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CHAPTER 1

Introduction

The Exa-PAPI project 1 is developing a new C++ Performance API (PAPI++) so�ware package
from the ground up that o�ers a standard interface and methodology for using low-level
performance counters in CPUs, GPUs, on/o�-chip memory, interconnects, and the I/O system,
including energy/power management. PAPI++ is building upon classic-PAPI functionality and
strengthening its path to exascale with a more e�cient and �exible so�ware design, one that
takes advantage of C++ object-oriented nature but preserves the low-overhead monitoring of
performance counters and adds a vast testing suite.

To put the new PAPI++ plan into perspective, the �rst PAPI version that o�ered a standardized,
easy-to-use interface for accessing hardware performance counters was released 21 years ago
in 1999. The past two decades witnessed tectonic shi�s in hardware technology followed by
paradigm shi�s in so�ware technology. During that time, PAPI has been repeatedly“extended”
with performance counter support for newly released CPUs; “redesigned” to enable hardware
monitoring information that became available in other sub-systems throughout modern com-
puter architectures (e.g., counters found in GPUs, on/o�-chip memory, interconnects, I/O
systems); and “upgraded” to extend PAPI’s role further for monitoring and capping power
consumption as well as performance events that originate from other so�ware layers.

No viable replacement for PAPI has emerged and established itself as the de facto standard
for monitoring hardware counters, power usage, so�ware-de�ned events, and channeling this
technological progress into a robust so�ware package. The PAPI++ package is meant to be this
replacement—with a more �exible and sustainable so�ware design. The objective of this white
paper is to describe the current design of the “classic” PAPI framework in conjunction with its
sustainability challenges, as well as identify and articulate opportunities and possible solutions
to implement PAPI++ to remain tenable and useful for the Exascale era—and beyond.

1https://icl.utk.edu/exa-papi/
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CHAPTER 2

Classic PAPI Design and Limitations

The �rst “PAPI++ Working Notes” [1] summarized the results from a PAPI survey that the Exa-
PAPI team circulated to the Exascale Computing Project (ECP) applications (AD) and so�ware
technology (ST) teams to assess their needs and requirements for hardware and so�ware
performance counter functionality. Based on these �ndings, the Exa-PAPI team has come up
with a roadmap for refactoring “classic” PAPI functionality into a new PAPI++ so�ware package.

The �rst part of this document describes the classic PAPI design and its current limitations.
Modifying and extending a library with a broad user base such as PAPI requires care to pre-
serve simplicity and backward compatibility as much as possible while providing clean and
intuitive access to important new capabilities. In the second part of this document, we discuss
possible implementations and C++ features for PAPI++ to provide support for the simultaneous
measurement of data from multiple counter domains.

2.1 PAPI Framework

Several so�ware design issues became apparent in extending the classic PAPI framework for
multiple measurement domains. The classic PAPI library consists of two internal layers: a large
portable layer optimized for platform independence; and a smaller hardware speci�c layer,
containing platform dependent code. By compiling and statically linking the independent
layer with the hardware speci�c layer, an instance of the PAPI library could be produced for a
speci�c operating system and hardware architecture. At compile time the hardware speci�c
layer provided common data structure sizes and de�nitions to the independent layer, and at
link time it satis�ed unresolved function references across the layers. Since there was a one-to-
one relationship between the independent layer and the hardware speci�c layer, initialization
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CHAPTER 2. CLASSIC PAPI DESIGN AND LIMITATIONS

and shutdown logic was straightforward, and control and query routines could be directly
implemented. In migrating to a multi-component model, this one-to-one relationship was
replaced with a one-to-many coupling between the independent, or framework, layer and a
collection of hardware speci�c components, requiring that previous code dependencies and
assumptions be carefully identi�ed and modi�ed as necessary.

