
Performance Analysis and Acceleration of Explicit
Integration for Large Kinetic Networks using

Batched GPU Computations
Azzam Haidar∗, Benjamin Brock∗†, Stanimire Tomov∗, Michael Guidry∗†,

Jay Jay Billings∗†, Daniel Shyles∗, Jack Dongarra∗†‡

∗University of Tennessee, Knoxville, TN, USA
†Oak Ridge National Laboratory, Oak Ridge, TN, USA

‡University of Manchester, Manchester, UK

Abstract—We demonstrate the systematic implementation of
recently-developed fast explicit kinetic integration algorithms
that solve efficiently N coupled ordinary differential equations
(subject to initial conditions) on modern GPUs. We take represen-
tative test cases (Type Ia supernova explosions) and demonstrate
two or more orders of magnitude increase in efficiency for solving
such systems (of realistic thermonuclear networks coupled to fluid
dynamics). This implies that important coupled, multiphysics
problems in various scientific and technical disciplines that were
intractable, or could be simulated only with highly schematic
kinetic networks, are now computationally feasible. As examples
of such applications we present the computational techniques
developed for our ongoing deployment of these new methods on
modern GPU accelerators. We show that similarly to many other
scientific applications, ranging from national security to medical
advances, the computation can be split into many independent
computational tasks, each of relatively small-size. As the size
of each individual task does not provide sufficient parallelism
for the underlying hardware, especially for accelerators, these
tasks must be computed concurrently as a single routine, that
we call batched routine, in order to saturate the hardware
with enough work.

I. INTRODUCTION

Many important physical processes can be modeled by the
coupled evolution of a reaction (kinetic) network and fluid dy-
namics. A representative example is provided by astrophysical
thermonuclear reaction networks, where a proper description
of the overall problem typically requires multidimensional
hydrodynamics coupled to the network across a spatial grid
involving many independent zones. Many other scientifically-
interesting problems employ kinetic networks. Representative
examples include the networks of chemical reactions required
to model atmospheric chemistry, chemical evolution networks

Notice of Copyright: This manuscript has been authored by UT-Battelle,
LLC under Contract No. DEAC05-00OR22725 with the U.S. Department of
Energy. The United States Government retains and the publisher, by accepting
the article for publication, acknowledges that the United States Government
retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or
reproduce the published form of this manuscript, or allow others to do so, for
United States Government purposes. The Department of Energy will provide
public access to these results of federally sponsored research in accordance
with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-
access-plan).

in contracting molecular clouds during star formation, plasma-
surface interactions in magnetically confined fusion devices,
fuel depletion in fission power reactors, and chemical burning
networks in combustion chemistry. Realistic atmospheric sim-
ulations, combustion of larger hydrocarbon molecules, studies
of soot formation, core-collapse supernovae, and thermonu-
clear supernovae all can involve hundreds to thousands of
reactive species undergoing thousands to tens of thousands
of reaction couplings [1], [2]. The corresponding reaction
networks are large. Current techniques based on implicit
numerical integration typically are not fast enough to allow
coupling of realistic reaction networks to the full dynamics of
such problems and even the most realistic simulations have
employed highly schematic reaction networks.

There are two general approaches that we might take
to address the preceding issues. The first is to seek faster
algorithms for solution of the typically large and stiff system
of differential equations that describe the kinetic evolution.
The second is to take advantage of advances in computational
architectures to solve the chosen algorithm more rapidly. In
previous work [3], [4], [5], [6], [7], we described a new
algebraically-stabilized explicit approach to solving kinetics
equations that extends earlier work by Mott [8] and is capable
of taking stable integration time-steps comparable to those of
standard implicit methods, even for extremely stiff systems of
equations. Since the methods are explicit, they do not involve
matrix inversions, and thus scale linearly with network size.
Because of this much more favorable scaling and competitive
integration step size, we demonstrated that such algorithms
are capable of performing numerical solution of extremely stiff
kinetic networks containing several hundred species about 36×
faster than the best implicit codes [3], [4], [5], [6], [7].

