

How does the swap work?
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swap kernel 60%

ic swap

Class
|

gemm kernel 15%

How does the swap work?
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swap kernel 60%

classical swap

gemm kernel 15%

How does the swap work?
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Classic swap:
‘p% Swap kemel 60% \

| - - H“HVHH
Bottlenecks:

* The swapping consists of nb successive interchanges of two rows of the matrices (serial).

gemm kernel 15%

* Data reading is not coalescent: a GPU warp cannot read 32 value at the same time unless
matrix is stored in transpose form. However if matrix is stored in transpose form the swap is
fast BUT the other components become very slow.

Proposition: :
*  We propose to modify the kernel to apply all nb row swaps in parallel
* This modification will also allow the coalescent write back of the top nb rows of the matrix |
* Note that the top nb rows are those used by the dtrsm kernel that is applied right after the

dlaswp, so one optimization is to use shared memory to load a chunk of the nb rows I
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Classic swap:

swap kernel 60%

gemm kernel 15%

Parallel swap:

gemm kernel 30%

swap kernel 10%
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MAGMA Batched Computations

Batched dgetrf count = 2000
240 I I T \
—»— Magma v2: parallel swap
220 —%— Magma v1: classic blocked algorithm 7
—A— CuBLAS
200~ 7

180 .

160 m

140~ m

Gflops/s
X
o
I

100

80

40—

» 2x8-core Intel Xeon E5-2670 Sandy Bridge socket
* NVIDIA Kepler K40 GPU

20

0 100 200 300 400 500 600
matrix size
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Panel factorization
classic dgetf2:

MAGMA Batched Computations

panel: classical getf2 38%

— =
VT ™| Pvoidbatch gemm kemeltx.. ||

Factored part of A
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MAGMA Batched Computations

Panel factorization
classic dgetﬂ: panel: classical getf2 38%

— = = >

CTT T T [ voidbatch gemm kemellx.. || || ™ Voidbatch gemm keme.. [ | || voidhatch gemm k... |

Bottlenecks:

* nblarge: panel get slower

Factored part of A --> very bad performance.

* nbsmall: panel get faster but the update is not anymore
efficient since dealing with gemm’s of small sizes
--> very bad performance.

* trade-off ? No effect, since we are talking about small size.

Proposition:
* We propose to develop two layers blocking: a recursive and
nested blocking technique that block also the panel.

KNOXVILLE

£$ICL T



vy 1 1 d

> MAGMA Batched Computations

Two-layers blocking:

ey Toued qns

Factored part of A

e[ Pued qns

(a) Recursive nested blocking fashion. (b) Classical blocking fashion.
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 MAGMA Batched Computations

panel factorization
classical dgetfzz panel: classical getf2 38%

- =

VT ™ | Mvoidbatch gemm kemeltx.. || ||| " vodbatch gemm keme..” | | || voidbatch gemm k.. | |

Recursive blocking of E

- dgetf2: panel: classical blocked
| getf2 8%

= —F

|
| \-. void batch qemm kemell.. void batch_gemm Ker.

void batch gemm ...

| voidbatch ge..

N
\ ‘ : <]
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}MAGMA Batched Computations
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[=] Streams
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Bottlenecks:
* Batched gemm kernel from cuBLAS and Magma
0 e et oo T are well suited for small matrix sizes (128) but
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batched dgemm
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Comparison with CPU:

* Version 1: The simple CPU implementation is to go in a loop fashion to factorize matrix
after matrix, where each factorization is using the multi-thread version of the MKL Library.

Expected to have low in performance because each matrix is small — it does not exhibit

parallelism and so the multithreaded code is not able to feed with work all 16 SB threads
used.

| Version 2: for that we proposed another version of the CPU implementation. Since the E
matrices are small (< 512) and at least 16 of them fit in the L3 cache level.

One of the best technique is to use each thread to factorize independently a matrix. This way
16 factorizations are conducted independently in parallel.

KNOXVILLE

OICL Y TENNESSEE |
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batched dgetrf 2000 Higher is better
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| Summary

| « Batched computation can give a boost in performance for problem with very small sizes

* Traditional algorithmic design might not be the best direction

* we need a new way of thinking

¢ revisit and redesign algorithm to take advantage of the hardware specifics

ﬁ’,'\*‘“‘ —

¢ Performance model can help analyzing algorithm and their implementation, for example

* An optimized GPU function cannot be efficient for all kind of computation, it depend
on the context used for

* Small computation are delicate and requires specific kernels (building block or fused).

* Low level API is required to avoid overhead and context switching
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" Future Directions

* Extended functionality
— Variable sizes
— Dynamics scheduling
— Sparse direct multifrontal solvers & preconditioners

— Applications

~ « Further tuning

— autotuning
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