When linking multiple components into a common object library, each component exposes
a subset of the same functionality to the framework layer. To avoid name-space collisions
in the linker, the entry points of each component are modi�ed to hide the function names,
either by giving them names unique to the component, or by declaring them as static inside
the component code. Each component contains an instance of a structure, or vector, with all
the necessary information about opaque structure sizes, component speci�c initializations and
function pointers for each of the functions that had been previously statically linked across the
framework/component boundary. The only symbol that a component exposes to the framework
at link time is this uniquely named component vector. All accesses to the component code
occur through function pointers in this vector, and vector pointers that are not explicitly set by
a component default to placeholder functions that fail gracefully, allowing components to be
implemented with only a subset of the complete functionality. In this way, the framework can
transparently manage initialization of and access to multiple components by iterating across a
list of all available component structures. This extra level of indirection introduced by calls
through a function pointer adds a small but generally negligible additional overhead to the call
time, even in time-critical routines such as reading counter values (PAPI_read(), PAPI_stop()).

2.2 PAPI Events

Countable events in PAPI are either preset events, de�ned uniformly across all CPU architectures,
or native events, unique to a speci�c component. To date, preset events have only been de�ned
for processor hardware counters, making all events on o�-processor components native events.

2.2.1 Preset Events

Preset events can be de�ned as a single event native to a given CPU, or can be derived as a linear
combination of native events, such as the sum or di�erence of two such events. More complex
derived combinations of events can be expressed in reverse Polish notation and computed at
run-time by PAPI. The number of unique terms in these expressions is limited by the number
of counters in the hardware. For many platforms the preset event de�nitions are provided in a
comma separated values �le, papi_events.csv, which can be modi�ed by developers to explore
novel or alternate de�nitions of preset events. Because not all preset events are implemented
on all platforms, a utility called papi_avail is provided to examine the list of preset events on
the platform of interest.

Currently, only the raw native events from the PAPI CPU components can be used to derive
generic PAPI preset events, such as PAPI_FP_OPS, PAPI_L1_MISS. For PAPI++, this limitation will
be removed and we will redesign the internal PAPI framework so that other components, such as
the Nvidia and AMD GPU components, can be extended with preset event support. Speci�cally,
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CHAPTER 2. CLASSIC PAPI DESIGN AND LIMITATIONS

the adoption of �oating-point operations (FLOP) presets for the GPU components (currently,
Nvidia and AMD, later also Intel) have a high priority in the HPC community, and we will
start this e�ort by investigating and analyzing the use of PAPI high- and low-precision FLOP
counters on Nvidia GPUs in order to develop a mapping of AMD FLOP events to Cuda FLOP
events. Additional e�ort will focus on the development of presets for a one-to-one mapping
between Nvidia and AMD events related to cache and memory activities, such as misses, hits,
accesses.

2.2.2 Native Events

PAPI components contain tables of native event information allowing native events to be
programmed in essentially the same way as a preset event. Each native event may have a
number of attributes, called unit masks, that can act as �lters on exactly what gets counted.
These attributes can be appended to a native event name to tell PAPI exactly what to count.
An example of a native event name with unit masks from the Intel Haswell EP architecture is
shown below:

OFFCORE_RESPONSE_0:DMND_DATA_RD:DMND_RFO:DMND_IFETCH:PF_DATA_RD:PF_RFO:PF_L3_DATA_RD:
PF_L3_RFO:NO_SUPP:L3_MISS:SNP_NONE:SNP_NOT_NEEDED:SNP_MISS:SNP_NO_FWD

Attributes can be appended in anyorder and combination, and are separated by colon characters.
Some components such as LM-SENSORS may have hierarchically de�ned native events. An
example of such a hierarchy is shown below:

LM_SENSORS.max1617-i2c-0-18.temp2.temp2_input

In this case, levels of the hierarchy are separated by period characters. Complete listings of
these and other native events can be obtained from a utility analogous to papi_avail, called
papi_native_avail.

2.3 PAPI Components and EventSets

An important consideration in extending a widely accepted interface such as PAPI is to make
extensions in such a way as to preserve the original interface as much as possible for the sake of
backward compatibility. Several entry points in the PAPI user API were augmented to support
multiple components, and several new entry points were added to support new functionality.
By convention, an event to be counted is added to a collection of events in an EventSet, and
EventSets are started, stopped, and read to produce event count values. Each EventSet in
Component PAPI is bound to a speci�c component and can only contain events associated with
that component. Multiple EventSets can be active simultaneously, as long as only one EventSet
per component is invoked.