One implication of new algorithms is that they may give new
perspectives on optimization. Standard implicit methods spend
most of their time on linear algebra operations for larger net-
works because they must be solved iteratively, which requires
inversion of large matrices. Thus, the optimization strategy
is clear for implicit algorithms: do the linear algebra faster.
Conversely, the new explicit methods do not involve matrix
inversions, so optimizing them involves different strategies.
These may offer unique opportunities for implementation on

newer architectures such as GPU or many-core accelerators
coupled to standard CPUs. In this paper we take a first step in
addressing these issues by deploying the explicit integration
methods described in our previous work [3], [4], [5], [6], [7]
on coupled CPU-GPU systems. We show that using GPUs to
exploit the parallelism inherent in the explicit kinetic algorithm
for networks of realistic size makes it possible find the solution
for a single network on the GPU faster than on the CPU and
the solutions for many networks simultaneously on the GPU
versus serially on the CPU.

Solving many networks simultaneously on the GPU can
be done very efficiently, as we show, due to the increased
parallelism of the computation. To fully benefit from the
parallelism, the processing for all networks must be grouped
into a single routine, that we refer to as batched routine. The
purpose of batched routines is to solve a set of independent
problems in parallel. Such configuration arises not just at
the astrophysics application at hand using explicit solvers,
but in many other real applications, including astrophysics
with implicit solvers [9], quantum chemistry [10], metabolic
networks [11], CFD and resulting PDEs through direct and
multifrontal solvers [12], high-order FEM schemes for hydro-
dynamics [13], direct-iterative preconditioned solvers [14], im-
age [15] and signal processing [16]. If a single computational
task in the batch is large enough to allow efficient use of the
entire device, there is no benefit of using batched computation;
it is preferred to execute the set of independent tasks in serial
fashion as a sequence of tasks, to better enforce locality of data
and increase the cache reuse. However, this is typically not the
case in many real applications, including the ones investigated
here. Although the entire computation is extremely large, the
separate tasks are so small, that the amount of work needed
to perform the computation cannot saturate the device, either
CPU or GPU, and thus there is a need for batched routines. In
general, the tasks do not necessarily have the same size, which
further complicates the development of efficient computing
techniques for these types of workloads.

II. ALGORITHMIC ADVANCEMENTS AND NOVEL
APPROACH

A. Formulation and Novel Approach

The prototype implementation that we describe here is based
on an operator split formulation of fluid dynamics coupled to
a large kinetic network, where the hydrodynamical solver is
evolved for a numerical timestep ∆thydro holding network pa-
rameters constant, and then the network is integrated over the
interval ∆thydro using adaptive network timesteps ∆tnet holding
the new hydrodynamical variables constant. The computation
of the fluid dynamics is implemented on the CPUs while the
one of the kinetic networks is implemented on the GPUs. This
framework describes qualitatively a large number of potential
scientific applications in a variety of fields, but to be defi-
nite we shall emphasize astrophysical thermonuclear networks
coupled to hydrodynamical simulations in explosive burning
scenarios. Our reference example will correspond to a 150-
isotope network containing 1604 reactions. The general task

for the kinetic network then is to solve efficiently N coupled
ordinary differential equations subject to initial conditions that
have been determined in the current hydrodynamical timestep
as shown in Figure 1.

dyd
dt

=

= (f +
1 + f +

2 +)i − (f −
1 + f −

2 +)i
= (f +

1 − f −
1)i+ (f +

2 − f −
2)i + = ∑

j
j j

... ...
...

dyd iyydyd
Negative populations

Macroscopic equilibration

Microscopic equilibration

F +
iFF − F −

iFF

(f +
jf − f −

jf)ij j

Fig. 1. Sources of stiffness in explicit integration of a set of coupled
differential equations. Negative probabilities correspond to populations (which
cannot be negative) being driven negative by numerical error because of a
too-large timestep. This turns damped exponentials into growing exponentials
and destabilizes the network. Macroscopic equilibration occurs when F+

i
becomes approximately equal to F−i , so that one is taking numerically the tiny
difference of two very large numbers. This too will destabilize the network
if the explicit timestep is too large. Microscopic equilibration occurs when
forward–reverse terms at the reaction level become almost equal. This again
implies numerically taking the tiny difference of very large numbers, and will
destabilize the network if the timestep is too large.

In this expression, the yi,(i=1...N) describe the dependent
variables (typically measures of abundance). The fluxes be-
tween species i and j are denoted by (f j)i. The sum for each
variable i is over all species j coupled to i by a non-zero flux
(f j)i, and for later convenience we have decomposed the flux
into a component F+

i that increases the abundance of yi and
a component F−i that depletes it. For an N-species network
there will be N such equations in the population variables yi,
generally coupled to each other because of the dependence of
the fluxes on the different y j.

