
I C
LComputer Science Department

CITR

SPONSORED BY

KOJAK is an automatic performance evaluation system for parallel applications. It supports developers of these applications in
detecting sources of ine�cient program behavior and, thus, in writing more e�cient code. KOJAK’s most attractive feature is its ability to
identify the reasons for low performance on a very high abstraction level (e.g., a process was waiting for a message that was sent too late).
KOJAK can be used for MPI, OpenMP, and hybrid applications written in C/C++ or Fortran. KOJAK generates event traces from running
applications and automatically searches them o�ine for execution patterns indicating ine�cient performance behavior. In this way, it
relieves the user from the burden of searching large amounts of data manually. KOJAK is jointly developed by Forschungszentrum Jülich,
Germany, and the University of Tennessee, USA.

ANALYSIS
REPORT

EVENT
TRACE

SOURCE
CODE

EXECUTABLE

LINKER

DPCL
AUTOMATIC INSTRUMENTATION

OF BINARY CODE

EPILOG
RUNTIME SYSTEM AND MPI/OPENMP

WRAPPER LIBRARIES

PAPI LIBRARY
RECORDING OF HARDWARE COUNTERS

POMP DIRECTIVES
MANUAL INSTRUMENTATION OF USER

SOURCE CODE

TAU
AUTOMATIC INSTRUMENTATION OF

USER SOURCE CODE

OPARI
AUTOMATIC INSTRUMENTATION OF

OPENMP SOURCE CONSTRUCTS

EXPERT
AUTOMATIC PATTERN ANALYSIS

EARL
ABSTRACT HIGH-LEVEL INTERFACE

TO EVENT TRACE

Where in my physical/virtual topology?

Which type of problem?

Where in the source code? Which call path?

Distribution across processes?

MULTI-LEVEL INSTRUMENTATION

EXECUTION ON PARALLEL MACHINE

PATTERN ANALYSIS

RESULT PRESENTATION

COMPILER
AUTOMATIC INSTRUMENTATION OF

USER OBJECT CODE

SUPPORTED PLATFORMS
• Cray T3E, X1, XD1, XT3
• HP Alpha based clusters
• IBM Power3 / Power4 based clusters
• IBM BlueGene/L
• Hitachi SR-8000
• Linux IA-32, IA-64, and EM64T/x86_64 clusters
• NEC SX
• SGI Mips based clusters (O2k, O3k)
• SGI IA-64 based clusters (Altix)
• SUN Solaris Sparc and x86 based clusters
• Generic UNIX workstation (clusters)

CUBE GUI
A

B

C

D

How severe is the problem?E

KOJAK IS A COLLABORATIVE
RESEARCH PROJECT

kojak@cs.utk.eduE-MAIL

I C
L

Zentralinstitut für Angewandte Mathematik (ZAM)
Forschungszentrum Jülich (FZJ)

A B C D

E

http://www.fz-juelich.de/zam/kojak/http://icl.cs.utk.edu/kojak/

Zentralinstitut für Angewandte Mathematik (ZAM)
Forschungszentrum Jülich (FZJ)

I C
L

I C
LComputer Science Department

CITR

Parallel applications often fail to exploit the full power of the
underlying computing hardware. Their optimization, however, is
extremely di�cult due to the inherent complexity of parallel systems.
KOJAK is an automatic performance evaluation system that supports
developers of these applications in detecting sources of ine�cient
program behavior and, thus, in writing more e�cient code. KOJAK’s
most attractive feature is its ability to identify the reasons for low
performance on a very high abstraction level (e.g., a process was
waiting for a message that was sent too late). KOJAK can be used for
MPI, OpenMP, and hybrid applications written in C/C++ or Fortran.
KOJAK generates event traces from running applications and
automatically searches them o�ine for execution patterns indicating
ine�cient performance behavior. In this way, it relieves the user from
the burden of searching large amounts of data manually. KOJAK is
jointly developed by Forschungszentrum Jülich, Germany, and the
University of Tennessee, USA.

KOJAK includes tools for instrumentation, event-trace generation,
and post-processing of event traces plus a generic browser to display
the analysis results. KOJAK has proved to be a very useful perfor-
mance tool for a broad variety of applications including applications
from physics and environmental science, and it has been presented in
several tutorials and hands-on workshops.

The basic process of analyzing an application consists of generating
an event trace from the running application by either inserting
directives into the source code or using automatic instrumentation
features that require only a small modi�cation of the make �le. The
components involved in this part are OPARI and EPILOG. After
program termination, the trace �le is analyzed o�ine using EXPERT.
To simplify the analysis, EXPERT accesses the trace through the EARL
interface, which provides precalculated abstractions supporting the
search process. Finally, the analysis results can be viewed in the CUBE
performance browser.

OPARI is a source-to-source translation tool that automatically inserts
calls to the POMP pro�ling interface into the source code of OpenMP
applications. OPARI works with Fortran, C, and C++ programs. The
POMP interface can be implemented by tool builders who want, for
example, to monitor the performance of OpenMP applications. OPARI
is based on the idea of OpenMP pragma / directive rewriting.

EPILOG is a binary event trace format plus a run-time library for
generating event traces of MPI and OpenMP applications. The EPILOG
event types cover MPI point-to-point and collective communication
as well as OpenMP parallelism change, parallel constructs, and
synchronization. A recently added feature is support for MPI-2 and
SHMEM one-sided communication. Finally, the library includes
capabilities to record data from hardware counters accessed using
the PAPI library.

EARL is a generic high-level interface for reading EPILOG event traces.
EARL provides random access to single events and computes the
execution state at the time of a given event as well as prede�ned
relationships between pairs of related events. EARL can be used for a
large number of di�erent trace-analysis tasks.

EXPERT is an automatic analysis tool for EPILOG traces. It identi�es
execution patterns indicating low performance and quanti�es them
according to their severity. These patterns target problems resulting
from ine�cient communication and synchronization as well as from
low CPU and memory performance. The analysis process automati-
cally transforms the traces into a compact call-path pro�le that
includes the times spent on the di�erent patterns. The pro�le can be
viewed using the CUBE display.

CUBE is a generic presentation component suitable for displaying a
wide variety of performance metrics for parallel programs (see picture
on the front). It o�ers interactive exploration of a multidimensional
performance space in a scalable fashion. Scalability is achieved in two
ways: hierarchical decomposition of individual dimensions and
aggregation across di�erent dimensions. All performance metrics are
uniformly accommodated in the same display providing the ability to
easily compare the e�ects of di�erent kinds of performance behavior.
A topological view shows the performance behavior relative to virtual
or physical process topologies. Multiple experiments can be
automatically compared, integrated, or merged using a
performance-algebra utility.

http://www.fz-juelich.de/zam/kojak/http://icl.cs.utk.edu/kojak/

Zentralinstitut für Angewandte Mathematik (ZAM)
Forschungszentrum Jülich (FZJ)

I C
L

