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Abstract

The shift toward multicore processors has transformed the software and hardware

landscape in the last decade. As a result, software developers must adopt parallelism

in order to efficiently make use of multicore CPUs. Task-based scheduling has emerged

as one method to reduce the complexity of parallel computing. Although task-based

scheduling has been around for many years, the inclusion of task dependencies in

OpenMP 4.0 suggests the paradigm will be around for the foreseeable future.

While task-based schedulers simplify the process of parallel software development,

they can obfuscate the performance characteristics of the execution of an algorithm.

Additionally, they can create a challenge for users to analyze the performance of their

software and tune algorithmic parameters accordingly.

We will present the basic principles of task-based runtimes as well as two new

tools developed to assist engineers developing these runtimes and users employing

them to parallelize their workloads. The first is a tool allowing users to simulate the

execution of their algorithm. The second is an extension to the common execution

trace which includes information about task dependencies.
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Chapter 1

Introduction

1.1 Motivation

In the last decade the microchip industry has shifted to a multicore paradigm and

consequently altered the path of software development. Until this time period,

developers could expect their software to see performance improvements with each

new generation of computing architecture because the clock frequency of the new chip

would boost the performance. During this era, modifications to software were not

necessary to increase performance. The frequency of new microprocessors stabilized

while the number of cores began to increase. Developers now had to modify their

software to make performance gains on new hardware [50]. Unfortunately, adding

parallelism to software is often a non-trivial task.

A developer can develop parallel applications using primitive, low-level APIs such

as POSIX threads (Pthreads) in a shared memory context or the Message Passing

Interface (MPI) standard for distributed memory systems. While effective, these

tools generally require expert level knowledge of parallel programming and their

application.

A number of higher level parallel programming APIs have emerged in an effort

to simplify the process of developing high performance parallel software. One of
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the programming models that has emerged is a task-based paradigm in which the

developer defines his/her computation as a series of tasks executed in parallel by

a scheduler at runtime. While this model provides another layer of abstraction to

simplify the development process, it also obscures many of the fine-grained details

necessary to obtain optimal or near optimal performance. This work presents two

new tools designed to give developers a greater understanding of these task-based

schedulers.

1.2 Introduction

Task-based runtimes simplify the development process by inferring and respecting

data dependencies based on developer defined data hazards. In order to use a task-

based scheduler, developers must break their workloads into tasks and define the input

and output parameters of each task. The scheduler then uses the order of these tasks

and their input and output parameters to generate a Directed Acyclic Graph (DAG)

of tasks which can be used to schedule the tasks in parallel while respecting all data

dependencies. Chapter 2 will give a more extensive introduction to this programming

model.

Many of the traditional linear algebra algorithms can be defined as a series of

tasks perfectly suited for these task-based schedulers. The tile-based formulation of

three common matrix factorizations (Cholesky, LU, and QR) will provide example

applications for the remainder of this dissertation. These factorizations and their

tile-based implementations will be presented in greater detail in Chapter 2.

The first tool is a simulation utility which can be used to provide insights that

guide developers in the process of tuning their task-based applications and the second

is an extension to the common execution trace visualization.

2



1.3 Thesis Statement and Original Contributions

The primary goal of this dissertation is to investigate the simulation of task-based

runtimes in the context of multicore shared memory architectures. The issues

of portability across schedulers and hardware, the accuracy of the performance

predictions, and the usefulness to developers are addressed in this document.

The three primary contributions of this dissertation are as follows:

• A novel simulation framework for task-based runtimes. The framework is

portable to many task-based schedulers and architectures while providing

accurate performance predictions.

• An extension of task benchmarking and timing to multicore machines including

extensions for NUMA architectures.

• A novel visualization extension that provides an interactive tool to explore trace

and DAG visualizations simultaneously.

1.4 Outline of the Dissertation

This dissertation is organized as follows:

• Chapter 2 introduces task-based scheduling and several of the utilities that

employ this programming paradigm. Tile-based linear algebra will also be

presented in order to provide details about many of the applications which

are analyzed throughout this document.

• Chapter 3 describes the simulation framework.

• Chapter 4 presents several applications and a wide variety of performance

results for the simulator.

3



• Chapter 5 presents a novel trace visualization utility designed with extensions

for task-based applications.

• Chapter 6 concludes the dissertation and discusses possible future extensions

to the work presented here.

4



Chapter 2

Background

Portions of this chapter are drawn from the following publications:

• Haugen, Blake, Jakub Kurzak, Asim YarKhan, Piotr Luszczek, and Jack

Dongarra. “Parallel Simulation of Superscalar Scheduling.” In the 43rd

International Conference on Parallel Processing (ICPP), 2014, pp. 121-130.

IEEE, 2014.

• Haugen, Blake, Stephen Richmond, Jakub Kurzak, Chad A. Steed, and

Jack Dongarra. “Visualizing Execution Traces with Task Dependencies.” In

Proceedings of the 2nd Workshop on Visual Performance Analysis, p. 2. ACM,

2015.

I was responsible for the design and implementation of the software corresponding to

each of these publications. In addition, I served as the primary author.

2.1 Hardware Landscape

Early generations of computing hardware were relatively simple and homogeneous

compared with todays systems. In order to deal with power limitations and the desire

for ever-increasing application performance, the high performance computing industry

5



has adopted an increasingly diverse set of complex architectures and technologies to

provide the best performance possible.

2.1.1 Multicore CPUs
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Figure 2.1: The CPU clock rate stagnates around 2005.

The last decade has ushered in a dramatic shift in computer architecture with

the introduction and market saturation of multicore processors. Multicore processors

have even spread from traditional high end computing platforms to mobile devices

such as tablets and smart phones. Prior to the multicore shift, software developers

could expect their applications to see significant performance increases with each

new architecture. One of the primary reasons for this increase was the ever-increasing

clock rate on each processor entering the market. This trend can be seen in Figure 2.1

based on data from the CPU DB data set [23] provided by researchers at Stanford

University. The plot shows this ever-increasing clock rate stops fairly suddenly around

2005. Some of the newer processors even have a slower clock rate than older models.
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Figure 2.2: The number of cores in a processor begins to increase around 2005.

The CPU DB data set also contains information about the number of cores in each

of the processors. This data is plotted in Figure 2.2. Around the same time the clock

rate for new processors stagnates, the earliest multicore CPUs begin to emerge. The

earliest multicore processors had two cores on the same die but they quickly released

chips with many more cores. There are a few data points in the top right corner of

Figure 2.2 that are between 57 and 61 cores. These data points correspond to the

Intel Xeon Phi manycore architecture (to be discussed in greater depth later).

This trend toward an increasing number of cores can also be seen by examining

the list of Top 500 supercomputers compiled every 6 months. Figure 2.3 shows a

dramatic spike in the number of cores on the top system around 2005.

Perhaps the greatest impact of this multicore shift has been to the software

development community. In the past they could run their old software on a new

architecture and generally expect drastic performance improvement. In the move to

a multicore architecture, however, developers must rewrite their software to make use

7
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Figure 2.3: The number of cores on the Top 500 supercomputer list begins to
dramatically accelerate around 2005.

of the parallelism that is available to them. Unfortunately, this is often a non-trivial

task requiring a great deal of effort.

2.1.2 SMP and NUMA

Multicore shared memory systems are often broken into two classes which provide

different performance characteristics for parallel applications.

The first type of multicore shared memory system is a Symmetric MultiProcessing

(SMP) system. An SMP system is made up of multiple processors (cores or chips)

connected to a single, shared main memory. This means the main memory is equally

accessible by each processor in the system. As a result, it does not matter (assuming

the data is not in the cache of another processor) where an application or function is

executed because the processors all have the same access to the memory. Most of the

8



desktops and laptops produced today could be considered SMP systems where each

core is a processor and all of the cores share a single main memory.

The other type of multicore shared memory system is a Non-Uniform Memory

Access (NUMA) system. A NUMA system also has multiple processors but each

processor has access to local memory and non-local memory. The process can access

data on any of the NUMA “nodes” but it is faster to access local memory as opposed

to non-local memory. This can increase memory throughput for some applications

because the processors can each access its own local memory simultaneously.

Unfortunately, this architecture can be harder to optimize performance because

ideally a developer should execute an application or function on a processor that

is “closest” to the memory where the data resides. The developer also has the ability

to control where memory is allocated. The most common memory location policy

is the “first touch” policy that says the data will be located on the memory closest

to the processor that first touches it. The policy for memory placement can also be

altered using the numactl utility.

2.1.3 Dynamic Frequency Scaling and Power Capping

One of the primary reasons the clock frequency began to stagnate around 2005 was

a problem often called the “power wall.” The power a processor consumes is directly

related to the frequency of the clock rate. As a result, the ever-increasing clock rate

translated to an ever-increasing need for power and the ability to dissipate the heat

created with an increase in power.

One of the methods devised to deal with the issue of power is dynamic frequency

scaling. These processors have the ability to operate at a variety of clock frequencies

determined by the load on the system. The clock rate can be temporarily boosted

(consuming more energy) for a short time when the system is under heavy load.

Conversely, there is no need to have the system run at the maximum frequency when

9



the system is idle or nearly idle. In this situation the system clock frequency can be

reduced and save energy.

Another area of research and development is the concept of power capping where

the frequency of the processor can be scaled in such a way that a set power limit is

not exceeded. This type of technology can be useful in large scale data centers where

power is of great concern. One of the most well-known utilities for power monitoring

and control is Intel Running Average Power Limit (RAPL). Developers can use RAPL

to get an idea of how much power their CPUs are consuming at any time during the

execution of an application. Users can also set a power limit that must be met as

long as it is within a safe operating range for the system. The processor will then

adjust the performance of the processor in order to stay within that power limit.

It is imperative developers consider technologies like dynamic frequency scaling

and power capping when designing and executing their applications. For example,

the performance of a section of code may be dramatically affected by the current load

on the system or the power capping settings on the machine.

2.1.4 Accelerators and Hybrid Computing

High performance computing has also seen the introduction of accelerators or co-

processors that can be used to accelerate portions of a computational application.

NVIDIA originally produced Graphic Processing Units (GPUs) as an extra chip

dedicated to rendering graphics. However, these highly parallel architectures were

an excellent fit for many applications. The architectures, however, were extremely

difficult to use for general purpose computing. As a result, NVIDIA introduced the

CUDA architecture and API to make it easier to develop other applications for these

architectures.

OpenCL was developed as an open standard for programming accelerators and it

is the primary API for programming AMD GPUs. As an open standard, OpenCL

10



can be used to program a wide array of hardware including GPUs, CPUs, and even

Field Programmable Gate Arrays (FPGAs).

Intel has blurred the lines between traditional CPUs and accelerators with the

introduction of the Intel Xeon Phi (formerly called the Many Integrated Core

architecture or MIC). The Xeon Phi is a Manycore architecture that has a large

number (61 cores in the most recent model) of x86 cores. Each of the cores can run

4 threads per core and has a 512 bit AVX vector unit. The Xeon Phi was originally

designed as a co-processor that can be used to offload heavy computational workloads.

However, the next generation of Xeon Phi products (called Knights Landing) will be

available as a co-processor or a self-hosted processor. One of the key selling points

for the Intel Xeon Phi is the compatibility with the x86 instruction set that makes it

relatively simple to port almost any preexisting code base to the new architecture.

Much of the hybrid computing landscape to this point has employed two separate

chips in order to create a hybrid machine. This paradigm works in many applications

but it also has its drawbacks. The most obvious is the necessity to move data from

one device to another because the accelerators typically have their own memory that

is separate from the system main memory. Some of this memory transfer can be

hidden from the developer but the data transfer can still be a bottleneck in some

applications.

Two projects seem to point to the possibility of a more unified hybrid architecture

in the future. The first is the AMD Accelerated Processing Unit or APU that

combines the traditional CPU cores and GPU cores on the same die. In the embedded

field, NVIDIA has released the TK1 and TX1 as part of their Tegra line of processors

designed for mobile and embedded applications. The new TX1 includes 4 ARM

Cortex-A57 cores, 4 ARM Cortex-A53 cores and a 256 core Maxwell GPU. These

two projects suggest that even if the accelerator and CPU unify on the same chip,

developers may still be challenged to produce software that efficiently uses the variety

of resources available.
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2.2 Software Landscape

2.2.1 Task-Based Runtimes

Task-based scheduling has emerged as a key strategy to deal with the increasing

parallelism in modern high performance computing. In order to apply the task-based

computation model, the developer must first break a computational workload into

tasks. For some applications, each of the tasks may be independent and can be

performed without regard for order. These types of workloads are often described as

being embarrassingly parallel. Generally, this class of problems has been relatively

easy to solve using a master-worker paradigm.

There are other workloads, however, that may require that tasks be completed

in a specific order to ensure the correctness of the computed solution. In the past

this problem has often been solved using fork-join parallelism or bulk-synchronous

programming. While this programming model does exploit the parallelism of modern

computing architectures, it often is not the most efficient method to schedule these

tasks. This is particularly true as modern computing architectures have increasing

levels of parallelism making global synchronizations more costly. As a result, a new

programming model emerged that reduces or eliminates global synchronizations in

favor of asynchronous execution.

This model is often referred to as task-based scheduling, a task-based runtime, or

task-superscalar execution. The systems that fall under this category tend to have

a few characteristics in common. The first and most obvious commonality of these

utilities is that the computation must be broken into a number of tasks that must

be executed. The second characteristics is a set of dependencies between the task

that must be respected in order to ensure the accurate completion of the algorithm.

These dependencies are often depicted and represented by a Directed Acyclic Graph

(DAG.) In this DAG, each of the nodes in the graph represents one of the tasks in

the computational workload and each edge represents a data dependency. In most
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cases (with the exception PARSEC), this DAG does not need to be explicitly defined

by the developer. Rather than define the DAG manually, the developer must label

the parameters for each task as one of the following:

• INPUT - A parameter designated as INPUT will be read during the task but

will not be modified.

• INPUT - A parameter designated as OUTPUT will be modified or written

during the execution of the task.

• INPUT and OUTPUT - These parameters are often referred to as INOUT

and are used to designate parameters that will be read and written to during

the execution of the task.

The tasks are then presented to the scheduler in a sequential fashion. Based on

the parameter labeling and the order they are presented, the scheduler is able to

generate the DAG. The dependencies are classified as one of the following:

• Read after Write (RAW) - A RAW dependency implies a task must wait

until the previous task has written a piece of data before it can be read by

another task.

• Write after Write (WAW) - A WAW dependency implies a task must wait

until an earlier task has written a piece of data before it can be written again.

• Write after Read (WAR) - A WAR dependency implies a task must wait

until another task has written a piece of data before it can be read and used.

These dependencies are generally queued on the data objects or pointers and each

task must wait until any prior dependency for one of its parameters has been satisfied.

This type of execution is sometimes referred to as task-superscalar because

of the similarities to superscalar instruction scheduling in computer architecture.

Tomasulo’s algorithm [52] allows for an efficient out-of-order execution of instructions
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in modern computing architectures. In this fashion, tasks may be scheduled in any

order as long as there are no data hazards that must be satisfied.