Two broad classes of numerical integration may be defined.
In explicit numerical integration, to advance the solution from
time tn to tn+1 only information already available to the
calculation at tn is required. In implicit numerical integration,
to advance the solution from tn to tn+1 requires information at
tn+1, which is of course unknown. Thus implicit integration
requires an iterative solution. Such solutions are expensive for
large sets of equations because they involve matrix inversions.

B. Algebraically-Stabilized Explicit Integration

The key to stabilizing explicit integration is to understand
that there are three basic sources of stiffness for a typical
reaction network. We have termed these as:

1) Negative populations
2) Macroscopic equilibration
3) Microscopic equilibration

and they are illustrated in Figure 1. We have developed a
systematic set of algebraic constraints within the context of ex-
plicit numerical integration that remove these sources of stiff-
ness and permit the algebraically-stabilized explicit method to
take stable and accurate timesteps that are competitive with
that of standard implicit methods. Since the stabilized explicit
method can execute each timestep faster for large networks (no
matrix inversions), the resulting algorithm is intrinsically faster

than implicit algorithms. We have documented the details of
this novel approach and documented a set of experiments that
shows a speed of ∼ 6 times faster than that of the state of the
art implicit code for this problem [3], [4], [5], [6], [7].

III. PERFORMANCE ANALYSIS AND OPTIMIZATION
TECHNIQUES FOR A SINGLE NETWORK

In this paper we focus on developing high-performance
GPU algorithms, implementations, and optimization tech-
niques for the Kinetic network, which is the the most expen-
sive phase of the simulations of interest. We start by studying
the performance behavior of a single network, proposing
different optimization techniques and algorithmic designs, and
then we study the case of many network simulations.

A. The Algorithm

In order to analyze and understand the computational chal-
lenges of the kinetic simulation, we concentrate on the main
steps of the integration process, described in Algorithm 1.
The integration consists of a main loop until convergence.
Each iteration follows four major steps. In our example, the
average number of iterations is 32,182. We denote by s the
number of species. The first step of the algorithm populates the
components F+

i and F−i that increase and deplete, respectively,
the abundance of each species. In order to perform this
step efficiently, we propose to store all the F+

i and the F−i
consecutively in two vectors: F+ and F−. In our example the
sizes of F+ and F− are in the range of 2,720 elements. The
computation is described in step 1 of Algorithm 1. An efficient
implementation is to assign to each thread the computation of
one or more elements of F+ or F− in a coalescent order. Next,
in step 2, we compute the effect of the increasing and depleting
abundance for each species. In other words, for every species
k, we compute ∑ j f+jk and ∑ j f−jk . This step can be viewed
as one tensor contraction computation that involves Level 1
BLAS routine. The implementation is not straightforward, as
it consists of “2×s” summations of chunks of elements of F+

and F− that are of different length. The third and the fourth
steps are straightforward. Step 3 updates the flux F of size s
by the stabilization formula that depends on the result of the
summation from step 2, while step 4 checks the convergence
criteria, and prepares the parameters of the next iteration in
case of non-convergence.

In conclusion, our analyses shows that computationally the
algorithm can be viewed as a set of tensor contractions and
Level 1 BLAS operations on small size vectors. Thus, this
is a memory-bound algorithm. Since our main focus is to
describe a general framework of designing and optimizing a
GPU kernel for batched computations on GPUs, the proposed
analyses and optimization techniques presented below hold for
any memory-bound and tensor contraction algorithm.

B. Methodology and Performance Analysis

A recommended way of writing efficient memory bound
GPU kernels is to use the GPU’s whole shared memory, load
it with data, and reuse that data in the computations as much as

Algorithm 1 The kinetic integration algorithm.
copy data from CPU
while convergence do

// 1. Populate F+ and F−

for i ∈ {1 .. #components} do
F+(i) = FFac+(i)×Flux(map+[i])
F−(i) = FFac−(i)×Flux(map−[i])

end for
// 2. Compute the contribution of each ∑ f+ and ∑ f−

for k ∈ {1 .. #species} do
sum+(k) = ∑ j f+jk
sum−(k) = ∑ j f−jk
where jk are the indices of the fluxes f ∗jk from species
j to species k in F+ and F−

end for
// 3. Update the Mass fraction X , the abundance Y and
// the flux F based on the resulting sum+ and sum−

for k ∈ {1 .. #species} do
D(k) = sum+(k)−sum−(k)
Y(k) = f unction(D,Y,sum+,sum−)
X(k) = M(k)∗Y(k)
F(k) = R(k)∗Y[u]∗Y[v]∗Y[t]
where u,v, t are mapping indices for the abundance
reactions of species k, R is the rate parameter, M
is the Mass data, X is the Mass fraction, and Y is
the vector of abundance.