The binding of EventSet and component has become too limiting and restrictive considering
the number of PAPI components (more than 30) available today. For PAPI++, we will provide
a way to combine di�erent types of performance counters from di�erent architectures (and
hence, PAPI components) in the same EventSet.
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CHAPTER 2. CLASSIC PAPI DESIGN AND LIMITATIONS

2.3.1 The PAPI CPU Component: Not your typical “Component”

The CPU component is unique for several reasons. Historically it was the only component that
existed in earlier versions of PAPI. Within Component PAPI one and only one CPU component
must exist and occupy the �rst position in the array of components. This simpli�es default
behavior for legacy applications. In addition to providing access to the hardware counters on
the main processor in the system, the CPU component also provides the operating system
speci�c interface for things like interrupts and threading support, as well as high resolution
time bases used by the PAPI Framework layer.

We consider the necessity for the existence of a CPU component—and only one CPU
component—to be an undesirable restriction. If one considers implementations that may
not need, or wish, to monitor the CPU activity, and also implementations that may contain
heterogeneous CPUs, it becomes clear why enforcing the existence of one, and only one, CPU
component in every PAPI installation is undesirable. Eliminating this restriction is an open
research issue in PAPI++ and we are investigating various mechanisms for making the existence
of CPU components optional.

2.3.2 Accessing the CPU Hardware Counters

CPU Hardware counter access is provided in a variety of ways on di�erent systems. When
PAPI was �rst released 21 years ago, there was signi�cant diversity in the operating systems and
hardware of the Top500 list [2]. AIX, Solaris, UNICOS and IRIX shared the list with a number
of variants of Unix. Linux systems made up a mere 3.6% of the list. Most of these systems had
vendor provided support for counter access either built-in to the operating system, or available
as a loadable driver. The exception was Linux, which had no support for hardware counter
access. This is in sharp contrast to today, where 100% of the Top500 systems run Linux variants.

Several options were available to access counters on Linux systems. One of the earliest was the
perfctr patch [3] for x86 processors. Perfctr provided a low latency memory-mapped interface
to virtualized 64-bit counters on a per process or per thread basis, ideal for PAPI’s “�rst person”
counting and sampling interface. With the introduction of Linux on the Itanium processor, the
perfmon [4] interface was built-in to the kernel. When it became apparent that perfctr would
not be accepted into the Linux kernel, perfmon was rewritten and generalized as perfmon2 [5]
to support a wide range of processors under Linux, including the IBM POWER series in addition
to x86 and IA64 architectures. A�er a continuing e�ort over several years by the performance
community to get perfmon2 accepted into the Linux kernel, it too was rejected and supplanted
by yet another abstraction of the hardware counters, �rst called perf_counters in kernel 2.6.31
and then perf_events [6] in kernel 2.6.32.

Nowadays, the perf_events interface is mature and has the advantage of being built-in to the
kernel, requiring no patching on the part of system administrators. Nonetheless, classic PAPI still
has support for hardware counter access through perfctr, perfmon, and various other substrates.
All these CPU-speci�c substrates are not only outdated, but also deeply intertwined with the
CPU component and the architecture-independent part of the PAPI framework. In PAPI++,
obsolete substrate support will be removed, and the perf_events support will be completely
detached from the framework allowing users to con�gure PAPI without the CPU component.
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CHAPTER 2. CLASSIC PAPI DESIGN AND LIMITATIONS

2.4 Additional Limitations

This section summarizes additional issues that are under investigation for PAPI++.

Data Types: PAPI supports returned data values expressed as unsigned 64-bit integers. This is
appropriate for counting events, but is not as appropriate for expressing other values. We are
exploring ways to encode and specify other 64-bit data formats including: signed integer, IEEE
double precision, �xed point, and integer ratios.

Dynamic Con�gurability: The current mechanism for adding new components is not well
suited to introducing new components. Methods are needed for an automated discovery process
for components, both at build time and at execution time.