Another hallmark of these task-superscalar schedulers is an execution that is non-

deterministic. This means tasks may not be executed in the same order or on the same

resources from one execution to the next. This allows the scheduler to make decisions

at runtime and makes them less susceptible to unexpected performance issues. For

example, if one of the worker threads has completed its allotted work, it may “steal”

work from another worker in order to balance the workload across the system.

OmpSs

The OmpSs system, developed at the Barcelona Supercomputing Center, dates back

to 1994. It was originally targeting grid environments, and was called GridSs [11].

It was later adapted to the IBM Cell B. E. processor under the name CellSs [39],

and then to classic multicore processors (x86 and alike) under the name SMPSs [40,

40, 10]. The extension to GPUs (GPUSs) was introduced in 2009 [9]. The project is

currently named OmpSs to underline the effort to extend the OpenMP standard with

support for superscalar scheduling [25]. Due to the multiplicity of names, the project

has also been intermittently referred to as StarSs [42]. The best known variant is

the SMPSs multicore implementation, which is a compiler-based system that uses

#pragma directives to annotate tasks that can be run in parallel and to decorate the

data parameters with read/write usage information.

The main thrust in OmpSs is to become part of the OpenMP standard. Therefore,

for the most part, OmpSs follows the OpenMP philosophy of offering a set of simple

language extensions for quickly parallelizing algorithms. However, OmpSs does lack

some of the flexibility of other libraries such as StarPU and QUARK. The project

relies on the Mercurium compiler and the runtime environment is maintained by a

library called Nanos++.
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QUARK

QUARK (QUeuing And Runtime for Kernels) was developed at the Innovative

Computing Laboratory at the University of Tennessee Knoxville. It was originally

developed as the main scheduler for the Parallel Linear Algebra for Scalable Multicore

Architectures (PLASMA) library [1]. It has since been released as a standalone

project [59] and has been used outside its original design to schedule for a wider

variety of scientific codes. In general, QUARK provides a relatively small API but

it still allows the user greater flexibility in code development. The library includes

a number of features critical to the operation of a numerical software suite, such as

error handling extensions and task cancellation capabilities. It also provides the user

with the ability to save the execution DAG to visualize the dependences present in a

particular algorithm.

QUARK was originally aimed at scheduling for homogeneous multicore systems

with shared memory. It has since been used to develop software for systems containing

GPUs as well as traditional CPUs [32]. It should be noted that QUARK does not

provide any specific interface for accelerator support. It is the responsibility of the

developer to ensure data is transferred properly during the execution of the algorithm.

It has also been extended to applications in distributed memory environments [58].

StarPU

The StarPU system developed at INRIA Bordeaux was first published in 2008 [5, 7,

6]. It is a runtime environment for task scheduling on shared memory architectures

with the original motivation of exploring task scheduling in a hybrid CPU/GPU

environment.

StarPU provides multiple interfaces for task execution which gives the developer

great flexibility in expressing an algorithm. One of the key abstractions of the StarPU

library is the codelet. The codelet is a small structure that allows the developer to

describe various versions of a particular kernel using a single interface. For example,
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the developer might want to define a matrix multiplication task for use in his/her

algorithm. The user can define a codelet providing a CPU interface as well as a

GPU interface allowing StarPU to execute the code on either of the target resources.

StarPU uses implicit data dependencies to create a task DAG. It also profiles each

task execution and uses historical runtime data to schedule tasks on the appropriate

resources in heterogeneous systems, assigning tasks to CPU cores as well as GPU

resources. StarPU provides a large set of interfaces and extensive functionality

including execution trace, DAG generation, and several scheduling policies.

OpenMP

OpenMP [22] has a long history in parallel computing and continues to evolve to

suit a growing number of applications. Early OpenMP standards provided compiler

directives for loop level parallelism. In these applications the developer could write a

simple for loop and OpenMP would execute the iterations of the loop in parallel.

OpenMP 3.0 [36] was released in May 2008 and added the first task constructs

to the standard. These tasks, however, would not be considered task-superscalar

because they largely followed the fork-join model of parallelism. In this model the

tasks are generated and executed in parallel while a taskwait construct is used to

synchronize the tasks.

OpenMP 4.0 [37] was released in July 2013 and extended the task constructs

to include task-superscalar concepts. The developer can now specify the input and

output dependencies for each task block and the OpenMP scheduler will execute

the tasks based on the inferred dependencies. Many in the task-based scheduling

community view the inclusion of task-superscalar concepts as validation of the field

and suggest it will be an active area of research for years to come. OpenMP 4.0 also

included constructs for accelerators and SIMD instructions.

OpenMP 4.5 [38] was released in November 2015 and included one key feature not

available in version 4.0. The priority clause has been added to the task construct and

can be useful in many applications. The developer can now give each task a priority
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level. If more than one task is available for execution, the task with higher priority

should be executed first. This is a concept often used to give priority to tasks known

to be bottlenecks or an important part of the critical path of the application.

OpenMP supports Fortran, C, and C++ and is implemented in many open source

and proprietary compilers. Perhaps the two most known implementations of OpenMP

are available in GCC and the Intel compiler suite. OpenMP has also received interest

from the accelerator community because it is one of the primary programming models

which can be used to program the many-core Intel Xeon Phi chips.

PARSEC

PARSEC [15] is a dataflow scheduler requiring explicit dependencies from the

developer but it provides much greater scalability. The computation is represented in

a job description format (JDF) file defining the tasks and dependencies in a compact

format. This format allows the runtime to determine dependencies without unrolling

the entire DAG. The ability to determine dependencies independently makes the

runtime far more scalable. PARSEC provides the underlying scheduling and runtime

for a scalable dense linear algebra library called DPLASMA. In contrast with many

of the other task-based schedulers, PARSEC focuses on scheduling scalability in a

distributed computing environment.

2.3 Tile-Based Linear Algebra

Dense linear algebra algorithms provide the basis for many scientific computing

problems and remain an area of active research. These algorithms have evolved over

time in order maximize performance with each new generation of hardware. Block

algorithms were introduced with LAPACK [4] in order to make use of the caches

on the newest architectures of the day. Achieving optimal performance for each

new architecture would have been a challenging task. Block algorithms, however,

simplified this problem by defining a set of Basic Linear Algebra Subroutines (BLAS)
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that would be the building blocks for the higher level algorithms. Rather than

adapting every algorithm to achieve optimal performance, developers could optimize

the smaller collection of BLAS routines in order to achieve high performance for

each architecture and the linear algebra operations built on top of them would also

achieve high performance. There are three classes of operations in the BLAS often

referred to as Level 1, Level 2, and Level 3. They refer to vector-vector operations,

matrix-vector operations, and matrix-matrix operations respectively. Level 3 BLAS

(matrix-matrix) operations are generally preferred because of the data reuse inherent

in their algorithms. This data reuse exploits the caches in modern architectures and

reduces data movement which generally resulting in higher performance. The Level

1 and Level 2 operations are memory bound and as a result, they generally do not

reach optimal performance.

The basic formulation for many of the block algorithms is a two step approach.

The first step is often referred to as the panel factorization where a small portion

of the matrix is factorized and transformations are accumulated. This factorization

is generally memory bound and do not achieve optimal performance. The second

portion of the operation is often called the trailing submatrix update. This step

applies the transformations from the panel factorization to the remaining portion of

the matrix. The update step is generally applied using a Level 3 BLAS operation.

Parallelization of block linear algebra algorithms has often been performed using a

fork-join model where the parallelism is generally expressed in the trailing submatrix

update. This paradigm, however, struggles to provide the best performance on

modern highly parallel architectures because of the costs of synchronization. Tile-

based linear algebra algorithms have been developed in order to make better use of

multicore resources. Two of the primary reasons these tile-based approaches achieve

higher performance are the reduction in global synchronization and the more efficient

use of caches.

One of the key differences between the two approaches is the way the data is laid

out in memory. Previous algorithms required the matrix to be allocated in a single
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array using column-major or row-major layout as seen on the left in Figure 2.4. For

a tile-based approach, however, the matrix is stored by blocks as shown on the right

in Figure 2.4.

Figure 2.4: Colmn-Major Layout vs Tile Layout

These tile-based algorithms can be found in the PLASMA library developed at the

University of Tennessee as well as the FLAME library from the University of Texas at

Austin [28]. Tile-based linear algebra has been extensively studied [24, 29, 33, 2, 17].

The Cholesky, LU, and QR factorizations implemented in PLASMA will provide the

basis for many of the experiments presented in this paper.

The tile approach consists of breaking the matrix panel factorization and trailing

submatrix update steps into smaller tasks that operate on relatively small NB×NB

tiles (or submatrices) of consecutive data which are organized into blocks-of-columns.

The algorithms can then be restructured as tasks (which are basic linear algebra

operations) that act on tiles of the matrix. The data dependencies between these

tasks result in a DAG where nodes of the graph represent tasks and edges represent

dependences among the tasks.

The execution of the tiled algorithm is performed by asynchronously scheduling

the tasks in a way that dependencies are not violated. Optimally, we would like
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Algorithm 1 Tile Cholesky Factorization Algorithm

1: for k = 1, 2 to NT do
2: {Cholesky factorization of the tile Ak,k}
3: DPOTRF(Ak,k)
4: for i = k + 1 to NT do
5: {Solve Ak,kX = Ai,k}
6: DTRSM(Ak,k, Ai,k)
7: {Update Ai,i ← Ai,i −Ai,kA

T
i,k}

8: DSYRK(Ai,i, Ai,k)
9: end for
10: for i = k + 2 to NT do
11: for j = k + 1 to i do
12: {Update Ai,j ← Ai,j −Ai,kAj,k}
13: DGEMM(Ai,j , Ai,k, Aj,k)
14: end for
15: end for

16: end for

this asynchronous scheduling to result in an out-of-order superscalar execution where

slower tasks are overlapped in time with fast ones, which use cache more effectively.

This would be managed by having the slower tasks start early, as soon as their

dependencies are satisfied, while some of the parallel tasks (submatrix updates) from

the previous iterations still remain to be performed and can be executed in parallel

when a core becomes available. The scheduling of tasks is performed by the task-based

runtime or scheduler.

Figure 2.5 presents the loops for the QR factorization in pseudocode and includes

decorators for each tile to specify whether the tile will be read, written, or both. These

dependencies are then used to infer the DAG and schedule the tasks accordingly.

Each of the tasks and corresponding dependencies must be presented to the

scheduler. Each scheduling library provides their own API that is used to annotate

the tasks and their dependencies. Some of them, like QUARK and StarPU, have

an explicit interface that is used to “insert” tasks. OmpSs and OpenMP, however,

provide compiler directives that are used to specify the tasks and their dependencies.

The Cholesky algorithm is described in pseudocode Algorithm 1. Figure 2.6 presents

the Cholesky algorithm implemented using the OpenMP compiler directives.
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Figure 2.5: Pseudocode for the tile QR factorization showing all the tasks as they
are sequentially generated. The data references tasks are decorated with their read
and/or write status, implying data-hazards while executing the tasks.
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#pragma omp parallel

#pragma omp master

{
for (k = 0; k < nt; k++) {

#pragma omp task depend(inout:A(k, k)[0:nb*nb])

LAPACKE dpotrf work(

LAPACK COL MAJOR,

’L’, nb, A(k, k), nb);

for (m = k+1; m < nt; m++) {
#pragma omp task depend(in:A(k, k)[0:nb*nb]) \

depend(inout:A(m, k)[0:nb*nb])

cblas dtrsm(

CblasColMajor,

CblasRight, CblasLower,

CblasTrans, CblasNonUnit,

nb, nb,

1.0, A(k, k), nb,

A(m, k), nb);

}
for (m = k+1; m < nt; m++) {

#pragma omp task depend(in:A(m, k)[0:nb*nb]) \
depend(inout:A(m, m)[0:nb*nb])

cblas dsyrk(

CblasColMajor,

CblasLower, CblasNoTrans,

nb, nb,

-1.0, A(m, k), nb,

1.0, A(m, m), nb);

for (n = k+1; n < m; n++) {
#pragma omp task depend(in:A(m, k)[0:nb*nb]) \

depend(in:A(n, k)[0:nb*nb]) \
depend(inout:A(m, n)[0:nb*nb])

cblas dgemm(

CblasColMajor,

CblasNoTrans, CblasTrans,

nb, nb, nb,

-1.0, A(m, k), nb,

A(n, k), nb,

1.0, A(m, n), nb);

}
}

}
}

Figure 2.6: The tile-based Cholesky factorization implemented in OpenMP. Corner
cases are ignored to improve clarity.
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Chapter 3

Workload Simulation

This chapter and Section 4.1 are based on the following publication by Blake Haugen

et al.:

• Haugen, Blake, Jakub Kurzak, Asim YarKhan, Piotr Luszczek, and Jack

Dongarra. “Parallel Simulation of Superscalar Scheduling.” In the 43rd

International Conference on Parallel Processing (ICPP), 2014, pp. 121-130.

IEEE, 2014.

My contributions to this paper include (i) design of the simulation framework, (ii)

implementation of simulation software, (iii) collection of experimental data, (iv)

analysis of the experimental results, and (v) authorship of the majority of the text.

3.1 Related Work

Since the Minimum Multiprocessor Scheduling Problem is NP-complete [35], nearly

all optimal scheduling problems in complex environments are NP-complete. This

means most scheduling decisions are reached using heuristic algorithms, many of

which can be found in the survey article [34]. The combination of complicated

hardware configurations and scheduling heuristics make the search space too large
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and complex for analytical models. As an alternative to most analytical models,

developers often resort to empirical and simulation-based models [3, 55].

Simulation is not a new concept to computer scientists, and simulation tools seem

to fall into two broad categories. The first is architecture simulation where the goal

is to simulate the operation of a processor or system in order to analyze the accuracy

of the output or performance characteristics. These simulations often do not focus on

parallelism, but rather focus on fine-grain, instruction level simulation. The gem5 [14]

and SESC [44] simulators are two examples of this type of simulator. An important

aspect of both of these tools is the ability to simulate out of order executions, which

are common in modern computer architectures.

At the other end of the spectrum are large scale simulations of parallel computing

systems. The grid computing community has been particularly interested in

simulation. Grid computing resources may be heterogeneous in nature and dispersed

geographically and, for this reason, reproducibility of performance results may vary

widely. Each allocation of grid resources may be very different and drastically change

the performance of a grid computing job. Simulations have been commonly used

to evaluate algorithms in this type of environment where it may not be possible to

obtain reproducible results.

The diverse array of computing resources used in grid computing makes scheduling

a very challenging problem, and the lack of reproducibility in the performance of each

run made simulation a logical choice. Tools like SimGrid [19] and GridSim [18] were

designed for these types of simulations. ChicSim [43] was another simulator built on

top of a simulation language called Parsec (not the same as the task-based scheduler).

The Optorsim project [13] is another example of a grid computing simulator, and

was developed to evaluate the performance of various data duplication algorithms.

Data is often duplicated in a grid computing environment in order to deal with the

geographic distribution of computing resources. The duplication of data decreases

data access times and accelerates job performance. The Optorsim project aimed to
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simulate the performance of grid computations based on the data replication strategies

employed.