end for
// 4. Check convergence and compute parameters of
// next iteration
...

end while
send data to CPU

possible. The goal of this idea is to do the maximum amount
of computation before writing the result back to the main
memory. However, the implementation of such technique may
be sensitive and not portable as it depends on the hardware, the
precision, and the algorithm. Moreover, our experience showed
that this procedure might provide good performance when only
one Thread-block (TB) is running but is not that appealing for
batched computation (where many TBs need to be executed
simultaneously on the GPU) for two main reasons. First, the
current size of the shared memory is 48 KB per streaming
multiprocessor (SMX) for the Nvidia K40 (Kepler) GPUs,
which is low for the amount of data that we want to load
and use. Second, completely saturating the shared memory
of a SMX by one TB can decrease the performance of the
memory bound routines, since only that TB will be mapped
to the SMX (no shared memory is available to host another
TB) while our bandwidth benchmark showed that an SMX
requires to host more than one TB in order to achieve the
maximal bandwidth that can be retrieved from the hardware.
Indeed, due to its low computational rate, the memory-bound
algorithm will result in low occupancy, and subsequently poor
core utilization.

To obtain a near optimal performance, we conducted an

extensive study over the performance counters using the
Nvidia profiler tools [17]. Our analysis concluded that in
order to achieve an efficient execution for such memory
bound computation, we need to maximize the occupancy
and minimize the data traffic while respecting the underlying
memory design. Unfortunately, todays compilers cannot intro-
duce highly sophisticated shared memory/register-based loop
transformations, and consequently, this kind of optimization
effort should be studied and implemented by the developer.
This includes techniques like reordering the data so that it can
be easily vectorized, reducing the number of instructions so
that the unit spends less time in decoding them, and targeting
the use of predefined loop boundary strategies in order to
enable loop unrolling techniques.

version 1 version 2 version 3

G
B

/s

0

1

2

3

4

5

6

7

8
Global Load Throughput
L2 Throughput Read
Global Store Throughput
L2 Throughput Write

Fig. 2. Performance counters measurement: global memory load/store
efficiency

version 1 version 2 version 3

109

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2
Executed Load/Store instructions
Executed instructions

Fig. 3. Performance counters measurement: executed load/store instructions
and executed total instructions

version 1 version 2 version 3

Pe
rc

en
ta

ge
 %

0

10

20

30

40

50

60

70

80

90

100
stall reasons (execution dependency)

stall reasons (data request)

Fig. 4. Performance counters measurement: stalling percentage and reasons

First, we developed a reference implementation of Algo-
rithm 1, denoted by “version 1”. A collection of the hard-
ware counter readings is shown in Figures 2 to 5. The data

version 1 version 2 version 3

107

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
Fp_sub0_writes_sectors

L2_sub0_writes_sector_misses

L2_sub0_writes_sector_queries

Fig. 5. Performance counters measurement: number of write requests from
L2 to DRAM (red), number of write requests from L1 to L2 (green), which
is equal to the number of write misses in L2 (blue)

read/write throughput of such implementation is very low
and since the algorithm is memory bound (mostly reading
data), one can expect a very low performance. This version
requires about 12.5 seconds to solve the integration of one
kinetic network and is far from the theoretical lower limit,
which we derive to be about 1.3 seconds (see Figure 6). We
performed a set of extensive experiments and found that the
third step (the summation step) is the most time consuming
(about 95% of the total time). This summation involves vectors
of variable length. For our example, we analyzed the length
of each of these summations and found that most of them
are of size less than 40, except for a few of them, where the
size is about 400. Our experiments also showed that 73% of
the summation time is spent in computations involving large
vectors (number of elements larger than 40) and about 27%
in all the rest. There are several reasons for step 3 being slow.
First, the variable size summation involves irregular data ac-
cesses which generate many memory-bank conflicts and high
thread divergence. Second, the variation of the length of each
summation makes it hard for the compiler to perform unrolling
and optimizations. Third, parallel variable-size summations
involve synchronizations, thread idle time, and load imbalance.
This is verified by the performance counters illustrated in
Figures 2-5. The read throughput obtained from version 1 is
about 1.5 GB/s, which is very low compared to about 8.1 GB/s
that one TB can achieve based on a bandwidth benchmark that
we performed. This irregular access generates huge amount
of integer instructions that the Nvidia profiler was not able
to measure. The profiler returned overflow for the number of
integer instructions. We found that for most of the time, the
threads are stalling for either execution dependency or data
requests (see Figure 4).