Synchronization: Components can report values with widely di�erent time scales and re-
mote measurements may exhibit signi�cant skew and dri� in time from local measurements.
Mechanisms need to be developed to accommodate these artifacts.
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CHAPTER 3

Software Engineering with C++

Historically speaking, the PAPI framework has been implemented in C and also provides a
Fortran API. The complexity of modern hardware and so�ware systems for HPC, however,
necessitates the use of modern programming languages to ease the development process, avoid
code repetition, and keep the volume of code that’s exposed to changing requirements as
minimal as possible. While there is no question of the robustness of procedural programming
languages such as C and modern Fortran, when developing a new library from the ground up,
modern so�ware engineering demands generic programming, data abstraction and encapsula-
tion, inheritance, to name but a few, all of which can be easily expressed with C++. It is only
natural for the development of PAPI++ to adopted C++ as implementation language to leverage
its support for object-oriented programming.

3.1 Overcoming PAPI Limitations with C++ Features

As for the language speci�cation, for PAPI++ we are targeting C++11 or newer, as it introduces
many new features, such as built-in atomic support, and is completely supported by the GNU,
Intel, and LLVM compilers.

3.1.1 Overloading

C++ allows multiple functions to have the same name as long as they are distinct by their
signatures (i.e. argument types, number of arguments a function uses). For instance, a single
PAPI_read() function with versions for reading counter values that are long long int, double,
string, etc., instead of multiple type-variants, e.g., PAPI_read_longlong(), PAPI_read_double(),
etc. This is crucial for templating, as all function calls must be generic.
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CHAPTER 3. SOFTWARE ENGINEERINGWITH C++

3.1.2 Generics a.k.a. Templates

C++ templates reduce the complexity of programming by implementing a routine once
for a generic type, which can then be automatically instantiated for speci�c types such as
long long int, double, float or string counter values. Existing PAPI currently is limited to
long long int counter values. Extending classic PAPI to go beyond the notion of a simple
counter by allowing arbitrary information to be exported by performance counters would
involve either hand coding various versions (long long int, double, string, etc.) of each
PAPI_read(), PAPI_stop(), PAPI_accum(), PAPI_write() routine, or coding a search-and-replace
script to crudely automate the conversion to other precisions. Templates fully automate this
process and ensure type safety.

3.1.3 Exceptions

Traditional PAPI relies on returning an info parameter with an error code, which, typically, is
inherited from the underlying interface (i.e. the Linux kernel, or various other interfaces such
as Powercap, Lmsensors, BGPM, Emon, RAPL, PCP, CUPTI, ROCm, NVML, to name but a few
of what is supported in PAPI). C++ allows throwing exceptions, which a parent context can catch.
This can simplify error checking by grouping all the error checks together.

Exceptions also prevent ignored errors, as o�en happens with returned error codes—the excep-
tion must be caught somewhere, or it will propagate all the way up to main. The existing PAPI C
code o�en misses error handling a�er every function call in the component implementations.

However, excessive use of exceptions can make the use of a library cumbersome from the point
of view of an application developer. In PAPI++ we will ensure that errors that must not be
ignored are propagated to the caller as exceptions, without generating exceptions for issues that
are of secondary importance.

3.1.4 Value Initialization

Value initialization—which is distinct from default-initialization— is a very commonly used
feature that allows, among other things, providing a default constructor for user-de�ned ob-
jects. This will be extremely useful for the new PAPI component, EventSet, and event ob-
jects. Speci�cally, the C++11 “brace syntax” is particularly valuable for function templates
template <typename T>, where T can be of di�erent types. The brace feature T temp {}; allows
for safe value initialization of temp regardless of what type T is.

3.1.5 User-de�ned Data Types: Event and EventSet

In classic PAPI, there is a tight correspondence between EventSets and components. In Sec-
tion 2.3, we explain in-depth the consequences of this design decision. In summary, this leads
to the following two extremely critical limitations for an application or performance tool using
PAPI:
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CHAPTER 3. SOFTWARE ENGINEERINGWITH C++

(1) An EventSet can only contain events that belong to a single component.

(2) Only one EventSet per component can be active at any given time.