The Prometheus project [30] provides utilities to simulate task-based applications

on many-core systems. Prometheus currently works with Cilk++ but they hope

to extend the framework to other programming models in the future. The first

step of the simulations is to extract the DAG for the application. This is currently

done by intercepting the the Cilk++ keywords and generating a DAG. The second

portion of the simulation is a hardware contention model. The hardware contention

model is used to model the length of each task in the DAG based on some sort of

performance model. These models can be created from workload measurements,

cycle accurate simulation or an analytical performance model. Once the DAG

and performance models are in place, the simulation proceeds with any number of

scheduling algorithms.

The StarPU project has employed SimGrid to provide simulation capabilities

within the scheduler. [48, 49, 47] This simulation, like the StarPU scheduler, has put

a great deal of focus on hybrid computing systems where data must be transferred

between the host and the device. The authors have studied dense linear algebra and a

sparse linear algebra solver. When StarPU scheduler is used, it collects performance

information about each of the tasks. This information is stored in an XML file that

describes the performance characteristics of the system and the performance of the

various tasks when they are performed on the system. The XML configuration serves

as an input for the simulation and provides performance models for the various tasks

in the application. The simulation employs the StarPU scheduler to keep track of the

task dependencies and schedule them accordingly. The tasks, however, are simulated

and do not perform actual computational work. The SimGrid library provides

a thread API that allows the simulation to take control of all thread scheduling

decisions.
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3.2 Discrete Event Simulation

Discrete Event Simulations (DES) have been used to model problems in a variety of

fields from healthcare to manufacturing. A DES is an excellent tool for understanding

the performance obtained when scheduling various tasks. In general, each task is

considered a single unit that does not change the system while it is occurring. The

only changes to the system occur when a new task starts or ends. This simplification

allows the simulation to ignore each time slice in a traditional continuous simulation.

In a serial context, a DES is trivial because there is only one event occurring at any

given time. Therefore, each event is completely independent and it is not necessary

to coordinate across multiple events. In a parallel context, a DES becomes more

complicated because the events must properly synchronize before the simulation can

continue. While non-trivial, this is still relatively easy to accomplish in the context

of Fork-Join parallel applications because each event in the simulation must wait for

the other events in order to continue with the simulation. Task-based schedulers,

however, depart from the fork-join parallel model and make synchronization in any

simulation a challenge.

3.2.1 Simulation Methodology

The ultimate goal of the simulator is to simulate a trace of the algorithm’s execution

with high accuracy. From the simulated trace information can be gained about

scheduling decisions, execution time, and ultimately performance.

As a foundational principle, the simulation environment aims to have the scheduler

performing the dependence tracking work while the computational work inside the

tasks is not performed. In other words, the scheduler keeps track of all data

dependences and makes all scheduling decisions as usual, but the tasks no longer

contribute useful work toward the completion of the algorithm.

Arguably the most challenging aspect of creating correct simulated traces is

the necessity to maintain the correct order of task completion. If each simulated
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task simply records its information in the trace and exits, it is very likely the

task dependences will be satisfied in a different order than the original, which can

ultimately cause drastic alterations to the simulated trace. The main reason for this

is that the original tasks perform useful computations and take time to do so while

also interacting with other resources such as shared caches, the memory system, and

the OS. A task that records a small piece of trace information and exits will have

very little interaction with the hardware resources.

The simulation generally relies on three crucial elements. The first element is

the simulation clock which keeps track of the simulation time. The clock is stored

as a double precision floating point number which is of sufficient resolution for the

simulated tasks that operate at the microsecond resolution. The simulation library

must also keep track of the simulated trace (the second element and the output of

relevance to the developer) as well as a queue of tasks that are currently executing

(the third element).

There are two primary assumptions that must be true in order to ensure accurate

simulations.

• The scheduler overhead is small relative to the tasks being scheduled.

After each task in the workload is completed, the scheduler must perform the

necessary bookkeeping and schedule the next task. This time between tasks is

often called scheduling overhead. One of the most common problems for this

class of schedulers is that it struggles when the length of each task becomes too

small. In this case, the scheduler becomes a bottleneck and cannot feed enough

work to the processors. Another scheduling issue occurs when the number of

processors begins to grow. This is logical because there is generally only one

thread doing the scheduling. If there are a large number of cores, it can be

difficult for the single threaded scheduler to keep up with the demand for tasks

from the workers. These are known problems with many of the task-based

schedulers and they often cause increasing error in the simulations as well.
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• The scheduler does not behave differently because of the simulation.

The simulations often do not run at the speed of the real execution. (The speed

of the simulations depends on a complex interaction of the number of simulated

cores, the number structure of the DAG corresponding to the workload, and

the length of each task. In some cases the simulations are faster and in some

cases slower.) If the scheduler makes decisions based on the length of each task

it may make different scheduling decisions when it is simulating an application.

Examples of the errors are caused when these assumptions are violated will be

presented later.

The novelty of our simulation approach is the complete reliance on the scheduler

to provide the facilities to maintain the task dependences and make all scheduling

decisions while still being portable across multiple schedulers. In order to create a

simulation, the programmer simply replaces each task function with a call to the

simulation library. Only a few lines of initialization and cleanup code before and

after the execution of the algorithm simulation are needed to perform a simulation.

This makes our approach portable since there is no assumption about the underlying

algorithm being scheduled or about data-dependence tracking, nor do we require any

invasive changes to the existing implementation of tasks. The simulation also allows

the user to simulate the behavior of the scheduler independent of the computational

platform. Once a problem configuration has been defined, the user can simulate

their workloads on another machine regardless of the number or type of processors

available.

3.2.2 Tracing

In order to simulate a given trace, it is necessary to have complete control over

the generation of the execution trace. Most general purpose tracing utilities and

frameworks are designed to create traces based on true (or wall-clock) execution time,

but the simulation requires a trace based on the simulated (or virtual) execution time.
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This lead to the following decision. Rather than attempting to modify an existing

trace generation tool, a rudimentary trace generation environment was created

allowing the user to log tasks during execution with the simulation (user-specified)

time. After the completion of the algorithm, the trace is stored in a CSV file. The

CSV format was chosen to simplify the process of analyzing the trace data. Many

other trace file formats require libraries to read the data, while many languages

already provide utilities for manipulation the CSV. This can be useful for performing

statistical or structural analysis of the trace. The trace file can also be used to generate

a visual representation of the data such as an SVG (Scalable Vector Graphics) or an

interactive visualization like the one presented in Chapter 5.

This trace environment is also available to assist developers in collecting informa-

tion about the tasks in their workload which can be used to build a statistical model

for each of the tasks.

3.2.3 Model of Kernel Executed inside a Task

One of the key factors for performing accurate simulations is the ability to accurately

measure and describe the execution time of a kernel. Each of the kernels provides the

building block of the simulated trace. If the model of a single kernel is inaccurate,

the effects will be compounded as the trace is simulated and the kernel invocation

repeats. This can be a source of a sizable error in the simulation.

In order to more realistically simulate the execution of an algorithm, each task’s

running time is not fixed, but rather is determined by a probabilistic distribution. For

example, it is unlikely each DGEMM kernel requires exactly the same time to execute

in any given trace. The distribution of these kernel times will vary from application

to application, or even between the runs of the same application. The generation

of running time of the simulated kernels based on a prescribed distribution adds an

element of randomness to the trace, which is essential for the accuracy.
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Timing Methodology

One of the challenges a developer faces in modeling a kernel is timing each kernel.

It initially seems obvious that one could very quickly call each kernel in isolation in

order to obtain an estimate of the time required for the completion of that kernel.

This will likely give the developer an idea of the execution time of the kernel, but

this is unlikely to give results with high accuracy. The developer must be careful

to consider where the sub-matrix will be in the cache hierarchy. In the context of a

true execution, the kernel may or may not have its data available at the top of the

cache hierarchy. To make the task even more challenging, on a NUMA machine it is

possible that the data required for the task is stored on non-local memory.

In order to quantify the differences in timing methodology, a series of benchmarks

were designed to evaluate the performance of a DGEMM task in a number of different

scenarios. The benchmark methodology is largely based on the work of Whaley and

Castaldo [57] including new extensions for NUMA architectures.

In order to demonstrate the challenges associated with developing a benchmark

that accurate reflects the scenarios presented in a real workload, the double precision

general matrix-matrix multiplication (DGEMM) task will be studied in great detail.

DGEMM is defined as:

C ⇐ αA× B + βC

where A, B, and C are double precision matrices and α and β are scalar multipliers.

This task occurs in a number of dense linear algebra applications. In this case, we will

examine the DGEMM task in the context of a Cholesky factorization and a tile-based

implementation of DGEMM. In order to ensure all of the results were comparable,

the DGEMM tasks being executed in the real workloads and the artificial benchmarks

were all done with the same configurations. (TransA = Trans, TransB = NoTrans,

m = 200, n = 200, k = 200, α = −1.0, and β = 1.0) This ensures all of the workloads

are identical and the only differences are the context in which they are executed. In

the case of the Cholesky factorization, a matrix of size 5000 with a tile size of 200 was
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used. In the case of the DGEMM, A, B, and C are square matrices of size 2600 and

a tile size of 200. The distribution of the DGEMM tasks in these two workloads are

used as a baseline to evaluate the results of each of the synthetic benchmarks. These

distributions are shown in red and blue in Figures 3.1, 3.2, 3.3, 3.4, 3.5, and 3.6.

The experiments were performed on two machines. One machine was composed of

two 8 core Intel Xeon E5-2690 processors and 2 NUMA nodes. The second machine

was equipped with four 12 core AMD Opteron 6180 SE processors and 8 NUMA

nodes.

In order to evaluate the feasibility of deriving task timing models from synthetic

benchmarks, a number of factors must be considered. Each of the benchmarks

executes and collects the execution time of several iterations of the task. Presented

here are six synthetic benchmarks fall into three primary categories as follows:

• Serial - The Serial class of benchmarks is the most common and could be

considered the naive implementation. In this case the memory is allocated and

the tasks are computed. Assuming the “first touch” memory place policy, it

is assumed the A, B, and C matrices will be initialized on the memory closest

to the processor that will be performing the computations. This benchmark is

generally unable to model the effects of NUMA architectures on the task timing.

The results of the Serial benchmarks are shown in Figures 3.1 and 3.2.

• NUMA - The NUMA class of benchmarks improves on the Serial benchmarks

by accounting for the effects of non-local memory access during the computa-

tions. In this class of benchmarks, the process is initially bound to a single core

from which the operands are allocated and initialized. This ensures the data

will be placed on a single NUMA node based on the “first touch” rule. When

the tasks are executed, they are performed on each of the cores in a sequential

fashion. (i.e. the first n tasks are executed on the first core followed by the next

n tasks on the second core etc.) The distribution derived from these benchmarks

is often multimodal based on the distance between each of the processors and
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the NUMA node containing the data. The results of the NUMA benchmarks

are shown in Figures 3.3, 3.4.

• Threaded - The Threaded class of benchmarks aims to improve on the NUMA

benchmarks by accounting for the memory contention that occurs during

the real execution of a task-based workload. The Threaded benchmarks are

multithreaded with each task explicitly bound to one core of the system. Each

of the threads starts by allocating and initializing the operands in parallel.

This ensures the operands are distributed across all of the NUMA nodes on

the machine. If each thread only executed on the operands it was responsible

for allocating, the benchmark would likely be artificially faster than expected

because the tasks would never retrieve data from non-local memory. As a result,

the operands are “shuffled” between the threads causing some of the operands

to be in local memory while others are in non-local memory. Unlike the NUMA

benchmarks, the Threaded benchmarks are executed in parallel to accurately

stress the memory bandwidth as it would in a real task-based workload. The

results of the Threaded benchmarks are shown in Figures 3.5, 3.6.

The synthetic benchmarks must also consider whether the operands are present

in the cache at the time of execution. Operands not located in the cache must be

retrieved from the main memory which increases the time to execute the task. In

order to simulate the situation where the operands are in cache, the task is called

repeatedly with the same operands. In order to simulate the situation where the data

is not present in the cache, several operands are allocated and initialized prior to the

execution of the tasks. Each task is called with a different operand ensuring the data

must be retrieved from the main memory for each task.

The ability to account for warm cache and cold cache scenarios only complicates

the design of an artificial benchmark. In the case of DGEMM, there are three primary

operands (A, B, and C), raising the question of which operands should be in cache
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Table 3.1: The 8 cache scenarios for A, B, and C in the synthetic DGEMM
benchmarks. “IN” indicates the operand is in cache while “OUT” indicates the
operand is out of cache.

A B C

IN IN IN

IN IN OUT

IN OUT IN

IN OUT OUT

OUT IN IN

OUT IN OUT

OUT OUT IN

OUT OUT OUT

and which should not be in cache. With three operands that can be in cache or out

of cache the number of possible benchmarks is 8 as shown in Table 3.1.

To complicate matters further, it is unlikely any of the operands will always be

in cache. Perhaps a percentage of the time the operand is in cache. This can be

simulated by slightly modifying the out of cache algorithm to use the same operand

for some of the iterations while selecting a new operand for other iterations. It is also

not possible at this time to consider a case where part of an operand is in cache. In

the case of the Cholesky workload, there are different types of tasks being executed

that can require varying amounts of memory bandwidth.

When the three classes are considered in conjunction with the numerous cache

configurations it becomes a challenge to select the scenario that accurately reflects

the distribution of task times in a real workload. Here we will examine just six of the

many possible benchmarks.

The first two benchmarks are the cold cache and warm cache, Serial benchmarks.

In these two benchmarks all of the operands are either in or out of cache and the data

allocation, initialization, and task execution all occur on the same core. The results

of these two benchmarks are shown in Figures 3.1 and 3.2. The cold cache benchmark

is slower than the warm cache benchmark on both machines, but neither appears to
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accurately model the distribution of task times from the Cholesky factorization or

the DGEMM workloads. On the Intel machine with two NUMA nodes, the synthetic

benchmarks appear to “bound” the actual distributions while both appear to be faster

than the real distributions on the AMD machine. This is likely due to the fact that

the AMD machine has a greater number of cores and NUMA nodes that are not

accounted for in the benchmarks.

Figures 3.3, 3.4 present the results of two NUMA benchmarks. The two

benchmarks represent the case where all or none of the operands are in cache. When

all of the operands are in cache the benchmark suggests artificially fast task time

due to the decreased memory bandwidth requirements. The cold cache scenarios

provide a multimodal distribution with modes corresponding to the distances between

the processors and the memory containing the operands. Again, the benchmarks

appear to “bound” the real distributions on the Intel machine while both benchmarks

underestimate the task time on the AMD machine. This is likely due to the fact that

the tasks are executed in serial and do not account for the memory contention present

in a real workload.

Figures 3.5, 3.6 present the results for the warm and cold cache Threaded

benchmarks. Again, the benchmarks on the Intel machine “bound” the actual

distributions. On the AMD machine, however, the warm cache scenario under-

predicts the execution time of the tasks, but the cold cache scenario appears to be

much closer to the actual distribution of the task times.

The wide variety of benchmarks with varying accuracy makes synthetic bench-

marks unappealing for building statistical models of the execution time for each task.