A possible optimization for the summation step is to im-
plement it as a tree reduction. We developed a tree reduction
routine to compute the summation. It is similar to the one
proposed by Nvidia [18], which has been proven to be the most
efficient technique for such calculations on vector of length
larger than two warps. The computation involves copying the
elements of the corresponding vector into shared memory,
and then performing a tree reduction. We also included a
number of optimizations, including, decreasing the amount of

instructions by unrolling the last warp, meaning unrolling the
last 6 iterations of the inner most loop, as well as implementing
a template interface where the blocksize is predefined at
compile time. This allows the compiler to perform a complete
unrolling of the loop. However, we should mention that our
study showed that the tree reduction is powerful when the
length of the vector is larger than 64, and slower than the
sequential summation otherwise. Therefore, we developed a
“version 2” implementation, where we used the tree reduction
summation for large sizes, and kept the sequential summation
for small vector lengths. This version turned to be twice
faster than the previous implementation, but is about 4 times
more expensive than the optimal theoretical limit, as shown in
Figure 6. Version 2 requires about 5.1 seconds to perform the
integration over the 32,182 iterations, while the optimal time
is equal to 1.3 seconds. The performance metrics collection
resulting from version 2 is illustrated in Figures 2-5. It is
clear from Figure 2 that the resulting throughput efficiency
of this version, which is about 3.3 GB/s, is about half of what
one Thread-block can achieve (8.1 GB/s). The percentage of
the stalling reasons is better than version 1, but the amount
of data to write remains the same (see Figure 5). This is
not surprising since version 2 follows the same algorithmic
order as version 1; the only difference is that it uses the
reduction tree summation for large vectors, which works on
shared memory only, and thus, does not decrease any data
write instructions. The drawback of this version is that it
optimizes the summation of the large vectors, but many threads
remain idle during this step. It does not resolve the issue of
branching as well. We did several attempts to parallelize the
sequential summation over different warps but the resulting
implementation was slower.

The technique to minimize bank conflicts and to achieve
higher load throughput is to minimize branching, using all
available threads to load coalescent data in a consecutive order,
and to predefine fixed loop bounds, if possible, to allow the
compiler to unroll some portions of the code (e.g., step 3).
Hence, loop unrolling, loop peeling, and section interchange
can be useful techniques to achieve our goal. Nevertheless,
since the size of the integration data is larger than the available
shared memory, we expect to never reach the optimal timing,
which assumes that data is carried from main memory only
once, and sits in the cache all the way till the end of the
computation. Indeed, techniques like locality and reusing data
can be very helpful.

Thus, in our third design, we propose to reorder the data
storage as well as the computation, “when possible”, in order
to increase data locality and expose more parallelism for
vectorization. We propose to remap the storage of the flux
components data F+, F−, FFac+, FFac−, Map+, and Map−

to a 2D matrix (m, nb), as illustrated in Figure 7, where the
size nb is fixed at compile time. This way the computation of
both F∗ and ∑ f ∗ (”∗” corresponds to either ”+” or ”−”) can
be executed efficiently in parallel using all the threads of the
Thread-block (where a warp will be working of 32 consecutive
data elements). Moreover, the loop is ordered by the index

version 1 version 2 version 3

To
ta

l i
nt

eg
ra

tio
n

tim
e

(s
)

0

2

4

6

8

10

12

14
Integration time(s)
Theoritical Tmin formulated

Fig. 6. The elapsed time to perform the computation of the whole kinetic
integration process.

nb	

ΣF*	

sumrow	

F*

Fig. 7. Reshaping data structures and reordering the computations for con-
tinuous access and improved vectorization, as well as for higher parallelism.