PAPI_add_event()
EventInfo[]
Overflow[]
Position[]

update_control_state()

component
specific

structures

PAPI_read() _cmpnt1_read()

Framework Component
PAPIApplication

_papi_hwi_read()

PAPI_start()

Figure 3.1: Application-Framework-Component interaction in classic PAPI

The interaction between an application, the PAPI framework, and a component with respect
to events and EventSets is depicted graphically in Figure 3.1. As shown in the �gure, when an
application adds an event to an EventSet the framework updates several arrays that contain
information about the event, details that pertain to over�owing, and indirection arrays. Then,
the framework invokes a function (update_control_state()) of the component that is respon-
sible for the newly added event, so that the component may update its own speci�c structures.
Later, when the application invokes PAPI_read(), the framework calls the read function of the
corresponding component which returns the values of all the counters in the EventSet (since
they all belong to the same component).

eset.add(e); Event Iterator component
specific

structures

eset.read();
_cmpnt1_read()

Framework Components
PAPI++Application

e = new Event(...);

*it->read()

_cmpnt2_read()

_cmpnt3_read()

eset = new EventSet();

eset.start();

Figure 3.2: Application-Framework-Component interaction in PAPI++

In PAPI++ we aim to free users from the tight correspondence between EventSets and com-
ponents, and the limitations that come with it. Figure 3.2 expresses this increased �exibility
using pseudo-C++ constructs. In PAPI++, “Event” and “EventSet” will be user-de�ned data types
(classes). In classic PAPI, functions such as PAPI_start(), PAPI_read() and PAPI_stop() start
and stop the monitoring of an EventSet, and functions such as PAPI_overflow()manipulate
properties of the EventSet that a�ect its behavior. In the PAPI++ design, these will be member
functions of the new classes, and some of them will exist in both the EventSet class and the
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CHAPTER 3. SOFTWARE ENGINEERINGWITH C++

Event class, so that decisions can be delegated to the most appropriate entity. For example, the
EventSet does not need to knowwhich component each event belongs to because the individual
events themselves are aware of their component origin.

Since each event is an object of the class Event, component-speci�c information can be updated
at event creation (in the constructor of the class). Then, adding the event to an EventSet will
insert it in a data-structure with an iterator. When the application tries to read the values
associated with an EventSet it calls EventSet.read() only once, and internally the content of the
iterator is traversed and for each event the framework calls the member function read() of
that event. Since each event is uniquely associated with a component, the Event.read() function
will automatically call the read() function of the proper component. This design allows for the
di�erent events of an EventSet to be able to belong to arbitrary components. Also, this design
allows for di�erent events to have values of di�erent types (long long int, double, etc.), or
even values that are non-primitive types—such as strings, or arrays of data—without requiring
cumbersome APIs that include the type name in the function name, or non-safe practices like
pointer casting between variables of di�erent types.

Several decisions regarding the PAPI++ API remain open and are the subject of active inves-
tigation by the Exa-PAPI team. For instance, Event.read() may or may not be called directly
form the application layer. On one hand, it may allow for more �ne-grained control by the
application. On the other hand, however, it prevents optimizations that can be performed if
events are always grouped in an EventSet. Furthermore, classes such as “Component”—which
we will need to implement to avoid duplicated code between individual components—and
classes implemented to handle architecture-dependent details, appear to have no reason to be
publicly exposed to the application layer and will likely remain private to PAPI++.

3.1.6 Classic PAPI Interfaces and Performance Overhead

The C++ example given in the previous section seemingly breaks the existing C and Fortran
interface of classic PAPI (e.g., PAPI_add_event(), PAPI_read()); yet, backward compatibilitywith
the classic PAPI interfaces is of paramount importance to PAPI++ and will be maintained. To
achieve this, we will provide wrapper C and Fortran functions that will have the same signature
and behavior as the functions of classic PAPI. However, new and more advanced features that
rely on C++ functionality—such as events that return results of di�erent types—might require
cumbersome C APIs, or might be omitted from future C/Fortran interfaces.

Another major concern for PAPI++ is the potential performance overhead caused by the new
design and increased level of abstraction o�ered by C++. To avoid design decisions that would
lead to excessive overhead, we will prototype several alternative designs (with varying mixtures
of C and C++ code) early on, and we will investigate their performance overhead so that we
can balance abstraction and performance before we commit to a �nal design we will adopt for
PAPI++.
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