As a result, data collected from the execution of a real workload provides the most

accurate data for building task models.
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Figure 3.1: Kernel Density Estimation curves for DGEMM including serial
benchmark data sets. 2 x 8 Core Intel Xeon E5-2690
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Figure 3.2: Kernel Density Estimation curves for DGEMM including serial
benchmark data sets. 4 x 12 Core AMD Opteron 6180 SE
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Figure 3.3: Kernel Density Estimation curves for DGEMM including NUMA
benchmark data sets. 2 x 8 Core Intel Xeon E5-2690
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Figure 3.4: Kernel Density Estimation curves for DGEMM including NUMA
benchmark data sets. 4 x 12 Core AMD Opteron 6180 SE
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Figure 3.5: Kernel Density Estimation curves for DGEMM including Threaded
benchmark data sets. 2 x 8 Core Intel Xeon E5-2690
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Figure 3.6: Kernel Density Estimation curves for DGEMM including Threaded
benchmark data sets. 4 x 12 Core AMD Opteron 6180 SE
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The results of runs shown in this paper were performed by linking with the Intel

MKL library in order to obtain the best performance. As is common for large libraries,

which require resource allocation, the MKL library initializes its internal state upon

the first execution of a kernel and for each thread of execution. This may be easily

observed as the first kernel on each thread will take significantly longer to execute

than the following kernels. These extreme outliers can drastically affect the model

fitting. For this reason, each of the threads is initialized with another call to the

MKL library in order to ensure that this initialization is performed before the trace

is collected. The same is done for the synthetic benchmarks as well.

Dense Linear Algebra Kernel Modeling

The sample problems examined here are Dense Linear Algebra applications. Their

implementations are based on the PLASMA library where each high-level linear

algebra routine is composed of several smaller tasks which can be scheduled based on

their dependencies. Each of these tasks is a kernel belonging to any one of various

classes of kernels, depending on the operation being performed. As mentioned above,

each kernel of a given type does not have identical performance due, primarily, to

the fact that each execution of the kernel will have different cache residencies. For

example, one execution may have most of the data in cache while another execution

has very little of the data in cache, which relates to, for example, task placement

policies and to what extent the scheduler tracks data affinity.

In dense linear algebra, the kernels are most commonly described using the normal

distribution of execution times, but similar distributions may also be used to model

execution time. The simulation library currently supports normal, lognormal, and

uniform time distributions as well as constant time models. In order to simplify

the process of defining model configurations, a configuration file (based on a CSV

format) is used to define the models for the simulator. These models can also be

overwritten with a custom task time for a task. This will be described in greater

detail in Section 4.3. Experience has shown that lognormal and normal distributions
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have produced nearly identical simulation accuracy and can provide more accurate

simulation than the uniform and constant task timing models.

3.2.4 Task Execution Queue

In general, the dynamic scheduler maintains a dependence graph which is used to

determine whether the dependences for a specific task have been satisfied. Whenever

a task finishes its execution, the tasks waiting for the output of that task have a

“waiting” dependence removed. Once all dependences have been removed for a task,

the scheduler marks it to be available for execution.

In the case of simulated execution, the order in which these dependences are

satisfied must be maintained in order for the simulations to be accurate. The key

element of the simulation environment is the Task Execution Queue. This is the data

structure ensuring the tasks that are currently in the execution state (Note: a task

in the execution state is not actually computing the function it simulates) within

the simulation maintain the proper completion order. When each task is executed

in the simulation it already knows when it will end in the simulation based on the

simulation clock time at the start time of the simulation and the expected execution

time of the task based on a statistical model. In order to ensure the tasks (and implied

dependencies) are completed (and released) in the same order, the tasks are released

one at a time based on the order in the queue. The queue is ordered based on the

simulated ending time of the tasks that are currently executing.

3.2.5 Simulation Task Function

In order to use the simulation library, the developer simply replaces the calls to

each computational kernel with a call to the simulated kernel. This simulated kernel

requires an identifier as well as any handles or pointers that will create a dependence

in the real execution of the algorithm. Although the memory is never accessed, the

actual memory location in the process’ address space is required in order to ensure all
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of the dependencies will be maintained. Furthermore, some schedulers perform copies

of the data to deal with anti-dependences and real memory locations are required

for such copies to succeed. The simulated tasks derive their execution time based

on a random task time generated within a distribution provided in the simulation

configuration file. The user also has the ability to specify a custom task time which

will be described later. The simulated tasks are inserted into the task graph using

the scheduler’s API in an identical fashion to a real kernel.

The scheduler continuously maintains dependences and schedules each task

accordingly. When a simulated kernel is executed, the simulation begins by checking

the simulation clock to determine when the kernel is starting. Based on the kernel

starting time and the estimated time of kernel execution (based on the kernel’s model

of completion time), the ending time can be obtained. The simulated kernel then

acquires the lock on the Task Execution Queue and is added to the queue. The

kernel information can now be added to the simulated trace and is ready to exit.

However, the task must wait until it is at the front of the queue in order to allow

the function to return. From the scheduler’s perspective, the task is still executing

until the function (which represents the task) returns. Before finishing, however, the

simulated kernel must also update the global simulation clock to the completion time

from the model distribution before the function returns.

3.2.6 Scheduling Race Condition

One of the challenging aspects of ensuring the correctness of the simulation stems from

a possible race condition. The race condition can occur when a task is at the front

of the Task Execution Queue while the scheduler is inserting new tasks. Each task

starts by determining a start time by querying the simulation clock. Each task ends

by updating the simulation clock. The race condition arises when a task attempts to

complete while another task is determining what time it started in the simulation.

If the new task gets the simulation clock before the update by another task, the
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results will be accurate. If, however, the other task completes and updates the clock

before the new task can query the simulation time, the start time of the task will be

incorrect. The magnitude of the error depends on the structure of the algorithm and

the tasks involved.

Figure 3.7 presents a more concrete example of the effects of this race condition.

This simple workload includes three tasks and is performed on a two core system.

Tasks A and B are independent and can be scheduled at the same time. Task C

depends on data from B but is independent of Task A. Figure 3.7a represents what

the actual execution of the workload would look like. Tasks A and B are scheduled

on the two available cores. Once Task B completes, the scheduler recognizes that the

data Task C is waiting for has been satisfied with the completion of Task B. As a

result, the scheduler executes Task C on the second core of the system.

When the race condition does not cause an error, the simulation should look

identical. The simulation task queue already contains Tasks A and B. Task B is at

the front of the queue because the simulated ending time is earlier than the simulated

end of Task A. Now that Task B is at the front of the queue, it will add its information

to the trace, update the simulation clock, and return. Once Task B returns, the

scheduler releases the corresponding data dependence(s) and executes Task C on the

second core of the system. After Task B completes, Task A is now moved to the

front of the queue of running tasks. This is where the race condition can occur. If

Task C queries the simulation clock before Task A updates the simulation clock, the

resulting trace will be correct and look like Figure 3.7a. However, if Task A updates

the simulation clock before Task C can query the simulation clock, the race condition

will cause an error because the simulation clock will not accurately reflect the time

the task would have started. The effects of this error can be seen in Figure 3.7b. Here

the simulation would suggest the task starts later than it would in a native execution

of the algorithm.

The effects of this race condition can vary widely depending on the structure of

the application and the characteristics of the tasks. Figure 3.8 shows a workload
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(a) Race Condition Success (b) Race Condition Error

Figure 3.7: A demonstration of race conditions in the simulation.

(a) Race Condition Success (b) Race Condition Small Error

Figure 3.8: A workload where the race condition causes a relatively small error.

(a) Race Condition Success (b) Race Condition Large Error

Figure 3.9: A workload where the race condition causes a relatively large error.

42



where the error caused by the race condition is relatively small due to the length of

the tasks. Task C wouldn’t start much later than expected because of the relatively

small clock update from Task A. However, Figure 3.9 illustrates a situation where

the error caused by the race condition could drastically change the accuracy of the

simulation. In this case, Task A updates the simulation clock and moves the simulated

start time of Task C much earlier than expected.

There are currently two solutions to eliminate this race condition. The first is a

function recently added to QUARK. The function allows the developer to determine

if the scheduler has completed all bookkeeping related to scheduling. This means the

task can also query the scheduler to ensure this race condition will not occur. The

obvious downside of this technique is that it is not portable across schedulers.

The other solution to this problem that is portable for all schedulers is a judicious

use of the usleep() function. This is used so that the simulated kernel will sleep for

a fraction of a second and thus allow the scheduler to complete any bookkeeping.

3.3 Spin Simulations

One of the shortcomings of the Discrete Event Simulations described in Section 3.2, is

the inability to account for scheduling overhead. This is the basis for the assumption

that scheduling overhead be small relative to the length of the tasks. When the

overhead is small, the DES assumes they are negligible and can safely be ignored.

This assumption can be problematic when there are a large number of cores or the

tasks are short and overwhelm the single core responsible for scheduling tasks. As a

result, the simulation framework has included a second simulation mode called Spin.

Spin simulations are not as versatile and portable as the DES but they can be

helpful in situations where the scheduler may be overwhelmed by the workload being

processed. The basic principle behind the Spin simulations is to replace each task

with a call to a “sleep” function based on the statistical model of the task time. This

simulation mode should provide the same rate of work for the scheduler and thus
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provide accurate results even when the scheduler is overwhelmed and the scheduling

overhead is a non-negligible portion of the run time. In this mode, the trace is

collected based on a real “wall clock” time as opposed to the virtual simulation time

in the DES.

When implementing this simulation mode, the choice of “sleep” function can have

a significant effect on the accuracy of the simulations. Many of the sleep functions

available on the operating system are defined to sleep for at least the specified

amount of time but this could be more based on implementation and context specific

details. In order to evaluate a number of different implementations, a benchmark was

devised to compare three different implementations. The benchmark consisted of 1000

repeated calls to the “sleep” function where each call should sleep for 1 millisecond.

The time for this loop should result in a total time of exactly one second.

The first two implementations simply called the usleep and nanosleep functions

provided by the operating system. These sleep functions have microsecond and

nanosecond resolutions respectively. However, when these functions are called in

a loop that should complete in exactly one second, the resulting loop for each is

1.057669 s for usleep and 1.057613 s for nanosleep. (Tests are performed on an 8

Core Intel Xeon E5-2690.) This error may not appear to be much, but in the context

of the simulations where thousands of tasks will be modeled, these errors quickly add

up.

As a comparison, a custom “spin” function was created. This function doesn’t

sleep in a traditional sense but rather spins in a loop until a specific period of time has

passed. In this case, one millisecond. This spin loop, when executed 1000 times results

in a time of 1.000000 s and provides far more accurate results than the operating

system defined sleep functions. This spin function is far less efficient in terms of

processor usage, but the primary goal of this function is accurate timing, rather than

efficiency. For this reason, a custom “spin” function is used to model the time for

each of the tasks in the Spin simulation.
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Chapter 4

Simulation Results and

Applications

In order to analyze the accuracy of the simulations, the simulated traces should be

compared to the results of the real execution of the workload. It is important to

remember the scheduling decisions performed by task-based runtimes are generally

nondeterministic. This means the simulated trace is unlikely to look identical to the

trace collected from the real execution of the algorithm. They should, however, share

many of the same characteristics.

The most common method to determine the accuracy of the trace is to compare

the length of time a workload takes to complete. The time between the start of the

first task and the end of the last task in an application should be similar between the

simulated and native execution traces. In the field of dense linear algebra, we are often

interested in the rate at which floating point operations (flops) are performed. On

modern computing architectures this rate is often expressed in Gigaflops, Teraflops,

or even Petaflops for the largest parallel computing systems.

Gflops =
flops

time
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Table 4.1: Floating Point Operations

Algorithm Floating Point Operations

Cholesky 1

3
N3

LU 2

3
N3

QR 4

3
N3

In many of the dense linear algebra applications the number of floating point

operations is fixed based on the size of the problem. Table 4.1 presents the commonly

used formulas to calculate the number of operations for the Cholesky, LU, and QR

factorizations.

Some of the algorithms actually perform more floating point operations than the

formulas expressed in Table 4.1 because of the tile-based formulation of the problem.

Even in this case, the formulas here are generally used for any formulation of the

problem in order to have an effective flop rate as opposed to a literal flop rate.

This allows for comparison of multiple implementations of the same algorithm. The

accuracy of the simulations can be compared quantitatively based on the simulated

and real runtime or the simulated and real flop rate.

Some of the properties of a trace can be harder to quantify. These qualities are

often best evaluated by visualizing the trace and examining it. Many of the properties

of the trace can be observed but hard to make quantitative comparisons. Some of

the questions may be as follows: Where do the tasks get scheduled? Are there gaps

in the trace? Where is the trace sparse? Where is the trace dense? Are there unique

visual artifacts of the trace? These are all questions we can often answer qualitatively

by examining the trace.

In some cases the simulation does not provide accurate estimations of performance

and time. These usually arise when the initial assumptions of the simulation are

violated. The trace visualizations can often be used to determine what caused the

error.
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It should also be noted that these schedulers generally are not deterministic. As a

result, it is unlikely any two traces, even from the same algorithm, will be identical.

The tasks in a workload are not generally bound to a certain thread. It is important

to recognize that whether the traces are real or simulated, they are unlikely to be

identical but they should be similar.

4.1 Comparison of Schedulers

The first version of the simulation was aimed at the QUARK scheduler. (Figure 4.1

presents the performance results for these simulations.) This implementation makes

use of the QUARK extension allowing the simulation to query the scheduler to

determine whether the scheduler has completed scheduling other tasks in order for the

simulation to proceed. The simulation error for small matrices can reach nearly 20%

but the errors quickly drop and are near zero for larger matrices. The larger error for

small matrices is common among all of the schedulers. This error is likely an artifact

of the simulators inability to accurately model any startup costs associated with the

application. The smaller runtimes for smaller matrices also means even relatively

small errors can be a relatively large percentage of the total runtime.

Figure 4.2 and Figure 4.3 present the simulation results from the StarPU and

OmpSs schedulers. The real performance curves for each of the factorizations was

collected from an implementation in each scheduler. Again, each of these schedulers

has a larger percentage error for the smaller matrices but the error is close to zero for

larger matrices.

Figure 4.4 demonstrates the simulation accuracy of the applications as imple-

mented using OpenMP. OpenMP is an open standard and each implementation of

the standard will have the standard API but other details and performance are

implementation dependent. Figure 4.4 uses the GCC implementation of OpenMP

but some of the results later in the paper will make use of the Intel implementation
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Figure 4.1: Cholesky and QR performance results using the QUARK scheduler.
NB = 200 12 Core AMD Opteron 6180 SE
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Figure 4.2: Cholesky and QR performance results using the StarPU scheduler.
NB = 200 12 Core AMD Opteron 6180 SE
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Figure 4.3: Cholesky and QR performance results using the OmpSs scheduler.
NB = 200 12 Core AMD Opteron 6180 SE
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Figure 4.4: Cholesky and QR performance results using the OpenMP scheduler
implemented in GCC. NB = 200 12 Core AMD Opteron 6180 SE
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of OpenMP. Most of the results presented in the remainder of this chapter will use

the Intel or GCC OpenMP implementations.