of the columns ” j” and since nb is predefined, the compiler
is able to unroll the loop over j, allowing predicted data
access patterns which increases the load throughput. Within
this proposition, the summation process must be split over two
phases. First, phase (a), is the row-wise summation ”sumrow”,
i.e., summation over the columns of F+ and F−. Second,
phase (b), is for the species with reaction components larger
than nb; they will own more than one row of F∗, and thus
a fast summation over its corresponding sumrow is needed
to get ∑ f ∗ and finalize step 3. For example, the chunk of
elements colored in “red” in Figure 7 is split over 4 rows in
the new data structure. Thus, its final sum is the summation
of its corresponding sumrow that have been computed in phase
(a). In our example nb was equal to 20, where most of the
contributions are within one row. Note that in order to increase
data reuse, we can fuse step 2 and step 3 at a warp level.
During the computation of every element of F∗ (step 2), its
value can be directly accumulated into a register or a shared
memory variable ”v”. Once a row of F∗ is computed, its
summation sumrow is also computed in v. As a consequence,
we expect that this version will exhibit better locality, less
instructions, and higher throughput. Figures 2-5 show that this
version exhibit very high read throughput, close to the peak
bandwidth, and requires 7× less instructions than the previous
two versions. Moreover, the percentage of time the threads are

idles is about half of that for version 1, and the amount of data
to be written to the main memory is about 2.3× less than the
other versions (see Figure 5). We also propose to merge the F+

and F− data structure into one matrix in order to expose more
parallelism, which increases the occupancy of the kernel and
minimizes the amount of time threads ”idle”. This version runs
close to the optimal bound, as shown in Figure 6. This GPU
implementation is about 6× faster than its CPU counter part.
Note that the CPU implementation of the explicit integration
approach presented in [3], [4], [5], [6] was also about 6 ×
faster than the state-of-the art implicit method for our 150-
isotope example.

IV. PERFORMANCE ANALYSIS FOR MULTIPLE NETWORK

A factor of 36 speedup (6× from the explicit approach
and 6× from the GPU acceleration) over current state of
the art for thermonuclear networks coupled to hydrodynamics
is impressive, but the GPU is computing a single kinetic
network, and thus is highly under-utilized. There is only one
Thread-block performing the computation of one network. In
typical applications the CPUs will host multiple independent
fluid dynamics zones, which results in independent networks.
This motivates us to investigate launching many networks in
parallel on the GPU, as illustrated schematically in Figure 8.

CPU	

1	 2	 N	3	

Kinetic network N	

Kinetic network 3	

Kinetic network 2	

Kinetic network 1	

GPU	

Ba
tc

he
d

co
m

pu
ta

tio
n	

Hydro zones	

Fig. 8. Integrating multiple kinetic networks in parallel on a GPU by a
batched computation.

There are two possible design strategies to execute con-
curent networks on a GPU: either using CUDA streams or
using batched computations [19]. The batched computation
recently attracted increased research interest due to its feature
in exploiting all the SMX of a GPU, providing effecient
high-performance computation for problems of very small
size [20], which are similar to our test cases. We investigated
and developed prototypes using both design strategies.

Timing results for the launch of many representative net-
works of 150-isotopes running in parallel using either the
streamed or the batched implementation are displayed in
Figure 9. We see that the time to run n networks scales almost
perfectly. For the cuda-stream design, we observe that the time
to solve up to 15 networks is roughly the same as solving
one network. The period of 15 concurrent networks in the
steps reflects the availability of 15 SMX of the K40c GPU.

concurrent networks
0 100 200 300 400 500 600 700 800

Ti
m

e
pe

r i
nt

eg
ra

tio
n

st
ep

 (m
s)

0

0.25

0.5

0.75

1

1.25

1.5

Using cuda stream
Using batched computation0.06-0.08 ms/step for 1 - 60 networks

0.17-0.20 ms/step for 60-120 networks

0.5 ms/step for ~300 networks

1 ms/step for ~600 networks

implicit for
one network

1.4 ms/step for ~820 networks

Fig. 9. Massively parallel integration of many 150-isotope networks on a
Tesla K40c GPU. The approximate range of integration times for integrating
a single network on a CPU with current implicit codes is indicated by
the horizontal band. In this example the GPU has 15 available streaming
multiprocessors and we have used batched methods to launch 4 networks per
multiprocessor. This accounts for the step structure with width 4× 15 = 60
networks.

The batched design is advantageous; it follows the same stair
shape observed for cuda-stream, but with a period of 60. The
batched computation takes advantage of all the 15 SMX of
the GPU, but is also able to schedule about 3-4 Thread-block
per SMX. As a result, our batched design was about 3-4×
faster than the cuda-stream design, as shown in Figure 9.
The slight rise in execution time on any given period reflects
a small increase in the CPU overhead associated with the
preparation of increasing number of networks concurrently
(since the timing includes the CPU processing and copying
overhead as well as kernel execution time).

