
Comparing Hybrid CPU-GPU
and Native GPU-only

Acceleration for Linear Algebra
Mark Gates, Stan Tomov, Azzam Haidar

SIAM LA — Oct 29, 2015

Overview
!
• Dense linear algebra algorithms
• Hybrid CPU–GPU implementation
• GPU–only implementation
• Case studies:

• QR factorization
• QR with column pivoting
• Hessenberg reduction

2

Linear algebra routines
• Iterate two steps:

• Panel factorization
• Level 1–2 BLAS
• Control flow
• Data dependent 

(pivoting, etc.)
!

• Trailing matrix update
• Level 3 BLAS

3

Panel Trailing
Matrix

Hybrid CPU–GPU algorithms
• Assign panel to CPU
• Assign trailing matrix to GPU
• Communicate panel 

from CPU <=> GPU
• Overlap next panel during  

trailing matrix update

4

Panel Trailing
Matrix

1

1 1

CPU:

GPU:

2

2 2

3

3 3

4

44

5

55 6

6 7

• Assign both panel and trailing matrix to GPU
• No CPU <=> GPU communication
• CPU available for other tasks
• No overlap
• Some algorithms don’t allow overlap anyhow

1 1 1 2 2 2 3 3 3 4 544 55 66 7

CPU:

GPU:

GPU–only algorithms

5

Householder–based algorithms
• QR factorization (geqrf)

• A = QR!
• Least squares, etc.

• QR with column pivoting (geqp3)
• AP = QR!
• More stable, esp. for rank-deficient matrices

• Hessenberg reduction (gehrd)
• QH A Q = H!
• Non-symmetric eigenvalues

6

• Panel (nb columns)
• for each column

• apply previous reflectors
• annihilate entries below diagonal

• Trailing matrix
• update next panel (look-ahead)
• update rest of A

• Overlap next panel & 
trailing matrix update

QR factorization

7

Update trailing
matrix

Execution trace
• Hybrid CPU–GPU
!
!
!
!
!
• GPU–only

8

CPU 0:

GPU 0 (s0):

Time (sec): 0.00 0.12

Legend: larfb panel

CPU 0:

GPU 0 (s0):

Time (sec): 0.00 0.03

Legend: larfb panel sync

Results: QR
• GPU-only is much worse than Hybrid

9 2 x 8 core Intel Sandy Bridge E5-2670, NVIDIA K40c

QR with column pivoting
• Compute column norms
• Panel (nb columns)

• for each column
• swap with column of max norm
• apply previous reflectors
• annihilate entries below diagonal
• GEMV with trailing matrix on GPU
• update column norms

• Trailing matrix
• update rest of A

• Dependencies prevent overlap

10

column norms

QR with column pivoting
• Compute column norms
• Panel (nb columns)

• for each column
• swap with column of max norm
• apply previous reflectors
• annihilate entries below diagonal
• GEMV with trailing matrix on GPU
• update column norms

• Trailing matrix
• update rest of A

• Dependencies prevent overlap

11

column norms

GEMV with trailing
matrix

QR with column pivoting
• Compute column norms
• Panel (nb columns)

• for each column
• swap with column of max norm
• apply previous reflectors
• annihilate entries below diagonal
• GEMV with trailing matrix on GPU
• update column norms

• Trailing matrix
• update rest of A

• Dependencies prevent overlap

12

Update trailing
matrix

column norms

Execution trace
• Hybrid CPU–GPU
!
!
!
!
!
• GPU–only

13

CPU 0:

GPU 0 (s0):

Time (sec): 0.00 0.21

Legend: gemv panel trail

CPU 0:

GPU 0 (s0):

Time (sec): 0.00 0.22

Legend: gemv panel trail

• GPU-only is better than Hybrid

Results: QR with column pivoting

14 2 x 8 core Intel Sandy Bridge E5-2670, NVIDIA K40c

Hessenberg reduction
• Panel (nb columns)

• for each column
• apply previous reflectors 

(from right and left)
• annihilate entries below  

sub-diagonal
• GEMV with trailing matrix on GPU

• Trailing matrix
• update rest of A from right and left

• Dependencies prevent overlap

15

Update trailing
matrix

GEMV with trailing
matrix

Hessenberg reduction
• Panel (nb columns)

• for each column
• apply previous reflectors 

(from right and left)
• annihilate entries below  

sub-diagonal
• GEMV with trailing matrix on GPU

• Trailing matrix
• update rest of A from right and left

• Dependencies prevent overlap

16

Update trailing
matrix

• Hybrid CPU–GPU
!
!
!
!
!
• GPU-only

CPU 0:

GPU 0 (s0):

Time (sec): 0.00 0.14

Legend: gemv lahru panel

Execution trace

17

CPU 0:

GPU 0 (s0):

Time (sec): 0.00 0.13

Legend: gemv lahru panel

CPU 0:

GPU 0 (s0):

Time (sec): 0.00 0.14

Legend: gemv lahru panel

CPU 0:

GPU 0 (s0):

Time (sec): 0.00 0.13

Legend: gemv lahru panel

Results: Hessenberg
• GPU-only similar to Hybrid

18 2 x 8 core Intel Sandy Bridge E5-2670, NVIDIA K40c

GPU–only kernels & optimizations
• Householder reflectors

• Generate — vector norm and scaling (larfg)
• save extra copies of tau in T, etc.

• Apply — dot product and axpy (larf)
• Custom norm update for QR with pivoting
• Optimized gemv

• Tall matrix transposed * vector: VT aj
• Use gemv, faster than trmv

• Store V and T with explicit 0’s and 1’s
• Merge trmv+gemv into one gemv

19

Lessons Learned
• Panels

• Lack parallelism
• Significant control flow
• Many separate function calls

• Perform poorly on GPUs
• Requires programming custom GPU kernels
• Merge kernels together to reduce overheads
!

• GPU-only reduces communication
• Modest win for QR with pivoting
• No improvement for Hessenberg

20

Thank you

21

http://icl.utk.edu/magma/