One of the novel contributions of this work is the ability to use the same library

across multiple task-based schedulers with little or no modification. In the case of

StarPU and SimGrid simulations, the simulation is directly tied to the scheduler. This

certainly gives StarPU simulations an advantage in some situations but it does not

allow a developer to use the simulations portably with other schedulers. In the case

of Prometheus, the DAG for the workload must be extracted in a format recognizable

to the task simulator. Prometheus currently only supports Cilk++ and in order to

use the simulator with another scheduler the DAG collection tool must be modified

to intercept or understand the task structures of another task-based framework.

4.2 Simulation Scalability

4.2.1 Varying Core Counts

One of the simplifying assumptions of the discrete event simulation presented here

is the inclusion of task runtime models and resource contention into a single model.

This is, in part, due to the fact that it is difficult, if not impossible, to model the

effects contention will have on the runtime of each task. Even if it is possible, the

simulations would have to keep track of each piece of data in order to apply the

contention model to the length of each task. As a result, the runtime model for each

task includes the effects of any resource contention.

Making a single model that includes the basic computational runtime model with

contention makes it relatively easy to collect the runtime information from the trace

of an execution of the algorithm and use this information to build a model for each

class of tasks. The downside to this paradigm is that we must have access to the

resources in order to calibrate the task models. It may seem like a single processor

could be used to build these performance models. This would be true and provide
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accurate results if there were no resource contention. Unfortunately, each task must

access data that may or may not be on the local memory on a NUMA system. If a

task must access data on non-local memory it will take longer for the task to complete.

The following example demonstrates the impact task modeling can have on the

simulation results on a 48 core NUMAmachine. The hardware used in this experiment

has 4 sockets that each contain a 12 core AMD Opteron 6180SE processor operating

at 2.5 GHz. The system has 256 GB of RAM across 8 NUMA nodes. The application

being modeled is a QR factorization of a matrix that is 5000 × 5000. The matrix is

blocked into tiles of 200 × 200 resulting in a matrix that is 25 tiles on a side. The

inner blocking factor is 40. The workload is identical in every case except the number

of cores used in the computation. A trace is collected using 12, 24, 36, and 48 cores

corresponding to 1, 2, 3, and 4 sockets respectively.

Generally, memory placement on a NUMA system is based on the “first touch”

policy. This policy means portions of the process address space are mapped to the

NUMA node closest to the processing element (core) closest to it (assuming there is

available space). When PLASMA initializes the matrix, it is done in parallel in order

to ensure the tiles in the matrix are distributed across the system memory. This means

that if PLASMA is executed using 12 of the 48 cores, the data will only be distributed

across the memory closest to the 12 cores performing the data initialization. When

the QR factorization is computed on the same 12 cores, the tasks will only access the

memory nearby and, as a result, they tend to be slightly faster than if the data was

distributed across all 8 NUMA nodes.

In the case where the application uses all 48 cores, the data is initialized and

distributed across all 8 of the NUMA nodes. As a result, many of the tasks must

access data in non-local memory that is further away or may be in the cache of another

processor. Whenever this data is accessed, the tasks take longer to complete because

the task must wait for the data.

The four QR factorization traces were used to analyze the performance of each

task and build models as an input to the simulation. Tables 4.2, 4.4, 4.6, and 4.8
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provide descriptive statistics about each of the four tasks (DGEQRT, DORMQR,

DTSQRT, and DTSMQR). As expected, in almost every case the average time for

each class of tasks increases with the number of cores. This is explained by the wider

distribution of the matrix across the machine. The tasks must more frequently access

non-local memory in order to complete the computations. The skewness in most

cases (except DGEQRT) tends to be positive meaning the distribution has a wider

tail on the right side than the left. This is a common occurrence for task timing

distribution. This is likely because occasionally bad cache effects or scheduling and

OS jitter can cause a task to be slower. These slower tasks tend to positively skew

the timing distributions. Each of the data sets was also tested for normality using

the D’Agostino-Pearson normality test. The DORMQR, DTSQRT, and DTSMQR

data all had p-values below 0.05 (with the exception of the 24 core DTSQRT data

set) suggesting the data is not normally distributed while the data from DGEQRT

had p-values above 0.05 so the null hypothesis could not be rejected.

The t-test and Kolmogorov-Smirnov tests were used in order to determine if

the difference in the task times caused by the different CPU configurations was

statistically significant. In the case of the DGEQRT data set, the t-test was used

because the data was assumed to be normal based on the normality test. The t-test

suggests the 12 core and 24 core data sets are similar as are the 36 and 48 core data

sets. The DORMQR, DTSQRT, and DTSMQR data sets were compared using the

Kolmogorov-Smirnov test because the data sets did not pass the test for normality. In

all cases the various system configurations (12, 24, 36, and 48 cores) all produced data

sets that were different. The p-values for these tests are shown in Tables 4.3, 4.5, 4.7,

and 4.9.

Figures 4.5, 4.6, 4.7 ,and 4.8 show the kernel density estimation curves for each of

the four classes of task and the four hardware configurations.
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Figure 4.5: Kernel Density Estimation curves for DGEQRT tasks

Table 4.2: DGEQRT task descriptive statistics (25 Data Points)

Cores Min Max Mean Variance Skewness Kurtosis
Normality

p-value

12 2.942 4.072 3.521 0.0964 -0.42 -0.94 0.30

24 2.950 4.033 3.520 0.1070 -0.39 -1.11 0.15

36 2.850 4.389 3.752 0.1581 -0.56 -0.58 0.39

48 2.799 4.605 3.800 0.1828 -0.35 -0.34 0.70

Table 4.3: DGEQRT t-test p-values

12 Cores 24 Cores 36 Cores 48 Cores

12 Cores 1.00 0.99 0.03 0.01

24 Cores 0.99 1.00 0.03 0.01

36 Cores 0.03 0.03 1.00 0.68

48 Cores 0.01 0.03 0.68 1.00
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Figure 4.6: Kernel Density Estimation curves for DORMQR tasks

Table 4.4: DORMQR task descriptive statistics (300 Data Points)

Cores Min Max Mean Variance Skewness Kurtosis
Normality

p-value

12 3.422 4.149 3.740 0.0235 0.32 -0.53 0.00

24 3.455 4.488 3.804 0.0274 1.26 1.87 0.00

36 3.504 4.633 3.965 0.0513 0.83 -0.07 0.00

48 3.499 4.909 4.115 0.0759 0.84 0.11 0.00

Table 4.5: DORMQR KS test p-values

12 Cores 24 Cores 36 Cores 48 Cores

12 Cores 1.00 0.00 0.00 0.00

24 Cores 0.00 1.00 0.00 0.00

36 Cores 0.00 0.00 1.00 0.00

48 Cores 0.00 0.00 0.00 1.00
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Figure 4.7: Kernel Density Estimation curves for DTSQRT tasks

Table 4.6: DTSQRT task descriptive statistics (300 Data Points)

Cores Min Max Mean Variance Skewness Kurtosis
Normality

p-value

12 3.847 4.654 4.176 0.0129 0.08 1.14 0.01

24 3.990 4.668 4.230 0.0138 0.26 -0.11 0.19

36 3.948 4.937 4.341 0.0303 0.44 0.46 0.00

48 3.990 10.490 4.478 0.1605 11.29 167.24 0.00

Table 4.7: DTSQRT KS test p-values

12 Cores 24 Cores 36 Cores 48 Cores

12 Cores 1.00 0.00 0.00 0.00

24 Cores 0.00 1.00 0.00 0.00

36 Cores 0.00 0.00 1.00 0.00

48 Cores 0.00 0.00 0.00 1.00
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Figure 4.8: Kernel Density Estimation curves for DTSMQR tasks

Table 4.8: DTSMQR task descriptive statistics (4900 Data Points)

Cores Min Max Mean Variance Skewness Kurtosis
Normality

p-value

12 5.023 5.975 5.376 0.0204 0.43 0.13 0.00

24 5.064 6.203 5.437 0.0185 0.64 0.73 0.00

36 5.067 6.506 5.605 0.0313 0.50 0.63 0.00

48 4.945 11.210 5.799 0.0609 3.55 60.37 0.00

Table 4.9: DTSMQR KS test p-values

12 Cores 24 Cores 36 Cores 48 Cores

12 Cores 1.00 0.00 0.00 0.00

24 Cores 0.00 1.00 0.00 0.00

36 Cores 0.00 0.00 1.00 0.00

48 Cores 0.00 0.00 0.00 1.00
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Figure 4.9: QR simulation performance results using the OpenMP scheduler
implemented in GCC. Each of the dashed lines represent a different set of task models
as input. N=5000, NB=200, 4 x 12 Core AMD Opteron 6180 SE

Each of data sets is used as the basis for a set of task models. The task models

are fed into the simulation to determine what effect they would have on the accuracy

of the simulation results. Although many of the task timing data sets did not pass

the normality test, a normal distribution seems to model the tasks closely enough

to provide accurate simulation results. Figure 4.9 shows the simulation performance

prediction for the applications with each of the input configurations. The solid black

line indicates the actual performance of the workload with 12, 24, 36, and 48 cores.

The red, blue, green, and purple lines indicate the simulation results based on each

of the configuration inputs. For example, the red line is the simulation using the

configuration created based on the 12 core data set. The tasks in this data set tend
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to be a bit faster because of the memory access patterns. If this configuration is

used to simulate the entire 48 core system, it will overpredict the performance of the

workload. The purple line, on the other hand, represents the simulation results from

a configuration created with a 48 core data set. In this case the simulation tends to

underpredict the performance for a smaller number or cores. The figure also has a

black, dashed line labeled as “Point by Point”. This line represents the simulation

results when the correct configuration file is used for each data point. It is difficult

to see this line because it is generally on top of the solid black line indicating the

simulation error is near zero.

4.2.2 Varying Task Granularity

In the case of tile-based linear algebra, a decrease in task granularity generally

increases parallelism but can reduce the efficiency of each task. When the tasks

get too small, they can often overwhelm the scheduler. In order to quantify the

accuracy of the simulations, this section will examine the accuracy of the simulations

for a Cholesky factorization as the task size decreases. The Cholesky factorization was

chosen because the most common task is a DGEMMwhich is a highly optimized BLAS

operation that can be computed very quickly for even moderate size problems. When

the tile size decreases, the time for each task quickly drops and increasingly stresses

the scheduler. The tests presented here were performed on a 4 socket machine with

12 core AMD Operon 6180 SE processors. The tests were performed once with all 48

cores (Figures 4.10 and 4.11) and a second time using only a single socket containing

12 cores (Figures 4.12 and 4.13). The differing results for these two scenarios will

demonstrate the interaction of the task granularity and number of cores and the

effects they can have on the accuracy of the simulations. The tests will also be

performed using the discrete event simulation mode (Figures 4.10 and 4.12) as well

as the spin simulation mode (Figures 4.11 and 4.13).
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When evaluating the simulation accuracy for all 48 cores shown in Figures 4.10

and 4.11, it appears that both simulation modes provide accurate simulations for

the larger tile sizes of 160 and 192. Once the tile size decrease to 128, the two

simulation modes begin to diverge in accuracy. The Spin simulation accurately

predicts the performance while the discrete event simulation has begun to overpredict

the performance of the factorization. This is likely due to the fact that the DES does

not account for any scheduling overhead that occurs with these smaller tasks on a

large 48 core machine. Once the tile size decreases to 96, both simulation modes

significantly overpredict the performance of the algorithm. It should be noted that at

this tile size, the scheduler struggles to keep up even when executing the real workload.

For example, when factorizing a matrix where N = 4800 and NB = 96 100 times,

the performance achieved using OpenMP varies from 38.69 Gflops to 141.98 Gflops.

The average DGEMM task in this case is 0.399 ms and the other tasks take even less

time. At this granularity and hardware configuration, the scheduler has broken down

as well as the simulations.

The same workloads were also performed using only one socket containing 12

cores. These simulations provide much more accurate results than the previous

examples even though they have the same task granularity. In fact, the decreased

distribution of data in the 12 core scenario actually decreases the average task time

for the same granularity. For example, the same DGEMM task that took 0.399

ms on average for the 48 core configurations only requires 0.249 ms for the 12 core

configuration. However, with only 12 cores to schedule the runtime is not stressed as

much which results in smaller scheduling overhead and increased simulation accuracy.

The simulations still overpredict for small tile sizes but the error isn’t nearly as large

as the error in from the 48 core configuration.
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Figure 4.10: Cholesky discrete event simulation performance results using the
OpenMP scheduler implemented in GCC. The simulation accuracy decreases as the
size of each tile decreases. 4 x 12 Core AMD Opteron 6180 SE
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Figure 4.11: Cholesky Spin simulation performance results using the OpenMP
scheduler implemented in GCC. The simulation accuracy decreases as the size of
each tile decreases. 4 x 12 Core AMD Opteron 6180 SE
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Figure 4.12: Cholesky discrete event simulation performance results using the
OpenMP scheduler implemented in GCC. The simulation accuracy still decreases
with the smaller tile sizes but it isn’t as drastic as for a larger number of cores. 12
Core AMD Opteron 6180 SE
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Figure 4.13: Cholesky spin simulation performance results using the OpenMP
scheduler implemented in GCC. The simulation accuracy still decreases with the
smaller tile sizes but it isn’t as drastic as for a larger number of cores. 12 Core AMD
Opteron 6180 SE
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4.3 LU Simulation

One of the original assumptions for the simulation was that each class of tasks

was fairly uniform in terms of computation time. This assumption was that each

task performed the same number of operations and the difference in task times was

relatively small. It was also assumed that the temporal location of the tasks was

independent of the task time. Unfortunately, this assumption does not hold true for

all workloads.

One such example is the LU factorization implemented in PLASMA (using a single

threaded task to compute the panel factorization). The LU factorization, in order to

perform proper pivoting, must operate on an entire column of tiles during the panel

factorization. The first panel includes all of the rows in the first column of tiles.

Each subsequent panel factorization requires one less tile for the panel factorization.

As a result, the panel factorizations decrease in the time required throughout the

algorithm. This phenomenon can be seen in Figure 4.16. The first panel factorization

(shown in orange) is relatively long but each of the following panel factorizations

decreases in time.

In order to account for this type of problem, the developer can specify a custom

task time for the simulator. In the case of the LU factorization, it is relatively easy

to represent the time for the panel factorization as a linear relationship.

time = m× rows+ b

Figure 4.14 includes the data points for the LU factorization using two different tile

sizes. In each case, a linear relationship seems to accurately model the task times (in

ms). In the case of NB = 200 the following equation describes the line of best fit:

time = 0.00364× rows− 0.235
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In the case of NB = 128 the following equation describes the line of best fit:

time = 0.00187× rows+ 0.084

Using these formulas to calculate a custom time for each panel factorization ensures

this task is accurately modeled throughout the simulation. This can be seen by

comparing Figure 4.16 and Figure 4.17 showing the trace of a real workload and

a simulated workload respectively. While these two traces are not identical, they

show many of the same characteristics including the decreasing time for the panel

factorization throughout the workload. The two traces also use the same length

along the x-axis to demonstrate the simulated workload almost perfectly matches the

runtime of the real algorithm.

Figure 4.15 shows the performance curves for the LU factorization using these

two tile sizes across a range of matrix sizes. For the case where the tile size is 200,

the simulated performance and the real performance are very similar. The same is

true for the case where NB = 128 until the matrix gets a bit larger. At this point,

the simulated results start to diverge from the real workload. A close examination of

the traces where the simulation accuracy decrease reveals the act of simulating the

workload has changed the scheduling behavior and has violated one of our simulation

assumptions.