The results implied by Figure 9 have large implications for
simulations in a variety of scientific fields. They demonstrate
that not only a single realistic network can run fast enough
to couple the fluid dynamics, but in fact many such networks
can be executed in a time short enough to make the simulation
feasible. Here we see that the new algorithms are capable
of running ∼ 300− 600 realistic networks (150-isotopes) in
a time that a standard implicit code can run one such network
on a CPU.

V. CONCLUSION

In summary, our new algebraically-stabilized explicit algo-
rithms are intrinsically faster than standard implicit algorithms
by factors of ∼ 5− 10 for network with several hundred
species. For a single network, GPU acceleration increases this
to a factor of ∼ 20− 40 for networks with several hundred
species. The GPU is capable of running ∼ 300−600 networks
in parallel in about the same length of time that a standard
implicit code can run one such network on a CPU (this is also
true presently within a factor of two or so for an implicit code
accelerated with a GPU). These potential orders of magnitude
increases in computational efficiency imply that much more
realistic kinetic networks coupled to fluid dynamics are now
feasible in a broad range of large problems in astrophysics and
other disciplines. Presently we are investigating applications

of these new methods to large-scale computer simulation for
Type Ia supernovae, neutrino transport in core-collapse super-
novae, real-time atmospheric forecasting, climate science, and
materials science.

ACKNOWLEDGMENTS

This material is based upon work supported by the National
Science Foundation under Grant No. CSR 1514286, NVIDIA,
the Department of Energy, and in part by the Russian Scientific
Foundation, Agreement N14-11-00190. This work has been
supported by the US Department of Energy, Office of Nuclear
Energy, and by the ORNL Postgraduate Research Participation
Program, which is sponsored by ORNL and administered
jointly by ORNL and the Oak Ridge Institute for Science
and Education (ORISE). ORNL is managed by UT-Battelle,
LLC, for the US Department of Energy under contract no.
DE-AC05-00OR22725. ORISE is managed by Oak Ridge
Associated Universities for the US Department of Energy
under contract no. DE-AC05-00OR22750.

REFERENCES

[1] O. E. S and B. J. P, “Numerical simulation of reactive flow,” 2005.
[2] W. R. Hix and B. S. Meyer, “Thermonuclear kinetics in astrophysics,”

Nuclear Physics A, vol. 777, pp. 188 – 207, 2006, special Isseu
on Nuclear Astrophysics. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0375947404011005

[3] M. Guidry, “Algebraic stabilization of explicit numerical integration
for extremely stiff reaction networks,” Journal of Computational
Physics, vol. 231, no. 16, pp. 5266 – 5288, 2012. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0021999112002070

[4] M. W. Guidry, R. Budiardja, E. Feger, J. J. Billings, W. R. Hix,
O. E. B. Messer, K. J. Roche, E. McMahon, and M. He, “Explicit
integration of extremely stiff reaction networks: asymptotic methods,”
Computational Science & Discovery, vol. 6, no. 1, p. 015001, 2013.
[Online]. Available: http://stacks.iop.org/1749-4699/6/i=1/a=015001

[5] M. W. Guidry and J. A. Harris, “Explicit integration of extremely stiff
reaction networks: quasi-steady-state methods,” Computational Science
& Discovery, vol. 6, no. 1, p. 015002, 2013. [Online]. Available:
http://stacks.iop.org/1749-4699/6/i=1/a=015002

[6] M. W. Guidry, J. J. Billings, and W. R. Hix, “Explicit integration
of extremely stiff reaction networks: partial equilibrium methods,”
Computational Science & Discovery, vol. 6, no. 1, p. 015003, 2013.
[Online]. Available: http://stacks.iop.org/1749-4699/6/i=1/a=015003

[7] B. Brock, A. Belt, J. J. Billings, and M. Guidry, “Explicit
integration with gpu acceleration for large kinetic networks,”
Journal of Computational Physics, vol. 302, pp. 591 – 602,
2015. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0021999115006063

[8] M. D. R, “New quasi-steady-state and partial-equilibrium methods for
integrating chemically reacting systems,” 1999.

[9] O. Messer, J. Harris, S. Parete-Koon, and M. Chertkow, “Multicore
and accelerator development for a leadership-class stellar astrophysics
code,” in Proceedings of ”PARA 2012: State-of-the-Art in Scientific and
Parallel Computing.”, 2012.

