
Tensor Contractions using Optimized Batch GEMM Routines
 Ahmad Abdelfattah, Azzam Haidar, Stanimire Tomov, and Jack Dongarra

Abstract
We present a high performance solution for tensor contractions using CUDA. In particular, we consider
large scale tensor-formulated high-order finite element method (FEM) simulations, which can be
represented as a sequence of batch GEMM operations. We show that a highly tuned batch GEMM kernel
can achieve significant speedups against cuBLAS. Thanks to an extensive tuning process, we are able to
maintain a performance advantage for each size of interest. Further performance gains are achieved by
fusing the batch GEMM operation into one GPU kernel, which leads to an optimal data reuse.

Motivation
Numerous important applications can be expressed through tensors:
● High-order FEM simulations
● Signal Processing
● Numerical Linear Algebra
● Numerical Analysis

Accelerating High-order FEM

Code Autogeneration and Kernel Design

Inline GEMM Functions for Optimal Data Reuse
Since the individual problem size is extremely small, the sequence of GEMM operations can be fused into
a single GPU kernel to maximize data reuse. In order to perform in a portable reusable way, we have
applied the following design choices.

● Demote GEMM from a Kernel to an Inline Device Function
The core computational code of the MAGMA kernel has been demoted into an inline device functions
that is callable from within a higher level kernel. In general, four functions are provided to support the
different transposition modes of the GEMM operations. The device functions assume that all
matrices are stored in shared memory. They perform no global memory transactions at all.

● Read and Write Device Functions
Since the GEMM device functions do not interact with the global memory, two additional functions
are provided to read from global memory to shared memory, and to write from shared memory to
global memory. The user is responsible for calling these functions at the beginning and the end of
the CUDA kernel.

● Performance Tuning
All device functions are written based on a generic 2D thread configuration that is oblivious to the
actual problem size. However, the thread configuration affects the required shared memory space,
which is a requirement for a fully unrolled code. The shown results are based on preliminary
performance tuning experiment. An extensive autotuning effort is required for best results.
The developed framework also supports non square problems, but it requires a more sophisticated
tuning experiments.

● Performance Speedups
MAGMA is now 1.99x-to-79.8x faster than cuBLAS on the P100 GPU. It is also 2.5x-to-37x faster than
cuBLAS on the V100 GPU.

● Data Mining
● Deep Learning
● Graph Analysis
● Neuroscience and more

Conclusions and Future directions
● High-performance package on Tensor Algebra has the potential for high-impact on a number of important applications
● Multidisciplinary effort
● Current results show promising performance, where various components will be leveraged from autotuning MAGMA Batched linear algebra kernels, and BLAST from LLNL

Acknowledgement This work was supported by the Exascale Computing Project, a collaborative effort of the U.S. Department of Energy Office of Science and the National Nuclear
 Security Administration. This work was also partially supported by the National Science Foundation under Grant OAC-1740250 and NVIDIA.

REFERENCES: [1] V. Dobrev, T.Kolev, R.Rieben. High order curvilinear finite element methods for Lagrangian hydrodynamics. SIAM J.Sci.Comp.34(5), B606–B641, 2012.
 [2] A. Abdelfattah, M. Baboulin, V. Dobrev, J. Dongarra, C. Earl, J. Falcou, A. Haidar, I. Karlin, T. Kolev, I. Masliah, S. Tomov, High-Performance Tensor Contractions for GPUs, ICCS'16, San Diego, CA, June 2016.
 [3] A. Abdelfattah, A. Haidar, S. Tomov, and J. Dongarra, Performance, Design, and Autotuning of Batched GEMM for GPUs, ISC High Performance 2016, Frankfurt, Germany, June 2016.

 [4] I. Masliah, A. Abdelfattah, A. Haidar, S. Tomov, M. Baboulin, J. Falcou, J. Dongarra High-performance matrix-matrix multiplications of very small matrices, Euro-Par 2016, Grenoble, France, August 22-26, 2016.

Batch GEMM Design and Optimization
We want to compute batched (over the finite elements) sequences of matrix-matrix
(GEMM) multiplications of the form: C = BT D .* (B A BT) B

The sizes of interest are up to 32. The operation can be performed using 4 GEMM
operations and an elementwise multiplication with the matrix D (currently ignored).
The designed GEMM kernels use CUDA C++ templates. This enables a unified
code base that can be explicitly instantiated for every small problem size [2,3,4].

● Shared Memory Blocking and Double Buffering
The MAGMA kernel caches the input submatrices from A and B in shared
memory, while all computations for C are accumulated in registers. We
performed an extensive set of auto-tuning and performance counter analysis to
optimize and improve the implementation. Prefetching is also used to load the
next blocks of A and B and is controlled by a tunable parameter.

● Analysis of Hardware Counters
We performed a detailed performance study based on the collection and
analysis of hardware counters. Counter readings were taken using performance
tools (Nvidia CUPTI and PAPI CUDA component). We added the GEMM sizes
(M, N, K) to the template parameters such a way to use a unified code base to
produce a fully unrolled and optimized implementation for any of these very
small sizes.

● Performance Speedups
MAGMA is 1.06x-to-25.9x faster than cuBLAS on the P100 GPU, and is up to
13.6x faster than cuBLAS on the V100 GPU.

● Expressed in terms of tensor
contractions [2];

● Contractions can be implemented
as sequence of pairwise
contractions (slow);

● Code-generation, index-reordering,
and auto-tuning are used to cast
computations as Batched GEMMs:

 is transformed autom. to

 Cd1x(d2,d3)= AT
Bd1x(d2,d3)

M
et

ho
do

lo
gy

 u
si

ng
 S

ta
nd

ar
d

GE
M

M

 M
et

ho
do

lo
gy

 U
si

ng
 In

lin
e

GE
M

M
 F

un
ct

io
ns

● CUDA C++ Templates
● Problem size is a template

parameter to maximize loop
unrolling

● Inline GPU functions
● 2D thread configuration
● Tunable concurrency on the

multiprocessor level
● Part of the MAGMA library

Tesla P100 Tesla P100

Tesla P100 Tesla V100

Tesla P100

Tesla V100