Figures 4.18 and 4.19 correspond to a real and simulated workload of an LU

factorization of a matrix where N = 6400 and NB = 128. In the real workload

shown in Figure 4.18 very few tasks are scheduled on the first core for the first third

of the trace. This is likely because this core is in charge of “inserting” tasks and

performing the necessary scheduling overhead. As a result, the panel factorizations

often performed on the first core, are moved to another core and cause the scheduler

to make different scheduling choices. These panel factorizations seem to become a

bottleneck in this case and do not overlap with the other tasks nearly as well as they

do later in the trace. In the simulated case shown in Figure 4.19, the change in the
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speed of the execution of the simulation relative to the real workload causes the tasks

to generally stay on the first core and overlap with the other tasks. As a result, the

simulation would suggest results that are faster than they actually are. Figures 4.20

and 4.21 demonstrate the LU factorization with the same number of tiles, but a large

tile size. In this case the artifact described earlier does not appear due to the different

tile sizes.

It is likely this scheduling artifact that can be reduced in the future when task

priority constructs are available in OpenMP. In this case, the panel factorization will

be given priority and should be overlapped with many of the other tasks and the

resulting increased workload performance and simulation accuracy.

The ability to specify a custom task time for the simulations allows for accurate

simulations of the LU factorization but may also be useful for simulating other

workloads where the tasks are not uniform in size.
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Figure 4.14: The time of each panel is plotted against the number of rows in the
tile column being factorized. The data points are plotted with their line of best fit.
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Figure 4.15: LU Factorization simulated performance vs Real LU Factorization
performance. Implemented in OpenMP using GCC. 2 x 8 Core Intel Xeon E5-2690
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Figure 4.16: A real trace of an LU Factorization where N=5000 and NB=200. 2 x
8 Core Intel Xeon E5-2690

Figure 4.17: A simulated trace of an LU Factorization where N=5000 and NB=200.
2 x 8 Core Intel Xeon E5-2690
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Figure 4.18: A real trace of an LU Factorization where N=6400 and NB=128. 2 x
8 Core Intel Xeon E5-2690

Figure 4.19: A simulated trace of an LU Factorization where N=6400 and NB=128.
2 x 8 Core Intel Xeon E5-2690
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Figure 4.20: A real trace of an LU Factorization where N=10000 and NB=200. 2
x 8 Core Intel Xeon E5-2690

Figure 4.21: A simulated trace of an LU Factorization where N=10000 and NB=200.
2 x 8 Core Intel Xeon E5-2690
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4.4 Intel Xeon Phi Cholesky Simulation

In serial applications and many fork-join parallel workloads, it is relatively easy to

determine when and where to optimize portions of the code. It should also be assumed

that if one phase of the computation is faster, likewise the overall runtime will be

faster. In the case of a task-based runtime, this analysis and performance modeling

is not particularly easy. For example, one task may be fairly slow, but it is usually

overlapped with other computations occurring on the other cores. In this case, even if

the task is improved dramatically, the total runtime for the algorithm may not change

significantly. In fact, optimization may not change the runtime of the computation at

all. However, you may have a task that is not called many times but often creates a

bottleneck for the computation. In this case, optimization may dramatically improve

the performance of the algorithm.

In many cases, each of the tasks can be improved but it can be a time-consuming

process. Before investing the time and resources in code optimization, it can be

helpful to determine whether an optimized task implementation will even accelerate

the workload. This is an excellent application for the task simulator.

One example where this can be used is in the work of porting the tile-based

Choleskey factorization in PLASMA to run on the Intel Xeon Phi. In this case, a 61

core Intel Xeon Phi 7120 was used. Once the tile-based Cholesky factorization was

ported to OpenMP it was trivial to run it on the new hardware. The performance of

the factorization, however, was far from the theoretical peak rate for floating point

operations for the Xeon Phi. The theoretical peak for a machine can be calculated

as follows:

Gflops = ClockRate×
Flops

ClockCycle
×NumberOfCores
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Table 4.10: The number of floating point operations for each task in a Cholesky
factorization. m = 256, n = 256, k = 256.

Kernel Flops Formula Total Flops

DGEMM 2mnk 33554432

DTRSM nm2 16777216

DSYRK kn(n+ 1) 16842752

DPOTRF 1

3
n3 + 1

2
n2 + 1

6
n 5625216

Table 4.11: Cholesky Task Performance on 61 core Intel Xeon Phi 7120

Kernel Flops
Mean

Time (ms)
Gflops % Peak % GEMM

DGEMM 33554432 3.854 8.707 43.96% 100.00%

DTRSM 16777216 2.253 7.447 37.60% 85.52%

DSYRK 16842752 5.282 3.189 16.10% 36.62%

DPOTRF 5625216 8.818 0.638 3.22% 7.33%

For double precision floating point operations on the Intel Xeon Phi 7120 the following

represents the theoretical peak:

1208 Gflops = 1.238(GHz)× 16(
Flops

ClockCycle
)× 61(Cores)

or 19.808 Gflops per core. However, the Cholesky factorization using a tile size of 256

only reaches a few hundred Gflops. One of the primary challenges in optimizing any

workload is determining where optimization can be applied most effectively.

The starting point for an analysis of task performance is to compute the number

of floating point operations for each task. The formulas and calculations for each

of these tasks are shown in Table 4.10. These values are calculated using m = 256,

n = 256, and k = 256. These operation counts, along with the average task time,

are used in Table 4.11 to calculate the flop rate for each of the task types. The table

also includes the percentage of the theoretical peak for a single core. It is nearly

impossible to reach the theoretical peak performance for any workload. As a result,
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matrix multiplication (GEMM) is often used as an artificial benchmark for how much

code can be optimized on a specific architecture. For this reason, the percentage of

the GEMM performance is also calculated.

Obviously, none of the tasks reaches the theoretical peak performance but it

is unclear whether we should expect better performance. As a baseline, a similar

analysis was done by analyzing the performance of each task on a 10 core Intel Xeon

E5-2650 v3 (Haswell) with the following theoretical peak performance:

368 Gflops = 2.3(GHz)× 16(
Flops

ClockCycle
)× 10(Cores)

or 36.8 Gflops per core. The performance for each of the tasks on the Haswell

architecture is shown in Table 4.12.

When comparing the performance of each of the tasks between the two archi-

tectures it becomes obvious the tasks do not perform nearly as well on the Xeon

Phi as they do on the Haswell. For example, the DGEMM tasks on the Haswell

perform at more that 83% of the theoretical peak while they only perform at 44%

of the theoretical peak on the Xeon Phi. However, it is likely unfair to make

comparisons based on the percentage of theoretical peak because the architectures

are very different and provide different challenges for optimizing code. In order to

make a more reasonable comparison, the performance of the DGEMM task is used

as the baseline performance. With this baseline, it appears the DTRSM tasks are

optimized equally well on the two architectures (82.19% of GEMM performance vs.

85.52% of GEMM performance). However, the DSYRK and DPOTRF tasks do not

appear to be very well optimized when they are compared with their counterparts on

the Haswell. This would suggest these are the two kernels we might want to examine

first in the process of optimizing the Cholesky factorization.

The first step was to validate our simulation is accurate in simulating this workload

and architecture. This can be seen in the black line and dashed black line in
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Table 4.12: Cholesky Task Performance on 10 core Intel Xeon E5-2650 v3

Kernel Flops
Mean

Time (ms)
Gflops % Peak % GEMM

DGEMM 33554432 1.098 30.560 83.04% 100.00%

DTRSM 16777216 0.668 25.116 68.25% 82.19%

DSYRK 16842752 0.680 24.769 67.31% 81.05%

DPOTRF 5625216 0.427 13.180 35.82% 43.13%

Figure 4.22. The simulation provides accurate results when the task models are

built based on the real factorization task times.

In order to determine what effects a faster task would have on the overall runtime,

the DPOTRF and DSYRK task models were replaced with task models that would

represent a task equally well-optimized for the Haswell and Xeon Phi. These modeling

calculations are shown in Table 4.13. Notice the DGEMM and DTRSM models are

unchanged in the “improved” portion of the table.

Figure 4.22 shows the expected performance based on the simulations using these

new models. The plot shows the performance when only the DPOTRF model

is improved, only the DSYRK model is improved, and when both are improved.

It should be noted that optimizing the DPOTRF kernel seems to improve the

performance more than the DSYRK kernel. It is useful to examine the simulated

traces in order to understand why this might be.

Figure 4.23 is the trace of the real execution of a Cholesky factorization on a

matrix where N = 5120 and NB = 256. Using the models derived from the real

workload, a simulation of the application is shown in Figure 4.24. The DPOTRF and

DSYRK tasks are shown in orange and green respectively across all of these traces.

All of the traces use the same scale on the x-axis to show the differences in runtime

for the application in each case. Figure 4.25 is a simulated trace where the original

model for the DSYRK kernel is replaced with a faster task model. The resulting trace

demonstrates that the workload takes less time to complete but not significantly so.

This is likely due to the fact that these tasks are often overlapped with other tasks and
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Table 4.13: The improved DSYRK and DPOTRF kernel performance used in the
Cholesky Simulations.

Kernel
Mean

Time (ms)
Gflops % Peak % GEMM

Original

DGEMM 3.854 8.707 43.96% 100.00%

DTRSM 2.253 7.447 37.60% 85.52%

DSYRK 5.282 3.189 16.10% 36.62%

DPOTRF 8.818 0.638 3.22% 7.33%

Improved

DGEMM 3.854 8.707 43.96% 100.00%

DTRSM 2.253 7.447 37.60% 85.52%

DSYRK 2.387 7.057 35.63% 81.05%

DPOTRF 1.498 3.755 18.96% 43.13%

do not create a large bottleneck in the application. On the other hand, Figure 4.26

demonstrates the workload is significantly faster when the DPOTRF kernel is replaced

with a faster task model. This is likely due to the fact that the DPOTRF task is often

a bottleneck that must be completed before the computation can continue. It is also

common for the DPOTRF task to not be overlapped with many tasks in the trace.

Finally, Figure 4.27 demonstrates the expected performance if both of the tasks were

replaced with an optimized versions.
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Figure 4.22: Performance of Cholesky Factorization where NB=256 implemented
with Intel OpenMP. The black line indicates the real performance and the black,
dashed line indicates the simulated performance. The red, blue and purple lines
indicate the performance expected if the DPOTRF and DSYRK kernels were
optimized to get better performance. 61 Core Intel Xeon Phi 7120
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Figure 4.23: A real trace of a Cholesky Factorization where N=5120 and NB=256.
61 Core Intel Xeon Phi 7120

Figure 4.24: A simulated trace of a Cholesky Factorization where N=5120 and
NB=256. 61 Core Intel Xeon Phi 7120

75



Figure 4.25: A simulated trace of a Cholesky Factorization where N=5120 and
NB=256. The DSYRK (shown in green) has been accelerated in the simulation. 61
Core Intel Xeon Phi 7120

Figure 4.26: A simulated trace of a Cholesky Factorization where N=5120 and
NB=256. The DPOTRF (shown in orange) has been accelerated in the simulation.
61 Core Intel Xeon Phi 7120

Figure 4.27: A simulated trace of a Cholesky Factorization where N=5120 and
NB=256. The DPOTRF and DSYRK (shown in orange and green respectively) have
been accelerated in the simulation. 61 Core Intel Xeon Phi 7120
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Figure 4.28: Real and simulated Cholesky performance on a two intel architectures
(Red = 2 x 10 core Intel Xeon E5-2650 v3 & Black = 61 Core Intel Xeon Phi 7120)
and a hypothetical hybrid architecture (9 Haswell Cores + 31 Xeon Phi Cores). NB
= 256

The simulator could also serve as a tool for studying hardware configurations that

are non-existent or difficult to access. For example, in this experiment we will create

a new hypothetical architecture and attempt to determine what kind of performance

the Cholesky factorization will achieve. Our hypothetical architecture will consist of

a combination of Intel Haswell cores and Intel Xeon Phi cores. The current Haswell

processors are available in configurations consisting of 2 to 18 cores. For the purposes

of our hypothetical architecture, we will use 9 Haswell cores or half of the largest

Haswell chip. The Intel Xeon Phi 7120 contains 61 cores. The hypothetical processor

will take half of that number (rounded up) or 31 cores. The hypothetical hybrid

processors consists of half of a Xeon Phi chip and half of a Haswell chip with a total

of 40 cores. It is possible to use the simulator to estimate the performance of our

factorization even thought this chip does not and will likely never exist.

In order to simulate this architecture, two distinct models for tasks must be

defined for the simulator. The first 9 cores of the architecture will execute tasks
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that correspond to the model obtained from a Haswell processor. The remaining

31 cores will use the model obtained from the Xeon Phi. These results are show in

Figure 4.28. The solid red line is obtained on a machine with 2 x 10 core Intel Xeon

E5-2650 v3 and the red dashed line verifies that the simulations accurately model

this architecture. The black solid line was obtained on an Intel Xeon Phi 7120 and

the black dashed line verifies the simulation accuracy for this architecture. The blue

dashed line is the simulation of our hypothetical hybrid architecture based on the

task timing models from the other two machines.

The ability to predict the performance on new hardware can be useful when

making design or purchasing decisions for new architectures. In this example, it is

possible to get performance models for each of the tasks from preexisting hardware,

however these models could be obtained by using a cycle accurate simulation. It may

also be possible to run a number of possible models in order to get an rough idea

of how the software would perform on a new machine or hardware. For example, it

might be interesting to determine how much slower a computation would be if one of

the chips was experiencing reduced performance due to power capping. A few quick

calculations could adjust the task timing models to be 5%, 10%, 15%, or 20% slower.

Once the new models are used for the slower chip, the simulator can quickly give

an estimate of the performance without any adjustments to the hardware. This low

cost, low risk, reduced hassle performance estimation enabled by simulation can allow

developers to ask questions that would not have been possible before.

4.5 Reverse Trace Performance Modeling

One of the most common tuning problems for task-based scheduling is the task

granularity selection. If the problem is broken down into large tasks, each task

generally performs well because it uses all of the cache available to it. However,

the large task size results in a decrease in parallelism that can cause a decrease in

performance for smaller problems. With small task sizes, each task generally does not
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perform as well and scheduling overhead can become a performance issue. However,

these small task sizes often create more parallelism that can actually boost the overall

performance for small problems.

When selecting the task granularity for tile-based dense linear algebra, there is not

one single tile size that provides the greatest performance for all possible matrices.

Rather, the optimal tile size depends on the architecture and the size of the matrix.

For example, for a smaller problem it is often better to select a smaller tile size in

order to make use of all of the cores available on a machine. However, larger matrices

often achieve higher performance with a larger tile size. This phenomenon can be

seen in Figures 4.29 and 4.30.

It is challenging to build a model that accurately describes the performance of

an algorithm based on the task granularity. As a result, empirical tuning approaches

are often the best option. Agullo et al. [3] described one such approach to tune the

dense QR factorization for multicore architectures. The difficulty with an empirical

approach is the length of time it can take to tune an algorithm. It generally

involves executing an algorithm several times with varying tile sizes in order to obtain

performance curves for each tile size. The optimal tile size changes with the crossover

points of the performance curves.