[10] A. A. Auer, G. Baumgartner, D. E. Bernholdt, A. Bibireata, V. Chop-
pella, D. Cociorva, X. Gao, R. Harrison, S. Krishnamoorthy, S. Krishnan,
C.-C. Lam, Q. Luc, M. Nooijene, R. Pitzerf, J. Ramanujamg, P. Sadayap-
panc, and A. Sibiryakovc, “Automatic code generation for many-body
electronic structure methods: the tensor contraction engine,” Molecular
Physics, vol. 104, no. 2, pp. 211–228, 2006.

[11] J. L. Khodayari A., A.R. Zomorrodi and C. Maranas, “A kinetic model
of escherichia coli core metabolism satisfying multiple sets of mutant
flux data,” Metabolic engineering, vol. 25C, pp. 50–62, 2014.

[12] S. N. Yeralan, T. A. Davis, and S. Ranka, “Sparse mulitfrontal QR on
the GPU,” University of Florida Technical Report, Tech. Rep., 2013.
[Online]. Available: http://faculty.cse.tamu.edu/davis/publications files/
qrgpu paper.pdf

[13] T. Dong, V. Dobrev, T. Kolev, R. Rieben, S. Tomov, and J. Dongarra,
“A step towards energy efficient computing: Redesigning a hydrody-
namic application on CPU-GPU,” in IEEE 28th International Parallel
Distributed Processing Symposium (IPDPS), 2014.

[14] E.-J. Im, K. Yelick, and R. Vuduc, “Sparsity: Optimization framework
for sparse matrix kernels,” Int. J. High Perform. Comput. Appl.,
vol. 18, no. 1, pp. 135–158, Feb. 2004. [Online]. Available:
http://dx.doi.org/10.1177/1094342004041296

[15] J. Molero, E. Garzón, I. Garcı́a, E. Quintana-Ortı́, and A. Plaza, “Poster:
A batched Cholesky solver for local RX anomaly detection on GPUs,”
2013, PUMPS.

[16] M. Anderson, D. Sheffield, and K. Keutzer, “A predictive model for
solving small linear algebra problems in gpu registers,” in IEEE 26th In-
ternational Parallel Distributed Processing Symposium (IPDPS), 2012.

[17] A. D. Malony, S. Biersdorff, S. Shende, H. Jagode, S. Tomov, G. Juck-
eland, R. Dietrich, D. Poole, and C. Lamb, “Parallel performance
measurement of heterogeneous parallel systems with gpus,” in Proc.
of ICPP’11. Washington, DC, USA: IEEE Computer Society, 2011,
pp. 176–185.

[18] “Optimizing parallel reduction in cuda,” http://docs.nvidia.com/cuda/
samples/6 Advanced/reduction/doc/reduction.pdf, 2007.

[19] A. Haidar, T. Dong, S. Tomov, P. Luszczek, and J. Dongarra, “Frame-
work for Batched and GPU-resident Factorization Algorithms to Block
Householder Transformations,” in ISC High Performance, Springer.
Frankfurt, Germany: Springer, 07-2015 2015.

[20] J. Dongarra, I. Duff, M. Gates, A. Haidar, S. Hammarling, N. J.
Higham, J. Hogg, P. Valero-Lara, S. D. Relton, S. Tomov, and
M. Zounon, “A proposed API for Batched Basic Linear Algebra
Subprograms,” Manchester Institute for Mathematical Sciences, The
University of Manchester, UK, MIMS EPrint 2016.25, Apr. 2016.
[Online]. Available: http://eprints.ma.man.ac.uk/2464/

http://www.sciencedirect.com/science/article/pii/S0375947404011005
http://www.sciencedirect.com/science/article/pii/S0375947404011005
http://www.sciencedirect.com/science/article/pii/S0021999112002070
http://stacks.iop.org/1749-4699/6/i=1/a=015001
http://stacks.iop.org/1749-4699/6/i=1/a=015002
http://stacks.iop.org/1749-4699/6/i=1/a=015003
http://www.sciencedirect.com/science/article/pii/S0021999115006063
http://www.sciencedirect.com/science/article/pii/S0021999115006063
http://faculty.cse.tamu.edu/davis/publications_files/qrgpu_paper.pdf
http://faculty.cse.tamu.edu/davis/publications_files/qrgpu_paper.pdf
http://dx.doi.org/10.1177/1094342004041296
http://docs.nvidia.com/cuda/samples/6_Advanced/reduction/doc/reduction.pdf
http://docs.nvidia.com/cuda/samples/6_Advanced/reduction/doc/reduction.pdf
http://eprints.ma.man.ac.uk/2464/

