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Abstract
We present a high performance solution for tensor contractions using CUDA. In particular, we consider 
large scale tensor-formulated high-order finite element method (FEM) simulations, which can be 
represented as a sequence of batch GEMM operations. We show that a highly tuned batch GEMM kernel 
can achieve significant speedups against cuBLAS. Thanks to an extensive tuning process, we are able to 
maintain a performance advantage for each size of interest. Further performance gains are achieved by 
fusing the batch GEMM operation into one GPU kernel, which leads to an optimal data reuse.  

Motivation 
Numerous important applications can be expressed through tensors:
● High-order FEM simulations
● Signal Processing
● Numerical Linear Algebra
● Numerical Analysis

Accelerating High-order FEM

Code Autogeneration and Kernel Design

Inline GEMM Functions for Optimal Data Reuse
Since the individual problem size is extremely small, the sequence of GEMM operations can be fused into 
a single GPU kernel to maximize data reuse. In order to perform in a portable reusable way, we have 
applied the following design choices. 

● Demote GEMM from a Kernel to an Inline Device Function
The core computational code of the MAGMA kernel has been demoted into an inline device functions 
that is callable from within a higher level kernel. In general, four functions are provided to support the 
different transposition modes of the GEMM operations. The device functions assume that all 
matrices are stored in shared memory. They perform no global memory transactions at all.

● Read and Write Device Functions
Since the GEMM device functions do not interact with the global memory, two additional functions 
are provided to read from global memory to shared memory, and to write from shared memory to 
global memory. The user is responsible for calling these functions at the beginning and the end of 
the CUDA kernel.

● Performance Tuning
All device functions are written based on a generic 2D thread configuration that is oblivious to the 
actual problem size. However, the thread configuration affects the required shared memory space, 
which is a requirement for a fully unrolled code. The shown results are based on preliminary 
performance tuning experiment. An extensive autotuning effort is required for best results.  
The developed framework also supports non square problems, but it requires a more sophisticated 
tuning experiments.

● Performance Speedups
MAGMA is now 1.99x-to-79.8x faster than cuBLAS on the P100 GPU. It is also 2.5x-to-37x faster than 
cuBLAS on the V100 GPU.

● Data Mining
● Deep Learning
● Graph Analysis
● Neuroscience and more

Conclusions and Future directions
● High-performance package on Tensor Algebra has the potential for high-impact on a number of important applications
● Multidisciplinary effort
● Current results show promising performance, where various components will be leveraged from autotuning MAGMA Batched linear algebra kernels, and BLAST from LLNL
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Batch GEMM Design and Optimization 
We want to compute batched (over the finite elements) sequences of matrix-matrix 
(GEMM)  multiplications of the form:        C = BT D .* (B A BT) B 

The sizes of interest are up to 32. The operation can be performed using 4 GEMM 
operations and an elementwise multiplication with the matrix D (currently ignored). 
The designed GEMM kernels use CUDA C++ templates. This enables a unified 
code base that can be explicitly instantiated for every small problem size [2,3,4].

● Shared Memory Blocking and Double Buffering
The MAGMA kernel caches the input submatrices from A and B in shared 
memory, while all computations for C are accumulated in registers. We 
performed an extensive set of auto-tuning and performance counter analysis to 
optimize and improve the implementation. Prefetching is also used to load the 
next blocks of A and B and is controlled by a tunable parameter.

● Analysis of Hardware Counters
We performed a detailed performance study based on the collection and 
analysis of hardware counters. Counter readings were taken using performance 
tools (Nvidia CUPTI and PAPI CUDA component). We added the GEMM sizes 
(M, N, K) to the template parameters such a way to use a unified code base to 
produce a fully unrolled and optimized implementation for any of these very 
small sizes.

● Performance Speedups
MAGMA is 1.06x-to-25.9x faster than cuBLAS on the P100 GPU, and is up to 
13.6x faster than cuBLAS on the V100 GPU.

● Expressed in terms of tensor 
contractions [2];

● Contractions can be implemented 
as sequence of pairwise 
contractions (slow);

● Code-generation, index-reordering, 
and auto-tuning are used to cast 
computations as Batched GEMMs:
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● CUDA C++ Templates 
● Problem size is a template 

parameter to maximize loop 
unrolling 

● Inline GPU functions
● 2D thread configuration 
● Tunable concurrency on the 

multiprocessor level
● Part of the MAGMA library
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