The process of obtaining these performance curves, while simple, can take a large

amount of time. One of the methods to deal with this in some problems is a technique

called Reverse Trace Performance Modeling (RTPM). Given the structure of the

computation, it is possible to obtain an approximation of the performance curve from

one large matrix factorization. Given a matrix size and tile size, it is possible to

calculate the number of tasks for a workload. These tasks are selected from the end

of a large trace and approximate the runtime for the algorithm. This method has

been shown to work when using a real trace to perform the analysis. The results

shown here suggest that the method also works for simulated traces.

The experiment here is performed on a machine with two 8 core Intel Xeon E5-

2690 processors. The workloads are the tile-based Cholesky and QR factorizations
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Figure 4.29: Cholesky performance predicted by RTPM of a real trace (RRTPM)
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fromm PLASMA implemented in OpenMP using the GCC compiler. Figures 4.29

and 4.30 demonstrate the accuracy of RTPM in comparison to the real execution of

the algorithm. In each case the solid line represents a real data point obtained by

running the algorithm. The dashed line represents the performance obtained using

the RTPM method to derive a full performance curve based on a single real trace.

The dotted line represents the performance obtained using the RTPM method to

derive a full performance curve based on a single simulated trace. RTPM provides

very accurate performance results for both real and simulated traces.

4.6 Kastors SparseLU Simulation

A team at INRIA has implemented a suite of benchmarks to evaluate the latest task

constructs in OpenMP. This suite of benchmarks is called Kastors [54] and includes

portions of the PLASMA library as well as a number of other workloads. In order

to demonstrate the accuracy and utility of the simulations outside of dense linear

algebra, a Sparse LU factorization was selected from the benchmark suite. The code

was instrumented to enable simulations. The workload has two parameters. The first

is the matrix size that is expressed by the number of blocks. The results shown here

keep the default size of 64 blocks. The second parameter is the SubMatrix size which

was varied from 32 to 192 by steps of 32 as well as a submatrix size of 16. The timing

results for each of these configurations are shown in Figure 4.31. Figure 4.32 zooms

in on the smaller tile sizes in order to demonstrate the differing simulation results

that are achieved based on the two simulation modes. The small tile size of 16 causes

stress on the scheduler which actually increases the length of time to compute this

workload. It is difficult to know exactly what causes this increase in runtime but it

is likely due to contention for a lock in the scheduler.
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Figure 4.31: Runtime for SparseLU factorization including discrete event and spin
simulations. 2 x 8 Core Intel Xeon E5-2690
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Core Intel Xeon E5-2690
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4.7 Conclusions

Chapter 3 presented the design and implementation of a novel simulation framework

for task-based runtimes and this chapter has presented a number of experiments

validating the accuracy and usefulness of such a simulation library. The experiments

have been performed on a variety of multicore shared memory hardware including

AMD CPUs, Intel CPUs and the manycore Intel Xeon Phi. The example workloads

have included the Cholesky, LU, and QR factorizations as well as the SparseLU

factorization from the Kastors benchmark suite.

The design of this simulation framework has many similarities to the Prometheus

and StarPU simulation implementations, but also improves on them in many ways.

The most obvious improvement is the scheduler portability in our new simulation

framework. In the case of Prometheus, the user is confined to the Cilk++ framework.

The author suggests this could be extended to other scheduling libraries in the future,

but this would require a modification of the code base in order to be able to collect

the DAG representation for each workload. In the case of StarPU, the simulation is

heavily tied into the scheduler.

Like the StarPU simulations, our new simulation relies on the same code to make

scheduling decisions as in a real world execution of a workload. In Prometheus, a

predefined scheduling algorithm is used to make scheduling decisions which may or

may not accurately reflect the decisions made by the real scheduler.

In terms of workload, the StarPU simulations have focused on heterogeneous

applications in which the tasks tend to be rather large in order to make efficient

use of the highly parallel accelerators. As a result, they have not focused on smaller

task sizes and NUMA architectures. Accurate simulation for NUMA architectures

requires careful task modeling in order to obtain the best results.

It should also be noted that our simulation seems to break down in two distinct

scenarios. The first scenario is when the act of simulating an algorithm alters the

decisions made by the scheduler. This does not seem to be a common problem, but
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can occur in some cases. This error is something to watch for as the complexity of

task-based schedulers increases and developers attempt to optimize their scheduling

algorithms. The other case where the simulators struggle to accurately predict the

performance of a workload is when the task granularity is small and/or the number

of cores is fairly large. This, however, is also where the efficiency of the schedulers

begins to breakdown as well. In conclusion, the simulator presented here represents

forward progress that increases functionality and increases usability for the accurate

modeling of task-based runtimes.
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Chapter 5

Trace Visualization

This chapter is based on the following publication by Blake Haugen et al.:

• Haugen, Blake, Stephen Richmond, Jakub Kurzak, Chad A. Steed, and

Jack Dongarra. “Visualizing Execution Traces with Task Dependencies.” In

Proceedings of the 2nd Workshop on Visual Performance Analysis, p. 2. ACM,

2015.

My contributions to this paper include (i) design of the visualization method, (ii)

implementation of visualization software, (iii) collection of experimental data, and

(iv) primary authorship of the text.

5.1 Introduction

Task-based schedulers often provide rich data sets that can be used to analyze and

evaluate the characteristics of an algorithm as well as how the problem was mapped

to hardware resources. The first data set is the Dircted Acyclic Graph (DAG) that

defines the tasks and their dependencies. The other data set is often called a trace

and collects information about the execution of each task in the workload.

Execution traces have been employed to provide users and developers a greater

understanding of their software. However, these tools are relatively static and can be
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improved for the workloads of task-based schedulers. The visual information-seeking

mantra of “overview first, zoom and filter, then details on demand” [46] certainly

applies to trace visualizations. The work presented here extends the current methods

to provide users with more “details on demand” about their computational workloads.

This chapter will present the data sets and how they can be combined to create a

new interactive data visualization tool.

5.1.1 DAG

Task-based schedulers ultimately rely on the dependencies between tasks. Whether

the developer explicitly states the task dependencies or the scheduling library

infers them, the data dependencies must be observed in order to ensure accurate

computation. These dependencies are often represented by a DAG.

Figure 5.1 shows the DAG for a small linear algebra problem that only has 55

tasks. Each vertex in the graph represents a task and is depicted in the figure by an

oval. (Each oval is labeled with the type of task it represents.) Each of the edges

in the graph represents the dependencies that must be observed when scheduling the

tasks. The data set produced by a small QR factorization from the PLASMA library

was used to generate Figures 5.1, 5.2, 5.3, and 5.4. The algorithm was executed on a

single 8-core CPU. This small problem size was selected to illustrate the underlying

structure of the problem rather than a real world application. Larger, more realistic

problem sizes will be used later.

The SMPSs, StarPU, PARSEC, and QUARK libraries generate the DAG in a

DOT file which can be used by many applications and libraries to visualize and

interact with the DAG. Figure 5.1 was produced from the execution of the workload

using QUARK. The resulting DOT file was visualized using the GraphViz toolkit.

The TEMANAJO project [16] also aims to visualize the task dependency graphs

for task-based parallel computing. The project gives the developer a visualization of

the dependencies but it is primarily used for debugging.
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Figure 5.1: This graph is an example of a small DAG from the QR factorization
implemented in the PLASMA library. The tasks are labeled and colored by class and
each arrow represents a data dependency.

5.1.2 Trace

Execution traces collect basic information about each task in an execution. These

data sets generally include a label for the task as well as timestamps indicating

when the task started and stopped. The trace also includes information about the

computational resource used to execute the task such as the core, node, or accelerator

that completed the task. The execution trace may also collect other information about

the tasks such as hardware counters queried using the PAPI library.

Execution traces are frequently visualized using a Gantt chart like the one shown

in Figure 5.2. The trace visualization was generated from a small QR factorization

from the PLASMA library. (This is the same problem used to create the DAG in
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Figure 5.2: This is an example of a trace from the QR factorization in the PLASMA
library. The tasks are colored to match the task classes in Figure 5.1.

Figure 5.1. The same color scheme is used for the tasks in the DAG as well as the

trace.) The workload was executed on 8 cores of a shared memory system. The x-axis

is used to depict the time (in milliseconds) while each row is used to represent a single

core on the system. Each of the rectangles represents one of the tasks comprising the

parallel workload. The rectangles in this figure are colored to convey the type of task

represented. However, the color and texture of the boxes can be used to depict any

number of task properties.

Unfortunately, the wide variety and complex interoperability of trace collection,

analysis, and visualization tools make it difficult to accurately describe the landscape

of the field briefly. There are several trace collection tools producing intermediate data

formats which can often be converted to use a variety of analysis and visualization

tools to analyze the execution trace.

SLOG-2 and Jumpshot [20] were developed at Argonne National Laboratory for

trace collection and analysis. The focus of the work was to provide a file format and

viewer that could scale to very large trace sizes. The trace information is stored in

the file hierarchically which provides efficient access to any portion of the trace.

The TAU performance system [45] focuses on providing an instrumentation toolkit

(Program Data Toolkit or PDT) that collects the event data. TAU also provides
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ParaProf and PerfExplorer for detailed analysis and visualization of many of the

performance characteristics of an algorithm. The tracing information can also be

converted to a variety of common formats for viewing with several event trace viewers.

Researchers at the Barcelona Supercomputing Center have also developed an

ecosystem of tools for collecting and analyzing event trace data. Extrae [26] is used

to instrument a parallel program and collect the event trace. Paraver [41] is used to

visualize the trace while Dimemas [12] is used to manipulate it and simulate execution

under a variety of conditions.

EZTrace [53, 8] was built on top of the Generic Trace Generator [21] library which

is capable of producing various trace file formats including Open Trace Format (OTF)

and Pajé. These traces can be viewed with the ViTE trace viewer or Vampir.

Arguably the most common trace viewer and analysis toolkit in the field is Vampir.

This viewer has the ability to view trace files in Open Trace Format (OTF) or

OTF2 which can be collected using a variety of instrumentation toolkits. Vampir

also provides a number of features and tools allowing the developer to interact and

analyze the event trace [31].

Finally, the PARSEC project [15] has implemented an embedded execution data

collection framework creating a binary file with a variety of performance information

including an execution trace. The data in the PARSEC Trace Table (PTT) can be

read and analyzed using a Python library or converted to a Pajé trace file which can

be viewed using ViTE.

5.2 Visualization Design

The concept of visualizing communication in an execution trace is not new and has

been implemented in many trace environments. However, the current methods can be

improved. The current tracing methods often instrument the code automatically for

the user. Each invocation of a function is recorded with a starting and stopping time

as well as information about the computational resource performing the computation.
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Figure 5.3: This trace is identical to Figure 5.2 except all of the dependencies
from Figure 5.1 are drawn using black lines. This demonstrates how quickly the
dependencies can overwhelm the user.

In the context of an MPI program, it is also possible to instrument all of the

communication functions. The communication functions are traditionally represented

with a line between the two nodes on the execution trace. This depiction clearly

communicates data movement has occurred, but it is often overwhelming to the user

when all of the communications are shown simultaneously.

This communication visualization method is perfectly suited for software which

uses MPI because each time the program moves data it must call an MPI

communication function that can easily be tracked. In a shared memory setting,

however, this methods breaks down. There is no communication function which

can easily be instrumented to log data movement. The user must have knowledge

of the algorithmic structure and what data movement must occur. It is hard to

know exactly how the data transfer takes place but it must occur in order for the

computation to continue. The task-based schedulers can provide information about

where the computations happen and where the data was before it was performed.

It should be noted that a dependency between tasks implies the later task must

wait until the earlier task has completed. This means the second task is waiting for

some piece of data from the earlier one. If these tasks are executed consecutively on
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Figure 5.4: This trace demonstrates the basic interactivity of the software. The
user has selected the red task in the middle by placing the cursor over it. The trace
highlights the dependencies on either side of that task with a black border and a line
to depict the dependency.

the same core or device, the data should already be in cache and the communication

cost should be relatively low. On the other hand, if the tasks are performed on

a different core, device, or node the scheduler must move data across the memory

hierarchy or communicate with another node. As a result, when considering task-

based scheduling, a dependency implies the requirement of communication unless the

tasks are computed on the same core. Even if the tasks are computed on the same

node it is possible data will have to move through the memory hierarchy if the data

has been evicted from the processor cache.

Perhaps the most obvious way to depict the execution trace and the task

dependencies is to visualize the trace and the DAG simultaneously. Adding

interactivity with mouseovers or mouseclicks would allow the user to select a task

in the trace which would also highlight the corresponding task in the DAG. The

opposite could also be true. However, the size of the DAG and trace quickly grow

to extremely large datasets which make it difficult for the user to comprehend the

information on a problem of any reasonable size. As a result, the two visualizations

need to be combined into a single visual representation.
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The first version of the tool employed the depictions used by many common MPI

tracing tools. The tasks were represented using the same methodology as Figure 5.2.

A simple line between tasks, a common visual representation for MPI communication,

was used to represent the dependencies and data communications required by the

algorithm. This representation, applied to the same data used in Figures 5.2 and 5.1,

can be seen in Figure 5.3.

Figure 5.3 now shows all of the tasks and their dependencies in one visual space.

However, even for small problems the number of dependencies quickly overwhelms the

user. The visual “hairball” shown in Figure 5.3 can be greatly improved by making

the dependency lines an interactive feature.

Figure 5.4 demonstrates a visualization of the small problem presented earlier,

but with interactive features. Without having the mouse hover over any of the tasks

in the diagram, the users see a trace that looks identical to the trace in Figure 5.2.

When the user moves the mouse over one of the tasks, however, the trace highlights

the task as well as the tasks for which it is waiting. It also highlights any tasks that

are waiting for it to complete. Additionally, the tasks are connected to the task in

focus to represent the dependencies. In terms of the DAG, each of the lines represents

the edges connected to the highlighted task. Lines connected to tasks earlier in the

trace are edges directed into the highlighted node. Conversely, lines connected to

tasks in the future represent edges leaving the highlighted node in the DAG.

Solid black lines were chosen to represent the dependencies for a number of

reasons. First, the dependency represents data that must be moved in order for

the computation to proceed. Most trace visualization tools use lines to represent

communication or data movement in an MPI application. Next, the lines are used

in the DAG to represent the dependencies making them a logical choice in the new

visualization. Finally, it has been shown that these “leader lines” are a good visual cue

that frees up other visual techniques, such as color, to represent other information [27].

Many of these features can be configured to allow the user to adjust the behavior

of the visualization. For example, the user may want to only highlight (add a black
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border to the task) dependencies without drawing the lines. The user may choose to

only show the tasks in the past or only the tasks waiting in the future. The user may

also want to see tasks more than one step away from the task in focus. These are all

features the user can configure in order to make the visualization useful.

5.2.1 Implementation

In order to create the visualization, two separate data sets must be combined. The

first data set is from the execution trace. This data generally contains information

about each task including when it started, when it ended, on what core it executed,

and likely the type of task. This data set may also contain other information about

the task. For example, the code may be instrumented with PAPI counters which

collect information about cache misses or instruction counts.

The second data set is the DAG of tasks and dependencies. QUARK and PARSEC

currently provide the DAG for the workload in a DOT file. This information can be

used to visualize the DAG using any number of software libraries. The file can also

be used to identify the dependencies (edges) of the graph.

The challenging part of combining these data sets is finding the tasks in the

execution trace corresponding to each of the nodes in the DAG. The earlier discussion

about tracing collection and storage utilities highlights the challenge of dealing

with data produced by different schedulers and instrumentation libraries. The code

currently supports data from QUARK and PARSEC, although it could be extended

to support various other data formats and schedulers in the future.

QUARK provides a task id unique to each task in the execution. The task

id is included in each node of the DOT file containing the DAG representing

the computation. The trace for the experiments shown later was collected by

instrumenting each task with a start and stop time stamp as well as the corresponding

task id. Once the two files are produced, the tasks in the DOT file are matched to

the corresponding tasks in the trace.
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PARSEC, however, automatically collects and records all of the necessary data to

match tasks from the DAG with tasks from the trace. The DAG is collected in pieces

on each node and post-processed to generate a single DOT file. The trace is collected

in the PTT file discussed earlier. The distributed nature of the PARSEC execution

makes it difficult to have a single task id unique to each task. Therefore, each task

has three id properties (hid, did, and tid) that combine to create a unique identifier

for each of the tasks. The three ids are present in the DOT and PTT files created by

PARSEC and are used to match the tasks from the two data sets.

There is no standardized method for uniquely identifying tasks in a trace or DAG

at this time. In order to port this method to the data provided by other schedulers,

the user must be able to uniquely identify tasks in the trace as well as the DAG.

The visualization is implemented as a client-server architecture. The server is

implemented in Python while the client is implemented using Javascript. The Python

server is better suited to complete the heavy computational workloads and perform

various analytical tasks. Javascript (and associated libraries) are well suited for

making interactive visualizations.

This architecture also gives developers a flexible way to improve, adjust, and

expand the capabilities of this system. The next section will demonstrate how this

visualization can be used and an extension using a kernel density estimation (KDE)

plot in conjunction with the trace visualization.

5.3 Applications

Perhaps the simplest use case for the combined interactive visualization is to

determine why there is idle time in the trace. For example, the trace shown in

Figure 5.4 has many sections where it would appear the system is underutilized. The

task the user has selected has idle time preceding it in the trace. This may suggest

to a novice user that the runtime system is not efficiently mapping the tasks onto the

hardware. With the addition of the interactive dependency visualization, the user
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Figure 5.5: The trace for an LU factorization of a matrix of size 5000 with a tile
size of 200. This means the matrix is 25 × 25 tiles. The factorization is performed
using QUARK and no priority hints.

can now see that the task could not have been executed earlier because it was waiting

for data from another task.

This visualization can also be used by those developing task-based runtimes to

determine whether their runtime is working as expected. For example, if the trace

shows idle space when all of the dependencies have already been satisfied, a developer

may want to examine his/her scheduling algorithm or look at work-stealing policies

that could improve performance.

Task-based schedulers are often very efficient when mapping a workload to the

hardware but they can sometimes be improved if the developer provides scheduling

hints about each task. One common type of hint is priority. An experienced developer

with excellent knowledge of his/her workload may know which tasks are on the critical

path and should be executed as soon as possible in order to reduce the effect of any

bottlenecks in the workload.

The LU factorization in PLASMA is one example of an algorithm with a bottleneck

that can drastically reduce the performance of the factorization. The trace for an LU

factorization on a matrix of 5000 elements and a tile size of 200 is shown in Figure 5.5.

The DGETRF tasks (shown in blue) clearly create a bottleneck because the scheduler
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must wait for them to complete in order to continue with the computation. If a

developer does not have an extensive knowledge of his/her application and a strong

intuition for the dependencies present in the algorithm, it is likely unclear if this can

be improved.

Even if the user examines the DAG and the trace it still may not be entirely

clear whether this performance can be improved. The first problem is that the size

of the DAG can often be so large it is hard to render. Even if it can be “rendered”,

the DAG may be completely unreadable. For example, a small portion of the DAG

corresponding to the workload presented in Figure 5.5 is shown in Figure 5.6. Even

when zoomed in on the DAG it is impossible to understand the structure of the DAG.

Figure 5.7 shows the DAG for the same problem but on a much smaller matrix. This

may begin to give the developer a sense of the problem structure but the difference

in scale and the difficulty of matching the task in the trace and the DAG still make

it challenging to understand whether the scheduling in Figure 5.5 can be improved.

It is clear the DGETRF tasks (shown in blue) are the bottleneck so the user has

selected one of them. When the task is selected it also highlights any dependencies it

is waiting for and it becomes clear the task has been waiting even though there are

no outstanding dependencies for the task. This suggests to the user that elevating

the priority of this task can assist the scheduler in overlapping this task with other

work and accelerating the workload.

Figure 5.8 shows the trace of the same problem but the DGETRF (shown in

blue) tasks are given a higher priority than the other tasks. The scheduler uses

this information to move the DGETRF tasks to the front of the scheduling queue.

When these tasks are given priority, they reduce the effects of the bottleneck and

drastically improve the performance of the workload. The factorization without any

priority hints (Figure 5.5) performs at 166 GFLOP/s while the addition of priority

hints (Figure 5.8) improves the performance to 226 GFLOP/s.
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Figure 5.6: A portion of the DAG for a moderately sized LU factorization on a
matrix that is 25 × 25 tiles. This is an excellent example of how large these task
DAGs can be. GraphViz requires several minutes to “render” the DAG and the
results are completely unreadable.

StarPU and QUARK already allow the developer to specify the priority for a

given task. The standard for OpenMP 4.5 also includes support for priority hints and

should be supported in future implementations of OpenMP.

Another feature added in the visualization is the ability to modify the color of the

tasks based on their relative execution times. Another challenge of trace visualization

can be comparing the length of tasks. In order to show thousands of tasks on the

trace, they must be relatively small and it could be challenging for the user to perceive

the relative time for various tasks.

In order to determine the relative execution time, a z-score is computed for each

task using the following formula:

z =
x− µ

σ
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Figure 5.7: A DAG for a smaller LU factorization. This DAG allows the developer
to see the problem structure without being overwhelmed by the size of the graph like
Figure 5.6

Figure 5.8: The trace for an LU factorization of a matrix of size 5000 with a tile
size of 200. This means the matrix is 25 × 25 tiles. The factorization is performed
using QUARK and elevates the priority of the DGETRF tasks (shown in blue).
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Figure 5.9: A trace where all of the data is initialized on one NUMA node.

Where x is the raw data point, µ is the mean and σ is the standard of deviation. If

this is calculated across the entire data, it may be misleading because each of the tasks

likely has distinct performance characteristics. As a result, the z-score is calculated

based on the mean and standard deviation for each type of task in the trace. In

other words, each task is compared with the performance of tasks of the same type

as opposed to the entire data set.

Once the z-score is calculated for each task, it is visualized on a continuous scale

centered at zero. The center of the color scale is white and represents tasks which

have z-scores near zero and are near the average time for that type of task. As a task’s

execution increases relative to the mean, the z-score grows in the positive direction

and the color of the task is an increasingly bright blue. If the task is faster than

average, the z-score drops below zero and the color of the task becomes a brighter

green.

This relative task time encoding can be used to diagnose a common performance

issue on a NUMA machine. Figure 5.9 shows the relative task time encoding for a

workload performed on a NUMA machine with 8 AMD Opteron 8358 SE processors.

This encoding of the trace makes it clear there must be some sort of performance issue

that may be improved. All of the tasks on the first 6 cores (first socket) are green

indicating they are faster than average. The last 6 cores (the last socket), however,
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are filled with tasks that are blue indicating they are much slower than average. This

pattern often indicates the data is allocated and initialized on one NUMA node. The

non-uniformity of the memory access speed is clearly visible with this representation.

The first possible solution to this performance problem is to initialize the data

in parallel. Memory placement generally follows a “first touch” rule so the memory

is placed in the section of memory closest to the core. By initializing the memory

in parallel, the data is spread across the system. The PLASMA library has matrix

initialization routines to perform this matrix generation in parallel and as a result

the data is distributed across the machine.

Alternatively, numactl can be used to control where the memory is placed.

Numactl is a linux utility commonly used to control the NUMA policy for a process.

One of the options is an “interleave” policy that determines upon which nodes the

memory will be placed. The “interleave=all” option sets the policy to distribute the

data across all of the memory nodes. Having the memory distributed will likely mean

some of the tasks that were fast before will take longer to compute but the slower

tasks will generally be computed much more quickly. Having the data dispersed across

the machine will also reduce the contention present when all of the cores attempt to

access memory on the same NUMA node.

5.4 Trace Visual Analytics System

Visual analytics is defined as “the science of analytical reasoning facilitated by

interactive visual interfaces.” [51] The visualization method presented earlier can be

applied independently like the example in Figure 5.4 and can be considered a visual

analytic tool. However, it is also possible to employ this technique in conjunction

with other data visualization techniques and create a coordinated multiple view

visualization. Multiples view systems are defined as “systems that use two or more

distinct views to support the investigation of a single conceptual entity.” [56] The

coordination of these views with techniques like brushing can provide powerful tools
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Figure 5.10: An example of the trace utility applied to a linear algebra workload.
The tasks are colored based on their relative speeds.

Figure 5.11: An example of the trace utility applied to a linear algebra workload.
The KDE plot was used to highlight tasks in the trace based on execution time.
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that allow users to interact with their data and gain new insight. Figures 5.10 and

5.11 present two examples of the visualization library applied to a real world data set

in a coordinated multiple view visual analytics tool.

Figure 5.10 demonstrates the new trace visualization on the same linear algebra

application presented earlier. However, this example uses a larger problem size which

more closely resembles a real world problem. The tasks in the trace have been colored

based on their relative task times as described earlier. This representation allows the

user to quickly determine which tasks are slower or faster than average. There are

several blue tasks at the beginning of the trace. This is likely due to library and data

initialization costs at the start of the algorithm.

Several of the tasks near the end are green indicating they are faster than average.

It is likely this is caused in part by the smaller number of tasks being executed and

the resulting reduction in memory contention. By selecting one of the brightest green

tasks, the visualization also shows the user the data dependencies all come from the

same CPU. Therefore, the data is likely to be in cache instead of the main memory

or cache on another chip. As a result, the data movement is likely to be much faster

than other tasks.

The plot at the bottom left shows four KDE curves for the four types of tasks.

The red KDE curve is highlighted which indicates the selected task is part of this

density estimator. The black vertical line indicates where the selected task falls in

relation to the distribution of task times. In this case, the selected task is likely one

of the fastest of its kind.

One of the elements of the visual information-seeking mantra is the ability to filter

the data and make it easier to focus on information deemed most interesting by the

user. Figure 5.11 demonstrates how the KDE plot can be used to highlight tasks

in a specific range with a filter based on execution times. In this case, the user is

interested in the relatively slow tasks. The tasks in the trace which have execution

times falling within the range of the gray box on the KDE plot are highlighted, while

the others tasks have been obscured by a reduction in opacity.
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The user has selected an orange task in order to determine why it was relatively

slow. The visualization shows two dependencies for the selected task. One is on the

same core while the other is on another CPU. However, closer inspection reveals two

other tasks were executed on the same core between the two tasks linked in the trace.

Thus, the data from the dependency has likely been evicted from the cache. As a

result, the task likely had to load two dependencies from memory or another CPU

which caused an increase in task execution time.

The new dependency visualization technique is intended for people who develop

task-based schedulers as well as the developers who use them. The developer of

a scheduler can use this method to evaluate the performance of it and determine

if it is performing as intended. Developers using a task-based scheduling library

to parallelize their application can also use the visualization to guide their use of

extended task information such as locality hints and task priority that are available

in some of the schedulers.
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Chapter 6

Conclusions

As computer architectures are becoming increasingly parallel, the need to adapt and

tune software for new platforms will become an important part of computational

science. Task-based runtimes provide one of the many models for expressing parallel

computations. The inclusion of task constructs in the latest version of the OpenMP

standard suggests that task-based scheduling will play an important role in parallel

computing for the foreseeable future. While these scheduling utilities provide a layer

of abstraction and increase developer productivity, they can also make performance

analysis and prediction a challenging task. In this dissertation, a novel simulation

framework and a trace visualization extension have been presented. They provide

new methods for performance analysis to the developers creating such runtimes as

well as the users who employ them to implement their workloads.

In Chapter 3, a novel task-based simulation was presented. The framework was

portable across a number of schedulers (QUARK, StarPU, OmpSs, and OpenMP)

with no modification. The simulations also allow users to simulate the performance

of their software independent of the hardware. The simulations employ the chosen

scheduler to make all decisions about task scheduling to ensure any artifacts due to

the scheduling choices will be present in the simulations as well. Chapter 4 presented

a number of experiments demonstrating the accuracy of the simulations. It also
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discussed a few of the errors that can occur when simulating workloads in a context

that violates the initial assumptions of the simulation library. Perhaps the greatest

application of this simulation framework is the ability to predict the performance of

an algorithm under a wide variety of circumstances.

One of the keys to accurate simulation is the ability to accurately model the

runtime of each of the types of tasks in a computational workload. Poor models can

result in diminished accuracy of the simulations. Previous work for benchmarking

individual computation tasks was focused on the effects of caching for the timing

of a task. The work presented in Chapter 3 extended this methodology to explore

the effects of multicore, NUMA systems. While it is possible to design a number

of benchmarks that consider many possible cache and memory access scenarios, it is

exceedingly difficult to design a benchmark which perfectly matches the context of a

task in a real world application. Even if it is possible to create such a benchmark,

there are so many possible benchmarks to choose from that a selection process would

likely be time consuming and may not even provide the best results.

Chapter 5 presented a novel extension to the common trace visualization

techniques. The extension allows users to interactively explore the trace while

including information from the DAG corresponding to the workload. Previously, the

DAG and trace data sets could only be viewed as two separate entities which made

it difficult to correlate the data from one visualization to the other. The interactive

nature of the visualization also allows for the exploration of data sets previously

thought to be of intractable size. This framework also presents the basis for a visual

analytic system for task-based runtimes.

This dissertation presents a novel simulation framework for task-based runtimes.

It demonstrates these simulations can be performed across a number of schedulers

and a variety of hardware including the manycore Intel Xeon Phi. It shows these

simulations are accurate and can be useful for a variety of workloads.
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6.1 Future Work

While the simulation framework presented here works for a number of task-based

schedulers in a shared memory context, it is not immediately clear how to apply

it to scheduling problems in a distributed setting. The inherent synchronization

required for the current simulation approach would likely be too costly for efficient

simulations in a distributed context. Distributed memory systems must also perform

more costly data transfer than a shared memory system which must be considered

in the simulations. In the case of heterogeneous computing with accelerators, this

data transfer must also be considered. Heterogenous and distributed systems could

be targets for future development in the task-based simulation framework.

The trace visualization currently provides support for the QUARK and PARSEC

runtimes, but this could be extended to a number of other schedulers and trace data

formats. The visual analytics approach to analyzing the performance of a given

workload could also be extended to include a number of other visualizations beyond

the KDE curves shown at the conclusion of Chapter 5.
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